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Université Bordeaux I, LOMA, UMR 5798, F-33400 Talence, France

(Received 15 April 2012; revised manuscript received 28 May 2012; published 7 August 2012)

The vector potential of a parallel magnetic field produces a modulation of the interlayer coupling between
adjacent superconducting layers. In some cases the period of this modulation can coincide with the period of the
Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) modulation of the superconducting order parameter. Such a resonance
condition results in cusps on the temperature and in-plane angular dependencies of the upper critical field Hc2.
This effect can open up a possibility to unambiguously evidence a spatially modulated superconducting phase in
layered conductors. Remarkably, the proposed signature of the FFLO state is directly based on the main feature
of the FFLO state, the spatial modulations of the order parameter.
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I. INTRODUCTION

The effect of high magnetic fields on the supercon-
ducting state in quasi-one- and two-dimensional elec-
tronic structures has been a subject of increasing in-
terest during the last several decades.1,2 This has been
motivated, in particular, by the experimental observation
of a field-dependent upturn of the superconductivity on-
set curve at low temperatures in the charge-transfer salts
based on the bis(ethylenedithio)tetrathiafulvalene (BEDT-
TTF) and on the tetramethyltetraselenafulvalene (TMTSF;
Bechgaard salts) molecules, which exhibit highly anisotropic
layered structures and hence have features of systems
with reduced dimensionality.3–5 The Fulde-Ferrell-Larkin-
Ovchinnikov (FFLO)6,7 state with a modulated superconduct-
ing order parameter could be at the origin of the observed
effect.

The layered organic superconductors are very suitable for
the FFLO observation. Indeed, for an in-plane magnetic field
the orbital suppression of superconducting correlations is
reduced and for singlet-paired superconductivity the Zeeman
response dominates the orbital response at low temperatures.
Therefore the superconducting pairing is mainly controlled by
the Pauli paramagnetic limit, at which the energy difference of
the oppositely directed spins becomes comparable to the con-
densation energy. The known layered organic superconductors
are in the clean limit, ξ0 = h̄vF /π�0 > l,8 where l is the mean
free path and �0 is the superconducting energy gap at T = 0
and H = 0, which is another necessary condition to observe
the modulated superconducting phase since it is very sensitive
to the presence of nonmagnetic impurities.9,10 Furthermore,
strong anisotropy of organic layered compounds resulting in
the increase of nesting topology of their Fermi surfaces also
favors the FFLO state.11

A possible FFLO state formation has been evidenced in the
experiments with layered organic superconductors,12–14 when
an external magnetic field is aligned along the conducting
planes. The anomaly in the thermal conductivity for the
clean organic sample λ-(BETS)2GaCl4,15 the calorimetric and
magnetic torque evidence for the appearance of an additional
first-order phase transition line within the superconducting
phase in the in-plane high field regime for organic sample

κ-(BEDT-TTF)2Cu(NCS)2,3,4 as well as an anomalous in-
plane anisotropy of the onset of superconductivity in a
(TMTSF)2ClO4 conductor5,8 have been interpreted as being
related to a stabilization of the superconducting phase with the
modulated order parameter in real space. The FFLO state is
expected to exist also in heavy fermion superconductors.16–19

Previously it has been demonstrated that in the tilted
magnetic field the interplay between the orbital and the spin
effects gives rise to the very peculiar angular upper critical
field behavior.20–23 In the case of the parallel orientation of
the magnetic field, the orbital effect, though small, provides
an interesting possibility to sample the direction of the
FFLO modulation—the in-plane anisotropy of the onset of
superconductivity should change dramatically in the FFLO
state.24 The vector potential of the parallel magnetic field
results in a modulation of the interlayer coupling with the
period λH = 2φ0/dH , where d is the interlayer distance
and φ0 = πc/e. The period of this modulation may interfere
with the in-plane FFLO modulation leading to the anomalies
in the critical field behavior. The strongest effect occurs
when the magnetic length λH coincides, i.e., in the resonance
with the period of FFLO modulation λFFLO (for T = 0,
λ0

FFLO = πh̄vF /�0 = π2ξ0). The upper critical field at T = 0
observed in κ-(BEDT-TTF)2Cu(NCS)2 is Hc2 � 30 T. Since
d = 1.62 nm,25 ξ0 = 7−9 nm this leads to λH = 85 nm
and λ0

FFLO = 70–90 nm. In (TMTSF)2ClO4, Hc2(0) = 5 T,
d = 1.31 nm, ξ0 = 45 nm resulting in λH = 630 nm, and
λ0

FFLO = 444 nm. In λ-(BETS)2FeO4 the lower Hc2(0) = 18 T,
d = 1.85 nm, ξ0 = 8.5 nm resulting in λH = 130 nm, and
λ0

FFLO = 85 nm. For these compounds λ0
FFLO < λ0

H at T = 0.
The FFLO modulation appears only at T < T ∗ � 0.56Tc0,26

with a wave vector q growing from q = 0 to q0 = q(T =
0) = 2�0/h̄vF with decreasing temperature. Therefore if the
condition λ0

FFLO < λ0
H is satisfied at T = 0, then at some finite

temperature T the resonance condition λFFLO(T ) = λH (T )
should be realized. This corresponds to the situation when the
strongly overlapping Josephson vortices form a rectangular
lattice with its centers just above the nodes of the order
parameter. Note that previously such mechanism of pinning
of Josephson vortices by the nodes of FFLO modulation was
suggested in Ref. 27 and observed in organic superconductor
λ-(BETS)2FeCl4.28 The possibility of a resonance between
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FFLO and interlayer coupling was not considered in Ref. 24
and the analysis of this regime is the main subject of the present
paper. At the resonance the orbital effect is strongly enhanced
resulting in a cusplike change of the Hc2(T ) dependence.
The experimental observation of these anomalies can be a
strong signature of the FFLO phase formation in a layered
superconducting sample. The proposed tool for exhibiting the
FFLO phase is directly based on its main feature, the spatial
modulations of the order parameter.

II. THEORETICAL MODEL

We consider a system consisting of layers with good
conductivity in an xy plane stacked along the z axis. The
single-electron spectrum is taken as follows:

Ep = p2
x

2mx

+ p2
y

2my

+ 2t cos(pzd). (1)

As was demonstrated in Ref. 29 the anisotropic effective mass
model can be reduced to the isotropic one (IM model) by a
scaling transformation and corresponding renormalization of
the magnetic field. Therefore in this work we consider only
the isotropic spectrum and moreover to neglect the critical
fluctuation effects we assume that the coupling between layers
is t � T 2

c0/EF .30

For the in-plane magnetic field, with amplitude H , applied
at angle α with the x axis (the direction of the FFLO
modulation vector) we may choose the vector potential along
the z axis, with Az = −xH sin α + yH cos α. Assuming that
the vector potential varies slowly at the interlayer distances
and taking into account that the system is near the second-
order phase transition, we employ the linearized Eilenberger
equation for a layered superconductor in the form31

[
	n+ 2it sin(pzd) sin(Q · r) + 1

2 vF · ∇]
fωn

(n,r,pz) = �(r),

(2)

where 	n ≡ |ωn| + ih sgn(ωn), h = μBH is the Zeeman
energy, vF = vF n is the in-plane Fermi velocity, and the
vector Q = (πdH/φ0)[− sin α, cos α,0] is perpendicular to
the magnetic field. Here fω(n,r,pz) is the anomalous qua-
siclassical Green function integrated over the energy near the
Fermi surface. The order parameter is defined self-consistently
as �(r) = λπT

∑
n〈fωn

(n,r,pz)〉, with 〈· · · 〉 meaning the
average over the Fermi surface.

In two-dimensional (2D) superconductors the FFLO state
appears as a modulated order parameter with a wave vector
q whose direction is determined by the crystal field effects.32

The orientation of the FFLO modulation vector is arbitrary
in the pure Pauli-limited regime in the case of an elliptic
Fermi surface. The crystal field introduces deviations from the
ellipticity and pins the FFLO modulation vector in a certain
direction. For example, by considering the simplified model
of the square Fermi surface (SM) with constant modulus of
Fermi velocity to describe the in-plane electron motion one
can see that the directions of the FFLO modulation vector are
along the diagonals of the Fermi square. The symmetry of the
order parameter can provide an additional source of pinning
for the modulation vector. In this work we consider the s-wave

pairing but we expect that a similar situation occurs in the case
of d-wave pairing.

To describe the angular dependence of the upper critical
field in the FFLO phase in quasi-2D superconductors we have
to go beyond the simple exponential solution fωn

(n,r,pz) ∼
exp(iqr) and incorporate the orbital effects, which add the
higher harmonics in FFLO modulation, q ± mQ. Therefore,
the solution of Eq. (2) can be written as

fωn
(n,r,pz) = eiq·r ∑

m

eimQ·rfm(ωn,n,pz). (3)

At the same time only the even harmonics are present in the
order parameter �(r),

�(r) = eiq·r ∑
m

ei2mQ·r�2m. (4)

We derive a second-order approximation in the small param-
eter t/Tc0 to the solution of Eq. (2). This implies that the
higher harmonics in �(r) are small [e.g., �2 ∼ (t/Tc0)2�0]
and usually can be neglected.24 However one may notice that
at condition q − 2Q = −q, the harmonics �0 and �−2 are
the same and should be considered on equal footing. This
special situation results in the unusual temperature and angular
dependence of the critical field and it was not considered in
Ref. 24. Substituting Eqs. (3) and (4) into Eq. (2) and retaining
the terms up to the second harmonic �±2 one gets the following
system of coupled equations:

Ln(q)f0 + t̃f−1 − t̃f1 = �0, (5)

Ln(q ± Q)f±1 ± t̃f0 ∓ t̃f±2 = 0, (6)

Ln(q ± 2Q)f±2 ± t̃f±1 ∓ t̃f±3 = �±2, (7)

Ln(q ± 3Q)f±3 ± t̃f±2 = 0, (8)

where fm ≡ fm(ωn,n,pz), Ln(q) = 	n + ivF q/2, and t̃ =
t sin (pzd). From Eqs. (7) and (8) one gets[

Ln(q ± 2Q) + t2

Ln(q ± 3Q)

]
f±2 ± t̃f±1 = �±2. (9)

Substitution of f±1, obtained from Eq. (6),

f±1 = ∓ t̃f0

Ln(q ± Q)
± t̃f±2

Ln(q ± Q)
, (10)

when taking into account that f0 ≈ �0/Ln(q), gives the
equation for the second harmonic of the pair amplitude[

Ln(q ± 2Q) + t̃ 2

Ln(q ± 3Q)
+ t̃ 2

Ln(q ± Q)

]
f±2

− t̃ 2�0

Ln(q)Ln(q ± Q)
= �±2. (11)

Substitution of f±1 from Eq. (10) and f±2 ≈ �±2/Ln(q ± 2Q)
from Eq. (11) into Eq. (5) results in the following equation
for f0: [

Ln(q) + t̃ 2

Ln(q + Q)
+ t̃ 2

Ln(q − Q)

]
f0

− t̃ 2�±2

Ln(q ± Q)Ln(q ± 2Q)
= �0. (12)
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Here we took into account that for q = −Q, �0 ∼ �2 � �−2,
while for q = Q, �0 ∼ �−2 � �2. In the resonance q = Q
these equations acquire the form[
Ln(−q) + t̃ 2

Ln(−2q)
+ t̃ 2

Ln(0)

]
f±2 − t̃ 2�0

Ln(0)Ln(q)
= �±2.

(13)[
Ln(q) + t̃ 2

Ln(2q)
+ t̃ 2

Ln(0)

]
f0 − t̃ 2�±2

Ln(0)Ln(−q)
= �0.

(14)

Then Eq. (12) can be written as

f0 = �0

[
1

Ln(q)
− t̃ 2

L2
n(q)Ln(q + Q)

− t̃ 2

L2
n(q)Ln(q + Q)

]

+ t̃ 2�±2

Ln(q)Ln(q ± Q)Ln(q ± 2Q)
. (15)

f±2 = �±2

[
1

Ln(q ± 2Q)
− t̃ 2

L2
n(q ± 2Q)Ln(q ± 3Q)

− t̃ 2

L2
n(q ± 2Q)Ln(q ± Q)

]

+ t̃ 2�0

Ln(q)Ln(q ± Q)Ln(q ± 2Q)
. (16)

Making use of the self-consistency relation we obtain

�0[P + t2a(q,Q)] = �±2t
2c±(q,Q), (17)

�±2[P + t2a(q ± 2Q,Q) + δ±] = �0t
2c±(q,Q), (18)

where the following notations are introduced: P = (Tc −
TcP )/ATc and A = 1 − h

TcP

∂TcP

∂h
. Here TcP is the supercon-

ducting onset temperature in the pure Pauli limit determined
by

ln

(
Tc0

TcP

)
= πTcP

∑
n

1

ωn

−
〈

1

Ln(q)

〉
. (19)

The FFLO modulation vector q corresponds to the maximum
of TcP (q). �TcP = Tc − TcP is the shift of the critical
temperature due to the orbital effect. In addition, the following
notations are used:

δ±(q,Q) = πT
∑

n

〈
1

Ln(q)
− 1

Ln(q ± 2Q)

〉∣∣∣∣
T =TcP

, (20)

a(q,Q) = πT
∑

n,ξ=±
Tn(q,q,q + ξQ)|T =TcP

, (21)

c±(q,Q) = πT
∑

n

Tn(q,q ± Q,q ± 2Q)|T =TcP
, (22)

where Tn(q,p,k) = 〈L−1
n (q)L−1

n (p)L−1
n (k)〉/2. In the IM

model 〈
1

Ln(q)

〉
=

( |q|2v2
F

4
+ 	2

n

)−1/2

. (23)

In the SM model the largest critical temperature corresponds
to the wave vector q along the diagonals of the Fermi surface

qx = qy = q/
√

2,〈
1

Ln(q)

〉
= 1

2

∑
±

1

	n ± ivF qx/2
. (24)

The solution of the system of Eqs. (17) and (18) is given as

Tc = TcP [1 − A(SO + SR)] (25)

with the “orbital” term SO ≡ t2a(q,Q) and the “resonance”
term SR = minξ S

ξ

R(q,Q) with

S
ξ

R(q,Q) ≡ − (a−bξ )t2 − δξ

2
− t2

2

√
[a − bξ − δξ /t2]2 + 4c2

ξ ,

(26)

where bξ ≡ a(q + ξ2Q,Q) and those values of ξ = ± are
chosen that maximize the critical temperature. When the
system is out of resonance, the second harmonic of the
order parameter, �±2, can be neglected and the solution is
just Tc = TcP /[1 + ASO]. However, if δξ = 0 then the term
(P + t2b + δξ ) in the left-hand side of Eq. (18) is the same as
the corresponding term in Eq. (17) and the precise resonance
is established with S

ξ

R(q,Q) = −cξ t
2. In the IM model, the

resonance occurs when |q ± 2Q| = |q|, i.e., q · Q = ±Q2.
Due to the system isotropy the softening of the modes �0

and �±2 occurs simultaneously. When the role of the crystal
anisotropy effects is important and there is only ±q degeneracy
for the FFLO vector, then the resonance occurs only for
Q = ±q. In the SM model the degeneracy of q is fourfold: ±q1

and ±q2 with q2 ⊥ q1 and |q2| = |q1| and q1, q2 are directed
along the diagonals of the Fermi surface. So it is possible
to have two resonance conditions: Q = ±q (|Q| = |q|) and
2Q = q1 ± q2 (|Q| = |q|/√2). The second resonance occurs
at lower temperature.

III. RESULTS AND DISCUSSION

In our numerical investigations we restrict ourselves to
the parameters of the compound κ-(BEDT-TTF)2Cu(NCS)2.
The Maki parameter α � 8,4 the interlayer coupling is t =
1.5 K,33 t/Tc0 = 0.16, �0 = 2.8kTc0,34 and the Fermi velocity
vF = 5.0–10.0 × 104 m/s.35 We have chosen the value vF =
7.5 × 104 m/s.33 Introducing the dimensionless Fermi veloc-
ity parameter η = h̄vF πd/φ0μB , this value of vF corresponds
to η = 2.55. The summation over the Matsubara frequencies
was performed numerically.

To illustrate the resonance condition between the magnetic
wave vector Q = (−Hy,Hx)πd/φ0 and the FFLO modulation
wave vector q, we display the amplitudes of these vectors
in Figs. 1(a) and 1(b) as a function of reduced temperature
TcP /Tc0 for the IM and SM models, respectively. The insets
show the corresponding in-plane Fermi surfaces; the direction
of the q vector is along the x axis. At low temperature, the
vectors q and Q exhibit saturation in the IM model, while
they diverge in the SM model, since it has features of a 1D
system. In the IM model [panel (a)], the intersection of |q| and
|Q| curves occurs at a single value of TcP /Tc0 for η < 2.4.
For 2.4 < η < 2.7 these curves intersect at two values of the
reduced temperature, for instance for η = 2.55 at TcP /Tc0 =
0.056 and TcP /Tc0 = 0.32, resulting in two resonances. For
η > 2.7 these curves do not intersect at all. In general, the
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(a)

(b)

(c) (d)

FIG. 1. (Color online) (a) Absolute value of the FFFLO wave vector q (dashed line) and of the magnetic wave vectors Q (solid lines) versus
the reduced temperature TcP /Tc0 calculated for several values η in the IM model (a) and in the SM model (b). (c), (d) Contribution of the
orbital effect as a function of TcP /Tc0 for several angles α between H and q. Solid lines are the results obtained for �2 = 0; dashed lines are
for �2 = 0 and they give an idea of the onset temperature variation far from resonance. The resonances are indicated by the straight arrows.
(b) The IM model and (c) the SM model.

position of the resonance depends on α and, for instance in
the IM model, for η = 2.55, the resonance appears only in the
range of angles 72◦ � α � 108◦.

Figures 1(c) and 1(d) display the change of the transition
temperature �Tc = Tc − TcP , due to the orbital effects of
the applied magnetic field as a function of the reduced
temperature for different field orientations, for the IM and SM
models, respectively. The dashed lines illustrate the results
of neglecting the second harmonics of the order parameter
�±2, or the coupling between the equations in the system
(17) and (18), while the solid lines are the solutions of the full
system of these equations. One can see that two types of curves

FIG. 2. (Color online) Normalized transition temperature
Tc(α)/TcP as a function of α for several values of TcP /Tc0 and
for t/Tc0 = 0.16 in the IM model. Thick lines are for �2 = 0; thin
lines are for �2 = 0. For the purpose of clarity the shown range of
Tc(α)/TcP is from 0.6 to 1.0.

almost coincide for angles α = 0◦,20◦,45◦ in the IM model
and for angles α = 25◦,70◦ in the SM model. However there
are essential differences in the curve behavior for the angles
α = 70◦,90◦ in the IM model and for α = 0◦,45◦,90◦ in the
SM model. These differences are induced by the resonance
effect discussed above. For the sake of clarity we duplicate
the resonance positions in Figs. 1(c) and 1(d) by thick dots on
the T axis. The curve �TcP for α = 70◦ exhibits only one
cusp at TcP /Tc0 ≈ 0.2. At TcP /Tc0 ≈ 0.2, δξ is close to zero
and this vicinity induces a wide pseudoresonance peak on the
curve �TcP for α = 70◦. Our results show that the resonance
contribution SR can become of the order of the orbital effect
itself, SO. At exact resonances, indicated in Fig. 1(c) by straight

FIG. 3. (Color online) The same as in Fig. 2 but calculated within
the SM model. The resonance at TcP /Tc0 = 0.47 occurs at Q = ±q1,2,
while at TcP /Tc0 = 0.32 the resonance corresponds to Q = ±(q1 ±
q2)/2.
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(a) (b) (c)

FIG. 4. (Color online) Contribution of the orbital effect as a function of TcP /Tc0 for several values of the parameter t/Tc0 and for α = 90◦

(a) (IM model) and α = 45◦ (b) (SM model). Solid lines are the results obtained for �2 = 0; dashed lines are for �2 = 0. (c) Normalized
superconducting transition temperature Tc(α)/TcP as a function of α for η = 2.3 and TcP /Tc0 = 0.32 for several values of the parameter t/Tc0

(SM model).

arrows, the suppression of the critical temperature due to the
orbital effect becomes negligible.

The resonance effect results in particular features of the
anisotropy of the superconducting onset temperature induced
by the spatially modulated FFLO phase. Figure 2 shows
the magnetic field angular dependence of the normalized
superconducting transition temperature Tc(α)/TcP calculated
in the IM model at TcP /Tc0 � 0.05, 0.1, 0.17, and 0.32, when
accounting for the second harmonics of the order parameter
�±2 = 0 (solid line) and out of resonance �±2 = 0 (dashed
line). In the polar plot the direction of each point seen from
the origin corresponds to the magnetic field direction and
the distance from the origin corresponds to the normalized
critical temperature. We see that in addition to the overall
anisotropy induced by the FFLO modulation and studied in
Ref. 24, cusps develop for certain directions of the applied
field, when the resonance conditions are realized. The cusp
positions are marked by the straight arrows in Fig. 2. These
cusps are the result of the resonant interplay between the FFLO
wave vector and the magnetic wave vector, when the orbital
effects of the field are taken in the second-order approximation.
The incorporation in the model of the terms beyond the second
order produces additional, although much smaller, peaks in the
angular dependence of the upper critical field. Figure 3 illus-
trates the superconducting onset temperature as a function of
the direction of the applied magnetic field calculated within the
SM model at TcP /Tc0 � 0.1, 0.17, 0.32 and 0.47. Due to the
symmetry of the Fermi surface, q can be pinned in four direc-
tions: 0◦, ±90◦, and 180◦. This results in four cusps observed
at TcP /Tc0 � 0.32 and 0.47. At lower temperatures TcP /Tc0 �
0.10 and 0.17, the resonances disappear and the overall
anisotropy is due to the FFLO modulation along q1 and q2.

Hitherto we restricted ourselves to the parameters of the
organic compound κ-(ET)2Cu(NCS)2 with the interlayer cou-
pling t � 1.5 K (t/Tc0 � 0.16). In organic layered supercon-
ductor κ-(ET)2Cu(NCS)2Br, t � 2.3 K and t/Tc0 � 0.19.36

The developed theory is quantitatively valid for any layered
superconducting materials as soon as t/Tc0 � 1 and we expect
that it gives qualitatively correct results for the anisotropy of
the upper critical field even if t/Tc0 � 1. Therefore it may
be interesting to study how the anisotropy parameter t/Tc0

influences H
‖
c2 in the close vicinity of resonances. With this

aim in mind we consider two of our models (IM and SM),
and calculate a change of the transition temperature �TcP

due to the applied field-induced orbital effects as a function
of the reduced temperature for Q ‖ q and Q ‖ (q1 − q2)/2,
respectively. The results are displayed in Figs. 4(a) and
4(b). Figure 4(c) illustrates the angular dependence of the
normalized �TcP versus the applied field direction. One can
see that the height of the resonance peak normalized on
the parameter (t/Tc0)2 remains unaltered by the interlayer
coupling strength. However the width of the peak becomes
narrower with decreasing t/Tc0.

The relative shift of the critical temperature due to the
orbital effect is proportional to (t/Tc0)2. So for the exper-
imental observation of the proposed resonance effects it is
better to choose the layered compound with not too small
anisotropy parameter t/Tc0 and to first study the overall
angular dependence of the critical field in the FFLO phase.
This should permit one to determine the direction of the FFLO
modulation24 and then orienting the applied field perpendicular
to this direction would create the optimal conditions for the
resonance effect observation.

IV. CONCLUSIONS

In conclusion, we have shown that in layered supercon-
ductors under the applied in-plane magnetic field in the
FFLO phase the resonance between the modulation wave
vector and the vector potential may lead to anomalous cusps
in the field-direction dependence of the upper critical field.
Therefore, we suggest that observation of characteristic cusps
in the anisotropy of the onset of superconductivity may be
direct evidence for the appearance of the FFLO phase in
layered superconductors.
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