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We study the nonlinear dynamics of a homogeneous DNA chain which is based on site-dependent
finite stacking and pairing enthalpies. We introduce an extended nonlinear Schrödinger equation
describing the dynamics of modulated wave in DNA model. We obtain envelope bright solitary waves
with compact support as a solution. Analytical criteria of existence of this solution are derived. The
stability of bright compactons is confirmed by numerical simulations of the exact equations of the
lattice. The impact of the finite stacking energy is investigated and we show that some of these
compact bright solitary waves are robust, while others decompose very quickly depending on the
finite stacking parameters.
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I. INTRODUCTION

The dynamics of DNA has been extensively studied during the last decade. Particularly, the nonlinear field of
sciences pays special attention to the processus that takes place at the base pair scale [1]. The local opening of the
DNA double helix at the transcription start site is a crucial step for the genetic code. This opening is driven by
proteins but the intrinsic fluctuations of DNA itself probably play an important role. The dynamical properties of
these bubbles and their relations to biological functions have therefore been the subject of many experimental and
theoretical studies. To understand the phenomenon of thermal denaturation and the dynamics in DNA, Peyrard
and Bishop (PB) have proposed a model where DNA is represented by a pair of harmonic chains coupled by a
nonlinear potential (Morse potential) [1, 2]. This model describes, in a simplified way, the hydrogen bond and has
been used successfully in numerous applications such as energy localization [3] or to calculate solitonic speed [4].
Experiments proved that the free energy of opening base pairs depends on the identity of the next base pairs ; this
is due to the stacking interaction between neighboring bases on the same strand [5]. As it is well known, the solitons
existing in the (PB) model result from the balanced competition between dispersion and nonlinear effects. In the huge
taxonomy of the models for DNA dynamics, the possibility that nonlinear effects might focus the vibrational energy
of DNA into localized coherent structures is indeed expressed by considering pulse waves, kinks or breathers [6]. By
means of a small amplitude expansion in the original PB model, the classical nonlinear Schrödinger (NLS) equation
is retrieved. Recently, it has been shown that the inclusion of anharmonicities in the study of lattice models can
produce qualitatively new effects. In particular, Rosenau and Hyman [7]found solutions of the solitary type without
infinite tails, termed solitons with compact support or compactons. These traveling-wave solutions have a remarkable
property : unlike KdV soliton, which narrows as the amplitude increases, the compacton’s width is independent of
the amplitude [8]. As a consequence, two adjacent compactons do not interact unless they come into contact in a way
similar to the contact between hard spheres [9, 10]. Note that the stacking interaction in the Dauxois-Peyrard-Bishop
(DPB)[11] model is not harmonic, but it still differs fundamentally from that of statistical models because it does not
make reference to any characteristic energy. Since its introduction, this model was used to unravel several aspects of
melting. Joyeux and Buyukdagli (JB)[12] proposed a few years ago a dynamical model for DNA, which is closer to
the statistical ones than the DPB model, in the sense that it is based on site-specific stacking enthalpies and showed
that the finiteness of the stacking interaction is, in itself, sufficient to ensure a sharp melting transition.

In the present work, we show that this finite stacking energy interaction model supports envelope bright solitary
waves with compact support. To this end, the organization of the paper is as follows. In sec. II, we present the
model and its equations. In sec. III, by means of the semi-discrete approximation, we derive the extended nonlinear
Schrödinger equation governing modulated waves in the lattice. Exact analytical solution with compact support is
obtained for this extended nonlinear Schrödinger equation in sec. IV. Numerical investigations are considered in order
to verify the validity and the stability of analytical predictions and we draw our conclusions in sec. V.

II. MODEL AND EQUATION OF MOTION

The general form of the model we are considering in this paper is

H =
∑
n

1

2m
P 2
n +W (yn,yn−1) +D

(
e(−αyn) − 1

)2
, (1)

where we choice the (JB) model (see the finite stacking potential in Fig.1a), i.e.

W (yn, yn−1) =
4Hn

C

(
1− e−b(yn−yn−1)

2
)

+Kb (yn − yn−1)
2
, (2)

∆Hn/C is a Gaussian hole of depth and the backbone stiffness is taken as a harmonic potential of constant Kb. In
this set of equations, m is the reduced mass of the bases, while yn is the displacement that stretches the hydrogen
bonds. The last term in Eq.(1) is the on-site Morse potential (see Fig.1b), where D denotes the dissociation energy
while the parameter α, homogeneous to the inverse of a length, sets the special scale of the potential. This on-site
Morse potential appears as a “substrate” potential in the model, which comes directly from the structure of DNA.
In this work, numerical values of our parameters are those of Refs.[12, 13], that is, m = 300 a.m.u, D = 0.04eV ,

α = 4.45Å−1, Kb = 10−5 eV Å−2. Including Eq.(2) in (1) yealds the corresponding equation of motion of the nth
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base pair

d2yn
dt2

=
2Kb

m
(yn+1 + yn−1 − 2yn) +

2b4Hn

mC

[
(yn+1 − yn) e

−b(yn+1−yn)2 − (yn − yn−1) e
−b(yn−yn−1)

2
]

+
2αD

m
e(−αyn)

(
e−αyn − 1

)
. (3)

According to the original approach of [14], it is assumed that the oscillations of bases are large enough to be an-
harmonic, but still insufficient to break the bond since the plateau of the Morse potential is not reached. Thus, it is
presumed that the base nucleotides oscillate around the bottom of the Morse potential. We can therefore expand the
exponential function up to the third order approximation. Finally, Eq.(3) becomes

d2yn
dt2

=

(
2Kb

m
+

2b4Hn

mC

)
(yn+1 + yn−1 − 2yn)−2b24Hn

mC

[
(yn+1 − yn)

3 − (yn − yn−1)
3
]
−2α2D

m

(
yn −

3

2
αy2n +

7

6
α2y3n

)
.

(4)
On the other hand, it is convenient for the analytical and numerical calculations to transform these equations into

a dimensionless form by defining the dimensionless variables

Yn = αyn, τ = (

√
Dα2/

m)t, Cl =
2

Dα2

(
Kb +

b4Hn

C

)
, Cnl = − 2

Dα4

b24Hn

C
, (5)

which transforms Eq.(4) in :

d2Yn
dτ2

= Cl (Yn+1 + Yn−1 − 2Yn) + Cnl

[
(Yn+1 − Yn)

3 − (Yn − Yn−1)
3
]
− ω2

g

(
Yn −

3

2
Y 2
n +

7

6
Y 3
n

)
, (6)

where ω2
g = 2. Note that the control parameters b and ∆Hn/C allow to fix independently Cl and Cnl.

For finite amplitude of wave, nonlinearities of the system give rise to the generation of higher harmonics. However,
we are using the so-called “rotating-wave” approximation which consists essentially in neglecting harmonics and we
substitute into Eq.(6) the trial solution[15, 16]

Yn(τ) = B(X,T )eiθn +B∗(X,T )e−iθn , (7)

where the asterisk denotes complex conjugation. The above expression of Yn(τ) includes the fast local oscillation
through the dependence of the phase θn = kn − ωτ , and then preserves the discrete character of the system [17],
while the dependence of the envelope part is described by the slow amplitude variation of the function B (X,T ) with
respect to the slow variables T = ε2τ and X = ε(n− vgτ), ε being a small dimensionless parameter. Here the lattice

spacing has been taken as equal to unity. The parameter vg = dω
dk is the group velocity associated to the wave packet.

The linear oscillation frequency of the base pairs, and wave number, are related by the dispersion equation

ω2 = ω2
g + 4Cl sin

2 (k/2) . (8)

As shown by Eq.(8), the linear equation has a gap ωg and is limited by the cutoff frequency ωm =
√
ω2
g + 4Cl due

to the discreteness whereas vg = Cl sin(k)
ω . Instead of applying the standard reductive perturbation method in the

semi-discrete limit to Eq.(6), which forbids to appreciate the role of the nonlinear dispersion in Eq.(6), we substitute
Eq.(7) into Eq.(6), and neglect all terms in ε5 or more [15, 18]. Then, this envelope part leads to the following
one-dimensional nonlinear Schrödinger equation

i
∂B

∂T
+ PBXX +Q |B|2B =

Cnl
w
{il1

[
|B|2BX

]
+ il2 [B∗BXBXX ] +

2il3

[
|BX |2BX +BBXB

∗
XX +BB∗

XBXX

]
+ l4

[
B |BX |2 +

1

2
B2B∗

XX

]
+l5

[
|B|2BXX

]
+ 4l6

[
B∗B2

X

]
+ l7

[
B2
XB

∗
XX + 2 |BX |2BXX

]
}. (9)

The terms proportional to lk with k = 1, 2, 3, ..7 result from the inclusion of the finite stacking energy. They
therefore include the effect of nonlinear dispersion terms. The different expressions involved in (9), including the
group velocity dispersion (G.V.D) P and the self phase modulation(S.P.M) Q depend on k, ω, Cl, and Cnl :

P =
Cl cos(k)− v2g

2ω
, Q = − 1

2ε2ω

(
7

6
ω2
g + 48Cnl sin

4

(
k

2

))
, l1 = −24

ε
sin (k) sin2

(
k

2

)
,
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l2 = −3ε (sin (k) + sin (2k)) , l3 = −3ε sin(k)

2
, l4 = 12 sin2

(
k

2

)
,

l5 = −12 sin2

(
k

2

)
cos (k) , l6 = −

3 sin
(
k
2

)
sin
(
3k
2

)
2

, l7 =
3ε2 cos (k)

2
. (10)

Assuming that B (X,T ) and all its derivative converge to zero sufficiently rapidly as X −→ ±∞, Eq.(9) has
two conservation laws, which can be expressed in terms of continuity equations. The first conserved quantity is the
Hamiltonian H =

∫
ĤdX corresponding to invariance under translations in X, where the Hamiltonian density is

Ĥ = Ĥ1 + Ĥ2 + Ĥ∗
2 , (11)

with

Ĥ1 = −P |BX |2 +
Q

2
|B|4 +

3l7Cnl
2ω

|BX |4 − l5
[
|B|2 |BX |2

]
, (12)

Ĥ2 =
Cnl
ω
{ il1

2

[
|B|2BB∗

X

]
+
il2
4

[
B∗ |BX |2BX

]
+
il3
2

[
|BX |2B∗

X

]
+

3l4
4

[
B2B∗2

X

]
+ 2l6

[
B∗2B2

X

]
}. (13)

The second important invariant is the normalization of the envelope

N =

∫
|B|2 dX. (14)

The conservation of norm is intimately connected to the phase invariance of Eq.(9), i.e. the fact that if {B} is a
solution so is

{
Beiϕ

}
for any constant phase ϕ ∈ R.

III. BRIGHT SOLITONS WITH COMPACT SUPPORT SOLUTION

The existence of compact wave has been rigorously proven by Saccomandi and Sgura [19] for Hamiltonian systems,
provided that an anharmonicity condition is fulfilled. To proceed with the integration of the extended nonlinear
Schrödinger equation (9), we first separate the complex envelope function and the phase shift [15] ξ (X,T ) according
to

B (X,T ) = φ (X,T ) exp [−iξ (X,T )] . (15)

where φ and ξ are real functions of X and T . From the analysis of the coefficients lk with k = 1, 2, 3, ..7, it appears
that 8l6 = 2l5 − l4. By using this relation and substituting the expression (15) into Eq.(9) , we obtain a nonlinear
system of two equations by separating real and imaginary parts. It respectively reads :

−

(
∂ξ

∂T
+ P

(
∂ξ

∂X

)2
)
φ+ P

∂2φ

∂X2
+Qφ3 =

Cnl
ω
{−

[
l1
∂ξ

∂X
+ 8l6

(
∂ξ

∂X

)2

+ (l2 − 2l3)

(
∂ξ

∂X

)3
]
φ3

−

[
3l7

(
∂ξ

∂X

)4
]
φ3 + (l4 + 4l6)

[
φ2

∂2φ

∂X2
+ φ

(
∂φ

∂X

)2
]

−

[
(2l2 + 2l3)

∂ξ

∂X
− 5l7

(
∂ξ

∂X

)2
]
φ

(
∂φ

∂X

)2

(16)

−

[
l2
∂ξ

∂X
− l7

(
∂ξ

∂X

)2
]
φ2

∂2φ

∂X2
+ 3l7

(
∂φ

∂X

)2
∂2φ

∂X2
},

∂φ

∂T
+ 2P

∂ξ

∂X

∂φ

∂X
=
Cnl
ω
{

[
l1 + 16l6

∂ξ

∂X
− (l2 − 10l3)

(
∂ξ

∂X

)2

− 6l7

(
∂ξ

∂X

)3
]
φ2

∂φ

∂X

+

[
2l3 + 2l7

∂ξ

∂X

](
∂φ

∂X

)3

+

[
l2 + 4l3 + 2l7

∂ξ

∂X

]
φ
∂φ

∂X

∂2φ

∂X2
}. (17)
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Let us look for travelling wave solutions in the form φ (X,T ) = φ (z) with z = (X − veT ) and linear phase shift
ξ (X,T ) =γ (X − vφT ), where ve and vφ are the envelope and phase velocities, respectively. We can simplify Eq.(16)
and Eq.(17) by considering the following equations

φT = −veφz , φX = φz, (18)

which reduces straightforwardy Eq.(17) to

Cnl
ω
{[l2 + 4l3 + 2l7γ]φ

d2φ

dz2
+ 2 (l3 + l7γ) (

dφ

dz
)2 +

[
l1 + 16l6γ − (l2 − 10l3) γ2 − 6l7γ

3
]
φ2}+ ve − 2Pγ = 0. (19)

By using the drop boundary conditions

φ→ 0, φz → 0 at z → ±∞, (20)

we obtain

ve = 2Pγ. (21)

The first integration of Eq.16 gives

η1(
dφ

dz
)4 +

(
η2 + η3φ

2
)

(
dφ

dz
)2 + η4φ

4 + η5φ
2 = 0, (22)

where

η1 = 3Cnl

4ω l7; η2 = −P2 ; η3 = Cnl

2ω

(
l4 + 4l6 − l2γ + l7γ

2
)

η4 = − 1
4

(
Q+Cnl

ω

[
l1γ + 8l6γ

2 + (l2 − 2l3)γ
3 − 3l7γ

4
])

η5 = γ
2 (Pγ − vφ)

γ = l1
8l7
.

(23)

Equation (22) leads to (
dφ

dz

)2

= −
(
η2 + η3φ

2
)

2η1
+

√
(η23 − 4η1η4)φ4 + (2η2η3 − 4η1η5)φ2 + η2

2η1
, (24a)

or

(
dφ

dz

)2

= −
(
η2 + η3φ

2
)

2η1
−
√

(η23 − 4η1η4)φ4 + (2η2η3 − 4η1η5)φ2 + η2
2η1

. (24b)

Taking the phase velocity as

vφ =
ve
2
−
η2

(
η3 +

√
η23 − 4η1η4

)
η1γ

, (25)

.24a and 24b respectively take a simpler form : (
dφ

dz

)2

= µ2
(
B2

0 − φ2
)
, (26a)

and

(
dφ

dz

)2

= − η4
η1µ2

φ2, (26b)

with

B2
0 =

(
P

η3 −
√
η23 − 4η1η4

)
, (27)

and

µ2 =

(
η3 −

√
η23 − 4η1η4
2η1

)
. (28)
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For the resolution of this equation, we use the same technique as in [20, 21]. The integration of equation (26a) yields
the following solution in the compact support :

φ(z) = B0 cosµ(z − z0), if |(z − z0)| ≤ π/2µ, (29)

while in the non compact domain, φ(z) = 0, which respects (26b). The parameter µ may serve as a mesure of the
importance of discreteness effect in the system. This solution indicates that the compact bright solitary wave is
characterized by amplitude B0 and a strictly limited width L = π/µ. Moreover, z0 locates the center of mass of the
solution.
Note that other solutions of (26a) exist, involving multi-compacton waves, as for example φ(z) = B0 cosµ(z − z0)
if |(z − z0)| ≤ π/µ, ie a double compacton solution (see paragraph IV.A). Gaeta and al.[22] combined also two (or
more) kink solutions to obtain a multi-kink solution, which is a special type of multi-compacton solutions but they
considered a periodic on-site potential leading to an arbitrary sequence of kinks and anti-kinks.
According to Eq.(27) and (28), the existence of the compact solution (29) is subjected to the constraints :

P

η3 −
√
η23 − 4η1η4

> 0, (30)

η3 −
√
η23 − 4η1η4
2η1

> 0. (31)

The left-hand side of these criteria of existence (30) and (31) of compact solitary wave are calculated as a function of
the wave number and sketched in Fig.2. From this figure, it appears that the criteria (30) and (31) are satisfied for
the same domain of wave numbers, that is in [0, 0.29π] and [0.65π, π]. Moreover, B2

0 and µ2 admit a maximum for a
value very close to the upper boundary of the first of these domains. These constraints can be rewritten in terms of
the frequency ω of the carrier wave by means of the dispersion relation (8). By replacing the parameters ηi by their
expressions in Eq.(23), the existence condition of compact bright solitary wave becomes

−r < Cnl < 0, (32)

with

r =
(7/6)ω2

g

12 sin4 (k/2)− (1/8)(l1γ + 8l6γ2 + (l2 − 2l3)γ
3 − 3l7γ4)

. (33)

We remark that this criterion is independent of the G.V.D. in the formation of this compact bright solitary wave.
However, it appears from Equations (23) and (25) that the G.V.D. controls the compact solitary wave’s speed. Eq.(30)
and (31) show also that the existence of the compact solitary wave in the network is closely connected to the presence
of the nonlinear dispersive terms proportional to coefficients η1 and η3. It is possible to obtain the compact solution
even if the self phase modulation S.P.M term is absent (Q = 0). Accordingly, the S.P.M term plays a minor role in
the formation of the compact envelope bright solitary wave.
We then check whether this solution is a maximum or a minimum of the effective Hamiltonian of the system. In fact,
from the study of the nonlinear extended KdV equation, it has been proved that when the effective Hamiltonian is
maximum (resp. minimum), the compacton solution turns out to be unstable (resp. stable)[23]. Thus the effective
Hamiltonian can be a simple way of checking stability. We insert in the Hamiltonian (11), by means of Eq.(15) and
(29), the following compact form as a trial function :

B0 cosµ(z − z0) exp [iγ (X − vφτ)] , |(z − z0)| ≤ π/2µ, (34)

where B0 and µ are now taken as free parameters. Taking into account the relationships (11), (12) and (13), we obtain
the following contribution for the compact region of the wave (|(z − z0)| ≤ π/2µ) in the effective Hamiltonian :

HC =
3πB4

0

8µ

{
3l7
2

[
µ4 + γ4

]
− 4πP

3B2
0

[
µ2 + γ2

]
+µ2

[
l7γ

2 +
l1
12
γ +

l4
3

+
2l5
3

]
+

[
Q

2
+
l1
4
γ(1 + γ2)

]}
. (35)

Due to the fact that solution (34) satisfies the normalization condition (14), the problem of minimizing H under the
constraint N = const, is reduced to the problem of satisfying the equation ∂H

∂µ = 0, and we find that the Hamiltonian

H has a minimum at the exact value of µ for fixed N , which indicates the stability of the analytical compact wave
(34).
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IV. DIRECT NUMERICAL ANALYSIS

The results discussed in the previous section are only approximated ones since they are obtained not from the initial
equations of motion (3) but from the extended nonlinear Schrödinger equation (9) derived after some hypothesis. In
order to check if the above analytic continuum bright soliton with compact support can survive in the discrete lattice,
different numerical simulations of the equation (3) have been performed, using the following initial condition

Yn(t = 0) =

{
A0 cosµ(n− n0) exp [i (k − γ)n] , |(n− n0)| ≤ π/2µ
0 otherwise,

(36)

obtained from the equations (7), (15) and (29). The system has been integrated with a fourth-order Runge-Kutta
scheme with a timestep chosen to conserve the energy to an accuracy better than 10−6 over a complete run. The
number of base pairs is fixed at N = 600 in order to avoid any wave reflection at the end of the molecule that can
affect the creation process and the dynamics of the localized structures.

A. Stability of the compact static wave

To check the stability of the solutions over time, the solution is evolved over a very long time. First, the initial velocity
is taken to be zero. Fig.3 shows the stability of the lattice profile of the bright soliton with compact envelope over 2000
normalized time units (4, 2× 10−12s) which is much greater than the typical time scale of the transversal movements
in DNA (10−14s). The initial width and amplitude of compactons are chosen to be respectively L = π/µ = 50 times
the lattice spacing, and A0 = 2B0 = 0.015 where B0 and µ are respectively given by equations (27) and (28). As can
be seen from this figure, the initial analytic continuum compact envelope solutions of Eq.(29) remains stable even after
a very long time in the discrete lattice. We have also considered the compact envelope solution with width L = 22 . In
this case, the results of the numerical simulations show that although the solutions remain stable after 500 time units,
it loses its compact support and develops some structures near its edge after a larger time : 1000 time units (it starts
developing a tail near the edge of the compacton, thereby destroying the compact nature of the solutions, see Fig.4).
It is clear that the stability of the compacton solutions with initial speed equal to zero, in a discrete lattice, depends
crucially on its width which measures the discreteness effects in the system. by taking the zero initial velocity of the
compacton, we considerer the particularly condition where the envelope velocity vg+Ve and the term γvφ−ω are both
zero. We show that this static compact is stable when the width of the wave is enough consistent, the non-perturbed
compact wave has enough energy to remain stable for a long time without propagating. Moreover, as can be seen in
ref.[24], the width and the amplitude are some parameters acting on the stability of compact wave with the non-zero
velocity. In order to consider stability against small perturbations, we add a small perturbation to the equilibrium
solution Yn(t) = Ŷn(t) + εn(t) and linearize equation of motion Eq.(6) with respect to εn(t).

ε̈n(t) = Cl(εn+1+εn−1−2εn)+3Cnl[(Ŷn+1−Ŷn)2(εn+1−εn)+(Ŷn−1−Ŷn)2(εn−1−εn)]−w2
g(εn−3Ŷnεn+

7

2
Ŷ 2
n εn), (37)

This form was already considered by Gorbach [25] in the case of the compactlike breathers in systems with nonlinear
dispersive term. we consider the perturbation in the form εn(t) = b exp(i(qn−Ωt))+cc, q and Ω are wave number and
angular frequency of perturbation. By considering the static compact wave at initial position, we obtain the following
equation

Ω2 = 4Clsin
2(q/2)−3CnlA

2
0[(Φ2

n+1+Φ2
n−ΦnΦn+1cos(k−γ))(eiq−1)+(Φ2

n−1+Φ2
n−ΦnΦn−1cos(k−γ))]+w2

g(1−3A0+
7

2
A2

0).

(38)
By considering the compact wave at initial position, we can obtain the following dispersion relation

Ω2 = [4Cl + 12CnlA
2
0(cos(µ)2 + 1− cos(µ)cos(k − γ))]sin(q/2)2 + w2

g(1− 3A0 +
7

2
A2

0). (39)

An instability will develop in the molecule if the right hand side of this equation is negative. i.e, the perturbed wave
can be unstable when

4Cl + 12CnlA
2
0(cos(µ)2 + 1− cos(µ)cos(k − γ)) < 0, (40)

This equation is the modulated instability(MI) of our system. It gives us the possibility to express the initial amplitude
A0 as a function of a threshold amplitude A0,cr. Therefore a compact solitary wave introduced in the system stay
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stable for any q if the initial amplitude exceeds the threshold amplitude A0,cr defined as follows

A0 ≥ A0,cr =

√
Cl

3 |Cnl|
(cos(µ)2 + 1− cos(µ)cos(k − γ)). (41)

Taking this into account, it is then possible to plot the stability/instability diagrams shown in Fig.(5), this figure
shows how the value of the threshold amplitude A0,cr depends on the width of compact wave. Note that as can be
seen in Eq.(39) and Fig.(5), the compact wave is stable only if the perturbation wave is defined as

|sin(q/2)| ≤

√
w2
g(1− 3A0 + 7

2A
2
0)

|4Cl + 12CnlA2
0(cos(µ)2 + 1− cos(µ)cos(k − γ))|

. (42)

For this, the stability of the compact solitary waves depends on the parameters of initial compact solitary wave,
including the frequency of perturbated wave. For example, by taking the amplitude and width of the initial wave
respectively as A = 0.014 and L = 50, the wave suffers eventually destruction when the perturbative wave number is
q = 0.5π and maintains its stability when the perturbative wave number is q = 0.07π. For larger values of amplitude,
the perturbated wave maintains its stability for all values of perturbative wave number. Note that in the instability
region, the established compact solitary wave may be different from the initial one due to the radiation losses in
the process. Therefore, it is relevant to mention that the stability of the static compact solitary wave in DNA may
also be accompagnied by strong losses depending of the perturbation parameters. In the instability zone, the initial
wave predicted to be unstable against modulation break up into a pulse train and the amplitude decreases as the
time increases. In the balance between nonlinearity and anharmonic coupling, the bright solitary wave has a compact
envelope, and one can obtain a localized concentration of energy. We have study the energy localization through the
density of energy by

En =
1

2
mẏ2n +

4Hn

C

(
1− e−b(yn−yn−1)

2
)

+Kb (yn − yn−1)
2

+D
(
e(−αyn) − 1

)2
.

With the conditions of Eq.(42), the system is modulationally stable. Given a compact solitary solution with a small
perturbation, the system can group some of the energy in compact solitary-structure, while the rest of energy is spread
in the form of radiation. As shown in Fig.(6a), the energy is located along the bases pairs and for some specific time.
But for the opposite case, one can see from figure(6a) that the energy is effectively localized in some particular sites of
the molecule. We also remark that this localization of energy has happened with a certain spatio-temporal recurrence.

B. Stability of the compact propagating wave

Even if the group velocity controls the speed of the compact wave given by Eq.(21), Eq.(25) shows that the phase
velocity vφ depends on the anharmonicity of the system through ηi. Namely, in Fig.6, we plot the phase velocity as
a function of the anharmonic coefficient. We show that, when −0.4 ≤ Cnl ≤ 0 , for k ≈ 0.26π, the phase velocity
reaches a minimum value. By taking the initial velocity VC = Ve + Vg where Vg is the group velocity and Ve the
exact value of the velocity predicted by Eq.(21), we shown in Fig.7 that the initial compact wave can be stable for
a long time, moving slowly rightwards along the strand in the chain. Here the initial wave is given via (36) with a
fixed width L = 50 and amplitude A = 0.012. As time goes on, the initial compact bright solitary wave propagates
without changes of its initial profile and with the exact value of the constant velocity as illustrated in Fig.7, where the
evolution of the compact solitary wave at 0, 15000 and 30000 normalized time are shown. This process may correspond
to energy transfer in DNA molecules. This relative uniform and smooth envelope has compacton-like behavior. The
energy is localized in a limited narrow region for biologically significant duration. This energy can propagate as the
bright compacton and a large part of the energy is stored in the hydrogen bonds. Note that a similar result for
topological soliton with compact support was obtained by Saccomandi [19, 20] in the context of anharmonic lattice
when the nonlinear dispersion is invoked to describe the dynamic of the system. This result on modulated wave where
the envelope part is also described by a soliton with compact support is in agreement with the result of these preceding
studies. However, the above result is different to those obtained from the inhomogeneous NLS equation [42] or from
the system with linear dispersion but with non-smooth on-site potential [28] where the compactons speed is a free
parameter, but with a limiting value. The existence of this limit may be a peculiarity of this inhomogeneous system
and not that of the nonlinear systems with nonlinear dispersion. In Eq.(29), it is clear that one could in principles have
also waves spanning over several semi-periods (i.e. matching different zeroes of the cosine). Therefore, it is interesting
to find that if we define equation Eq.(29) as below

φ(z) = B0 cosµ(n− n0), if |(n− n0)| ≤ π/µ,
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we obtain a multi-compacton solution. For example, as can be seen in Fig(??), two compactons can move to the right
with the same velocity. For −1 ≤ Cnl ≤ −0.4, Fig.8 demonstrates the emergence of stable compactons out of more
general initial data. The emerging compactons are stable and preserve their initial shape. For the original Rosenau and
Hyman [7] compacton equations, numerical investigations showed some remarkable properties, namely whatever initial
compact data were given, they eventually evolved into compactons. We show in Fig.11 that a relatively compact wave
decomposes into a sequence of compactons whose number depends on the initial energy. Notably for larger energy, two
emitted compactons appear and propagate to the left. From figures (11), we see that even if the widths of the emitted
compactons are small, they propagate keeping their stability. This shows that for the case of a non-zero initial velocity,
the stability of the compact wave does not depend on their width. This is understandable because the energy of the
field is contained in a moving region of the width where a deliberately perturbed compact bright solitary wave with
non-zero initial velocity is numerically tested. Even if the localized energy tends to be shared in the whole system,
the wave stays very robust, as shown in Fig.(12).

V. CONCLUSIONS

In this paper, we have derived an extended nonlinear Schrödinger equation governing the dynamics of modulated
waves in DNA lattice with nonlinear dispersion. This equation reduces to the standard NLS equation in the absence of
nonlinear dispersion of the network. We have shown that this equation allows to successfully describe the propagation of
envelope bright solitary wave with compact support. Numerical experiments have been carried out in order to confirm
the analytical predictions. It has been observed that the existence and stability of the envelope bright compacton
with zero velocity, in the nonlinear lattice with finite stacking energy depends crucially on the value of the width of
the solution. Otherwise, we have shown that for the case of a non-zero initial velocity, the stability of the compact
wave does not depend on their width. Compact initial data decompose into a train of stable compactons whose width
depends on the number of emitted compactons.
For the physical point of our work, by showing the existence and the stability of compact bright solitary waves in
DNA, we provide a possible physical mechanism for the effect of finite enthalpy stacking on DNA dynamics. This
model with on site-dependent finite stacking is used here to show the existence of compact bright solitary wave in
DNA double strands. This stacking interaction provide both the linear and nonlinear coupling parameters which are
fixed independently and control the dynamic and the stability of the system. As described in some details in [12], this
model provides the description of the physics of DNA melting, and it shows that the finite enthalpy is responsible to
the denaturation of DNA. We believe that this work shows a new vision on the concept of compactification of nonlinear
waves in DNA and can also be exported in the study of many other physical systems. In the actual stage of the research
on structures with compact support, it is true that the obtained results are still far away from practical applications.
However a recent example gives an argument that a specific TeraHertz radiation exposure may significantly affect the
natural dynamics of DNA : Alexandrov and al.[26] choose the compact wave to be an effective perturbation for the
creation of a localized unbinding state at an arbitrary point. Moreover, in order to measure the velocity of the soliton
in the model of Peyrard-Bishop-Dauxois, Zdravkovic and Sataric [4] have proposed single molecule experiments on
the DNA molecule which might be a support to a couple of models that describe the DNA dynamics and predict the
existence of nonlinear waves in DNA. In this context, theoretical studies can suggest interesting experiments in order
to improve the physical knowledge of nonlinear waves in DNA.
It is however important to point out that applications of these results in biology must be done with prudence. From
a theoretical point of view, it is known that the stability and lifetime of localized solutions are very sensitive to
properties of the thermal fluctuations as viscosity and temperature [27–29].The DNA is in contact with a thermal
bath in the cell. Therefore, the friction and thermal forces play an important role in its internal dynamics. So, it is
necessary to explore the role of the thermal noise in the process of formation of these localized structures to study the
creation and dynamics of localized structures in the (JB) model in a cell environment. On the other hand, such basic
complex DNA functional processes as replication and transcription are controlled by means of the protein actions [30].
Therefore, to understand the DNA functioning, taking into account the internal interactions is necessary, but should
be completed by studying the interplay between the internal motion, e.g., internal oscillations in the DNA, and the
proteins involved in the processes.

[1] M. Peyrard, Nonlinearity 17, 1 (2004).
[2] M. Peyrard and A. Bishop, Phys. Rev. 62, 2755 (1989).
[3] D. Deluca, E. Filho, A. Ponno, and J. R. Ruggiero, Phys. Rev. E 70, 026213 (2004).



10

[4] S. Zdravkovic and M. V. Sataric, Phys. Rev. E 77, 031906 (2008).
[5] R. Gonzalez, Y. Zeng, V. Ivanov, and G. Zocchi, J. Phys. Condens. Matter 21, 034102 (2009).
[6] C. B. Tabi, A. Mohamadou, and T. C. Kofané, Phys. Lett. A 373, 3801 (2009).
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Figure 1. (a) Representation of the stacking interaction potential of base pairs W (yn, yn−1) defined by (JB) model as a
function of the relative displacement yn − yn−1, Kb = 10−5 eV.A−2 being very small, its effect on infinite behaviour (when
yn − yn−1 →∞) is not visible here.(b) Morse potential with the dissociation energy.

 

Figure 2. Study of the existence criteria of compact bright solitary waves as a function of the wave vector k for the parameter
D = 0.04eV , α = 4.45Å−1, Kb = 10−5eV Å−2, ∆Hn/C = 0.22eV . (Solid line corresponds to the criterion obtained from
Eq.(32) and dashed line for the one obtained from Eq.(33)). It appears that the criteria are satisfied in the same domains of
wave vector.
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Figure 3. Temporal behavior of compacton (initial speed equal zero) spacial profil. Magnitude A0 = 0.015, width L=50, and
central cite located at n0 = N/2. The solution is stable.

 

Figure 4. Same as in Fig.3 but the initial envelop width is now L = 22. The initial compacton loses its shape.
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Figure 5. The panel shows the regions where the static compact bright solitary wave is stable. The parameters have been
chosen as m = 300 a.m.u, D = 0.04eV , α = 4.45Å−1, Kb = 10−5 eV Å−2. Solid line and dashed line show respectively the
analytical and numerical studies. We note that the stability against small perturbation of the compact solitary wave depends
on the amplitude and the width of the initial wave. Our analytical and numerical studies show that in the left region, there
exist values of q revealing instabilities, while in the right region, no instability appears, whatever the value of q.

 

Figure 6. Energy localization (a) A0 ≤ A0,cr and |sin(q/2)| ≤
√

w2
g(1−3A0+

7
2
A2

0)

|4Cl+12CnlA
2
0(cos(µ)

2+1−cos(µ)cos(k−γ))| , (b)A0 ≤ A0,cr and

|sin(q/2)| >
√

w2
g(1−3A0+

7
2
A2

0)

|4Cl+12CnlA
2
0(cos(µ)

2+1−cos(µ)cos(k−γ))| .
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Figure 7. Variation of phase velocity versus negative anharmonicity parameter Cnl and wavenumber k. In insert, two values
of wavenumber are choosen : k = 0.28π (solid line), k = 0.24π (dashed line).

 

Figure 8. Time behavior of propagating compact bright solitary wave in DNA for Cnl = −0.4, i.e. ∆Hn/C = 0.2eV and

b = 4Å−2 (a) The initial wave is the compact envelope bright solitary wave located at site n0 = 100 with amplitude A0 =
1.2 × 10−2, width L = 50 and wave number k = 0.26π. (b) and (c) show the wave at given times of propagation : 15000 and
30000, respectively. The wave experiences are uniform, and the propagation is stable along the DNA lattice with a low speed.
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Figure 9. Time behavior of propagating of multicompacton compact in DNA. We use the parameter Cnl = −0.4, i.e. ∆Hn/C =

0.2eV and b = 4Å−2. The propagation is stable along the DNA lattice with a low speed.

 

Figure 10. Same as in Fig.7, but the anharmonic parameter is Cnl = −0.84 i.e. ∆Hn/C = 0.1eV and b = 8Å−2. The initial
compacton preserves its shape but emits another compacton with a lower amplitude which propagates leftwards but with also
a conserved shape.
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Figure 11. The decomposition of an initial compacton for the parameter Cnl = −0.9 i.e. ∆Hn/C = 0.09eV and b = 9Å−2. An
initial compact wave breaks into a string of compactons, each of them remaining stable after its birth.

 

Figure 12. Time evolution of the perturbated moving compact solitary wave, modulated at a wave number q = 0.5π. The
amplitude and the width of the initial wave are respectively A = 0.016 and L = 50. The perturbated compact solitary wave
appears to be stable during the displacement.


