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How to avoid Biases in reactive simulations

Yoann Kubera, Philippe Mathieu an@I$astien Picault

Abstract In order to ensure simulations reproducibility, particuddétention must

be payed to the specification of its model. This requires aaeqdesign methodolo-
gies, that enlightens modelers on possible implementatigniguities — and biases

— their model might have. Yet, because of not adapted knaeledpresentation,
current reactive simulation design methodologies lackigipations concerning in-
teraction selection, especially in stochastic behavidhanks to the interaction-
oriented methodology IODA — which knowledge representesitdit to handle such

problems — this paper provides simple guidelines to desénteraction selection.
These guidelines use a subsumption like-structure, andfthe design of interac-
tion selection on two points : how the selection takes plaf instance first select
the interaction, and then select the partner of the intemacor first a partner and
then an interaction — and the nature of each selection — #atiice at random, or
with a utility function. This provides a valuable commuriica support between
modelers and computer scientists, that makes the intatfmetof the model and its
implementation clearer, and the identification of ambigsifind biases easier.

1 Introduction

Any Multi-Agent-Based Simulation (MABS) — and more gensrahny kind of sim-

ulation — is implemented according to a model defined by dospécialists. These
specialists are not always fully aware of implementatiaqureements. As a result,
computer scientists have to make implementation choibes,nay lead to biased
results. Even worse, because of programming habits ancetooigsive methodolo-
gies and frameworks, these choices might be implicit. Fstaince in Epstein and
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Axtell ecosystem simulation [5], a bias occurred in reshéisause the interactions
in which an agent might participate at the same time werepetified.

To ensure simulation reproductioni-e. obtain similar results with implemen-
tations of the model made by different persons — and to hegaimst ambiguities
and biases, domain specialists have to consider the mostistive set of questions
about what they want or expect of their model. Indeed, thesmeers elicit imple-
mentation choices, and remove ambiguities that may leadffereht implemen-
tations. Moreover, it makes sure that choices — includimgctioice to not answer
some questions — are made willingly, and aware of the bidsgsmay introduce.

In this paper, “bias” means “erroneous/distorted simatatbutcomes”. Thus,
biases are the result of either defective means such ag fanidom number gener-
ators, or of wrong implementation choices. This paper fesum this second point.

Our goal is to provide a generic and domain independent sitionl design
methodology calledODA and framework calledEDI [8]. This paper participates
in that effort by defining a particular question — and its amiswthat all simulation
methodologies should consider to prevent implementatiages “how agents se-
lect the action or interaction they perform among their maved affordances?”
[13]. Since this aspect is well specified for cognitive agetite focus of this paper
is reactive agents. Nevertheless, our proposition remailid for cognitive ones.

In order to clarify precisely this point, at least two prajpes are required :

e knowledge of agents what they are able to do kas to be defined separately
from action/interaction selection what an agent chooses to do. This separation
has to be made even for reactive simulations;

e interaction— a notion underlying any simulationhas to appear explicitly in the
methodology as well as in the implementation, as a softwatitye

Yet, simulation methodologies do not meet the requiremefttse last point (see
section 3), and thus remain ambiguous on how action/interaselection is han-
dled in reactive simulations. Indeed, agents define onlythey select the action or
interaction they perform [3, 15], but do not provide guidel on how target agents
are selected (see section 2), even though these processi=epiy bound together.

This paper aims at filling this gap by first specifying an a@ttiure that under-
lies any kind of multi-agent-based simulation, and thattisofienlighten modelers
on the problem mentioned above (see section 2). Then, asolift this problem
is presented in section 4. In this solution, the modeleiiteltbe action/interaction
selection process of agents in two parts. First he has tdfgfenv selection takes
place among three recurrent patterns met in simulatidirstinteraction then tar-
getselection, offirst target then interactiorselection ortuple selection — and then
the nature of every selection among three ones — eitiraiom by preferenceor
weighted We uphold that such specifications provide a valuable comication
support between modelers and computer scientists, thatgrhk interpretation of
the model and its implementation clearer, and that makesl#mdification of model
ambiguities and possible biases easier. We illustratestblistion on a modeling
example (see section 5), that shows the importance of susbciisation.

2 What an agent knows it can perform in a given context.
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2 Separation in Functional Units

Even if the application domains of multi-agent simulatiamns heterogeneous, they
can be split into different and weakly dependent functiamats [4, 16]. We con-
sider a particular functional decomposition that underbay kind of simulation.
This decomposition is done in three main units (see Fig. dljed ACTIVATION
UNIT, DEFINITION UNIT and SELECTION UNIT (see [7]).

[AcTivaTiON UNIT |
[selects the next ageatthat will behave. |

¥
DEFINITION UNIT
provides the informations required to budt$ per-
ceived affordances.

SELECTION UNIT
selects from perceived affordancesaafhat actiol
or interactiona initiates.

Fig. 1 The three main functional units of a multi-agent simulation desctin [7].

Because the design of simulations implies crucial choibesiathose three units,
we claim that it is important to make this separation cle@emin reactive simula-
tions, in order to make modeling choices explicit.

The significance of the BEFINITION UNIT specification and generic represen-
tation has been addressed in [8], and its relevance to eiimitel ambiguities and
possible biases is demonstrated in [7] and in this paper.impact of implemen-
tation choices of the ATIVATION UNIT was dealt with in [7], and studies possible
answers to the questiofywhen agents trigger their behavior ?and“in which in-
teractions an agent may participate simultaneouslyTtius, we focus in this paper
on the latest unit, the S ECTION UNIT.

3 Related Works

The space of implementation choices is really wide. To guidelelers in the hard
task of eliciting modeling and implementation choices, ynagent-based simula-
tion design methodologies exist and claim to handle thisaiss

Some of them are all purpose design methodologies — like VANLQ [14]. On
the opposite, many are specific to particular subsets oflatinns — like DESIRE
[15] that designs reasoning agents, or ADELFE [1] that des&pfaptative agents.
Because they are developed for particular use, they target specific problems,
and thus provide a more exhaustive specification of impléatiem choices for it.

Reactive simulation design methodologies have a particiédus among these
last. Indeed, even if they claim to be methodologies, mastydansist in writing the
simulation in the agent language or architecture they pvihus, unless the struc-
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ture of the architecture forces to make choices, there isuide{ines to build behav-
iors. Some methodologies and frameworks make the sepatstoveen knowledge
of agents and action/interaction selection, and providdedimes to build reactive
agents behavior. This is the case of component based frarkelike MALEVA
[2], or of hybrid frameworks like InteRRap [11] and PRS-b&sees [6].

Nevertheless this separation is a necessary but not a enffmdndition to avoid
biases coming from action/interaction selection. Indesgknts action/interaction
selection is the art of selecting the next actionneractionit will initiate. The un-
derlying problem is that agents have to consider which autgons they will initiate
and with which other agent it will be performéue. the target agent). Sadly, target
agent choice process remains unspecified in such methaeslog

To elicit such issues, we uphold that separation must be rhateeen knowl-
edge declaration, perceived affordances listing and @ai@tii@raction selection pro-
cess. Thanks to that, different patterns of action/intévacselection were identi-
fied. The modeler has to take into account these last to ettgatrbis model will be
understood and implemented as it was firstly thought.

4 Unit Specification Proposal

To specify clearly the SLECTION UNIT, we center the action/interaction selection
process of agents on the notion of interaction and perceiffeddances +.e. the
set of all actions and interactions an agent might perforenparticular context.

Perceived affordances construction requires a specifireseptation of actions
and interactions. We use the one of tidA methodology [8], that reifies interac-
tions and perceived affordances even at implemental@BDA provides advanced
methodological tools to design interactions in MABS. Simee do not need all
refinements it provides, we use a simplified version of [8]rd&fins.

4.1 Knowledge and Affordances Representation

To make the difference between the abstract concept of éigeimstance Wolves),
and agent instances (a particular Wolf), we use the notiageht familiesas ab-
stract concept of agent. Thus, the wagkntrefers to an agent instance.

Definition 1. An agent family is an abstract set of agent instances, which share all
or part of their attributes and behavior.

Definition 2. An interaction is a structured set of actions involving simultaneously
a fixed number of agents instances that can occur only if saméitoons are met.

An interaction is represented as a coufenditions actiong, wherecondition
is a boolean function andctionis a procedure. Both have agent instances as pa-
rameters. Agents that are involved in an interaction pl&fgdint roles. We make
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a difference betweeSourceagents that may initiate the interaction (in general the
one selected by the@rivaTioN UNIT) andTarget agents that may undergo it.

Definition 3. Let. € F and.7 € T be agent families.
We notea ., » theset of all interactionsthat an instance of the” agent family is
able to initiate with an instance of th# agent family as a target.

Thanks to these definitions, we can specify the knowledgencigent family
7 € IF as the setY ay/j, which contains every interactions it is able to initiate

T EF
as source with any agent family as target.
To unify knowledge, actions are considered as interactibas occur with no
target. We do not add this to our notations, please see [8hfwe informations.
The definition of perceived affordances uses the notionalfzable interaction,
in order to determine if two agents can participate in arradton.

Definition 4. Let | be an interaction, and < ., y < 7 two agents. The tuple
(1,x,y) is realizable (writtenr (1,x,y)) if and only if :

e | €ay,7,i.e.agents of” family are able to perforrhwith agents of7” family;
¢ the conditions of hold true withx as source ang as target.

A realizable tuple represents one interaction that an agamtinitiate with a
particular target agent. Moreover, an agents perceivaatdshces are the set of
all interactions it can initiate in a given context. Thusaatimet, the perceived
affordances of th& agent are the set of all realizable tuples thatay perform.

Definition 5. Let A; be the set of all agents in the simulation at a tiyendx € Ay.
Then, theperceived affordancesR; (x) thatx may perform at time is the set :

RI(X): U u {(|,X,y)|l’(|,X,y)}

yeAt Ieax/y

4.2 Selection Unit

In reactive simulation, agents try in general to performiaas and interactions se-
quentially until a realizable one is found.e. they use nested if/else structures. We
propose to use a similar principle in thelSEcTIoN UNIT (see Fig. 2) : every pos-
sible interactionl between a source” and a target agent family” is assigned a
priority p(l,.#,.), just as [12] did for classical actions (that do not involve a
target). Selection takes place on interactions in deangasider.

4.2.1 Interaction Selection Policies

Thanks to the interaction-oriented study of experimeriferént policies used to
select a tuple from a set of realizable tupR(x) were identified. An interaction
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SELECTION UNIT of x starts

¥
Gather the priorities of all the interactiorsan perform in ah
ordered seP(.¥)

| ) #0

p=Max(P(.¥))
P() =P(S)\{p}

Get the seRR{’(x) C R;(x) containing all realizable tuples qf
priority.
RP(X) = {(I,xy) e Ri(x)|37|y < 7 and (1,7, .7) = p}

P(.)#0ON
T =null

=

Select a tuplel = (I,x,y) from R (x), thanks to a particula
interaction selection policy that dependsmn —
If T # null, x performsl actions withy as target.

| Pery=0vT£nu
SELECTION UNIT of x ends

Fig. 2 Generic description of a reactive agent’s (narRe8ELECTION UNIT.

selection policy is decomposed in two parts : the nature efsiédection, and on
which elements the selection takes place. Indeed, th&STION UNIT can :

First select thanteraction that will occur, andhen select itstarget. If the se-
lected interaction is degeneratee(is an action), no target selection takes place;
First select thetarget on which an interaction will occur, antthen select the
interaction that will occur. This selection cannot involve degenerateractions;
Directly select auple (Interaction/Targe}. If an interaction is degenerate, the
corresponding tuple is onljinteraction).

The selection of each element — interaction, target or tufias one nature chosen
among three different ones :

e the element is selected @ndom;
e every element is given preferencevalue. The selected element is the one with

the highest preference value. If more than one have thieyale of them is
selected at random. This selection is intensively usedgmitive agents;

every elemengis given aweight w(e) € [0,1], and an interval# (e) C [0, 1] of
lengthw(e) such that intervals are pairwise not intersecting. A numkbef0, 1
is chosen at random. The selected elenedsthe element such that % (e).

4.2.2 Design Guidelines of the S_LECTION UNIT

To design an BLECTION UNIT containing fewer ambiguities, the modeler has :

to provide priorities to every interaction an agent may qenf;
to provide for each couple (source agent family, priority) :



How to avoid Biases in reactive simulation 7

— on what element the selection is made (eith&araction then targetor target
then interactionor tuple);

— the nature of each selection (eitmandom by preferencer weighted;

— how preference and weights are computed.

Obviously, he has to understand what his choices imply. Kinid of specification
is possible only if interactions are at center of simulatidke in IODA [8].

5 Illustration on a Modeling Problem

Reactive MABS application fields widen everyday, and tacidey different prob-

lems. Among these appears chemistry, for which MABS prowidee realistic dif-

fusion behaviors than in numerical simulations. In thislegagion field, one of the
most difficult issue of multi-agent programing has to be legdk defining the behav-
ior of agents according to macroscopic rules. These rukepruababilities, and thus
require to define stochastic behaviors for agents. Theskdfibehaviors introduce
issues that do not appear in non-stochastic multi-agenilations. Consequently,
biases may occur in situations that might seem correct fyulae simulations de-
sign methodologies. We illustrate this point on a modelixgneple, and show how
our solution provides guidelines that leads modelers totifiebiases.

5.1 The Modeling Problem

We consider simulations that describe chemical reactionthose kinds of simu-
lations, the behavior of agents is almost completely surizadiin reaction rules.
The modeling problem we consider is the implementation efrthes :

A+BLC (R1)
A+D2E (R2)

The reaction rule R1 means that an agent of A family can re#btan agent
of B family in order to from a new agent of C family. The two ateof A and B
family are then destroyed. This reaction occurs only at Hqudar reaction raté;.

This rate is deeply bound with the probability that a R1 rieecbccurs. For
convenience, we consider thatis the probability that the reaction R1 occtir§he
same goes fok, and R2.

Due to the lack of space, we focus only on the definition of Anaital species
behavior. Moreover, since this is not the topic of this paperdo not describe how
A, B, C, D and E agents move in the environment.

This modeling problem is common in chemical reaction madglsince chemi-
cal species are often involved in many different chemicattiens.

3 Usually, this probability is obtained through computatiors] & different fromk;.
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5.2 First Encountered Problem

To implement such agents, the reaction rate of R1 and R2 bawe integrated into
their behavior. Many different implementations of this aelor can be made (see
[9]). These implementations correspond to different imtetations of reaction rates.
Indeed k; can :

e Either represent the probability that the reaction R1 cedan agent of A family
is close to at least one agent of B family. In that case, thbaiitity 27(R1) that
an agent of A family executes R1 depends only on the presdnmeeonearby
agent of B family. Thus, if at least one agent of B family issgeby,&?(R1) = ky;

e Orrepresent the probability that the reaction R1 occurk wite particular agent
of B family. In that case, the probability that an agent of Afly performs R1
depends on the number of nearby agents of B family. Thuserttisn, close-by
agents of B family,(R1) = 1— (1—ky)™;

With our solution, the two interpretation correspond to tlifferent SELECTION
UNIT, where R1 and R2 have the same priority :

1. Either aFirst interaction then targeselection, with aveightedselection for in-
teractions (wherev(R1) = k; andw(R2) = ko), and arandomone for targets;

2. Or aTupleselection, where a tuple is realizable only if it meets thabpbility :
the stochastic factor is tried in the condition of R1 and R2e performed tuple
is selected at random among realizable tuples.

The different interpretations appear clearly in te.6cTION UNIT. Indeed the use
of the First interaction then targeselection policy implies that the probability to
trigger a reaction is independent from the number of neighgcagents. The use
of the tuplesselection policy implies that the probability to trigger @action is
proportional to the number of neighboring agents.

5.3 Second Encountered Problem

Let us consider the second implementation, where the pilitgabat an agent of
A family performs R1 depends on the number of neighboringnesyef B family.

Because an agent of A family that performs R1 disappearstheranvironment,
such simulations are sometimes written like in figure 3.

This kind of implementation provides biased results. Injegents of A family
perform R2 only if they failed to perform R1. Thus, conditidmprobabilities are
introduced :2(R2) = (1- Z(R1)) x (1— (1—kz)™)

The greatek; or the density of agents of B family are, the greater the hasicg
from conditional probabilities becomes. Thus, if the siatign is verified with low
densities — or with a low reaction probabiliky — the error has a weak impact on
simulation results, and simulation seems unbiased.
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ask every agent of A famly [
;; List inits perceived affordances realizable Rl
;; reactions with close-by B agents.
;; |If at least one such tuple exists, the agent perforns
; one of them and disappears fromthe environnent.
1
ask the remaining agents of A famly [
;; List inits perceived affordances realizable R2
;; reactions with close-by D agents.
;; |If at least one such tuple exists, the agent perforns
;; one of them

]

Fig. 3 An implementation example of our modeling problem

Even if this bias seems obvious, it exists in real implemigona, for instance in
the Netlogo [17] implementation of Henry-Michaelis-Memtdnetics [10].

If the reaction rates raise, experiments showed that a hajgepgpeared between
the reaction speed in biased implementations and the oeasgieed in the unbiased
ones. Because the reaction speed is at the center of manyoatheeactions (like
in Henry-Michaelis-Menten kinetics), such a bias is notgutable. Thus, particular
attention must be payed to this point.

With our solution, to obtain such a bias, different pri@#imust be given to R1
and R2. Thus, the fact that an agent of A family performs anrf@action only if
it could not perform an R1 interaction appears explicitlylia SELECTION UNIT.

6 Conclusion

Designing simulations implies making implementation clesi These choices have
a deep impact on simulation results, and might even intreduiases in them. To
avoid this problem, modelers have to provide a precise gegnr of implementa-
tion choices, to ensure the reproducibility of the modeisTi& only possible if the
modeling methodology they use provides guidelines thaitelall these choices.

Current reactive MABS design methodologies do not spediéarty how the
target of interactions are selected, because they do neiderboth the separation
between knowledge and action/interaction selection m®oéagents, and the reifi-
cation of interactions.

Thanks to the IODA methodology — that meets the requiremerestioned
above — we built guidelines to design the behavior of agentgder to solve this
issue. The guidelines consist in providing knowingly a ptyoto every interaction
an agent may perform, and then specifying for every priority

e on what element the selection is made (eitfiest interaction then targeffirst
target then interactionor tuple);

e the nature of each selection (eitmandom by preferencer weighted;

e how preference and weights are computed.
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The importance of such guidelines was illustrated in the cdishemical reactions
simulations. It avoids the misuse of probabilities, thatldantroduce critical biases
in results.

We uphold that such specifications provide a valuable conization support
between modelers and computer scientists for the desigmyokiad of reactive
simulations. It makes the interpretation of the model aséhiiplementation clearer
—and thus avoids ambiguities in the model — and the idertiificaf possible biases
easier.
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