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1 LOMA, Université Bordeaux I, UMR 5798, F-33400 Talence, France
2 Research Center for Applied Sciences, Academia Sinica, 11529 Taipei, Taiwan
3 Departement Fysica, Universiteit Antwerpen, Groenenborgerlaan 171, B-2020 Antwerpen, Belgium

E-mail: mihail.croitoru@u-bordeaux1.fr

Abstract
Superconducting correlations in an isolated metallic grain are governed by the interplay
between two energy scales: the mean level spacing δ and the bulk pairing gap 10, which are
strongly influenced by the position of the chemical potential with respect to the closest
single-electron level. In turn superconducting correlations affect the position of the chemical
potential. Within the parity projected BCS model we investigate the probability distribution of
the chemical potential in a superconducting grain with randomly distributed single-electron
levels. Taking into account statistical fluctuations of the chemical potential due to the pairing
interaction, we find that such fluctuations have a significant impact on the critical level spacing
δc at which the superconducting correlations cease: the critical ratio δc/10 at which
superconductivity disappears is found to be increased.

(Some figures may appear in colour only in the online journal)

1. Introduction

In the past two decades quasi-low-dimensional supercon-
ductor systems have become a very active field of research
due to their rich variety of physical properties and potential
applications, which are superior to their three-dimensional
homogeneous counterparts [1–15]. The technological ad-
vances in fabricating and controlling material structures of
nanoscale size provided a whole range of opportunities for
exploring experimentally these physical properties, induced
by quantum confinement [16–27]. Quantum confinement
results in the discretization of the electronic energy bands
and its competition with the pairing correlations produces a
nonuniform spatial distribution of the superconducting order
parameter.

The discreteness of the single-particle energy levels
due to electron confinement plays a fundamental role in
the description of the superconducting state in a metallic

grain. A reduction of grain size leads to an increase of the
spacing between the levels. Back in 1959, Anderson argued
that when the average level spacing δ, which is inversely
proportional to the density of states at the Fermi level and
the grain volume, becomes of the order of the BCS bulk gap
10 then superconductivity should disappear [28]. Since the
celebrated experiments by Ralph, Black, and Tinkham [16,
17] on Al superconducting grains, several groups have
reported the fabrication of different metallic superconducting
nanoparticles, some of them with crystalline perfection [18,
21, 25, 26]. Experiments have demonstrated clear signatures
of superconducting pairing up to δ ∼ 10, whereas no
such correlations survived for δ � 10. This stimulated
several theoretical investigations on the critical level
spacing in nanograins at which superconducting correlations
cease [1, 2, 29].

A mean-field model of a superconducting grain with
equidistant energy levels was considered by von Delft
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et al [1]. This model takes into account number-parity effects,
which are of particular importance in small grains. They found
that the superconducting gap vanishes abruptly at a certain
critical value of the level spacing δc, which depends on the
parity-number of electrons in the grain, namely, δo

c = 0.8910
in grains with an odd number of confined electrons, and δe

c =

3.5610 in grains with an even number of electrons. Smith and
Ambegaokar [2] extended the Delft’s mean-field treatment of
superconductivity in such small grains by taking into account
the Wigner–Dyson distribution of energy levels as obtained
within random matrix theory [30]. They found that for both
odd and even cases randomness enhances pairing and that
superconductivity persists beyond the critical level spacing as
deduced from the equal level spacing model. It turns out that
the critical level spacings at which pairing vanishes abruptly
are increased to δo

c = 1.8010 for an odd number of electrons,
and δe

c = 13.8110 for an even number of electrons. The treat-
ments beyond the mean-field approximation [5–7] have shown
that superconducting pairing persists beyond the critical level
spacing, but only in the form of fluctuations, and the crossover
between regimes of conventional and fluctuation-dominated
superconductivity is smoothed out [5, 6].

In both mean-field models the chemical potential was
chosen to lie halfway between the last filled and first empty
levels for an even number of electrons (the even case), and
on the half-filled level for an odd number of electrons (the
odd case), which is a typical situation in a nanoparticle,
when electron–electron correlation is neglected. However, the
position of the chemical potential is of importance because the
density of states in the vicinity of µ strongly influences the
superconducting correlations, and hence the final conclusion
on the critical level spacing. The position of the chemical
potential in its turn is affected by the correlations. To our
knowledge, a thorough investigation of the influence of
the superconducting pair correlations in a nanograin on the
position of the chemical potential has not been reported in the
literature.

Since in the most experiments only the average behavior
of a large number of grains is obtained, the aim of the present
paper is to study a statistical distribution of the chemical
potential around its position, which it has in the absence
of electron–electron correlations (henceforth, µ0-position).
As an example, we extend the mean-field model, developed
in [2], by weakening the µ0 condition, and study how this
effect can ostensibly modify the critical level spacing.

The layout of our paper is as follows. In section 2,
we investigate the statistical distribution of the chemical
potential induced by the pair correlations in a superconducting
nanograin. In section 3, we show how the grain critical level
spacing is affected by the statistical distribution of µ. Finally,
a short summary is given in section 4.

2. Grain size dependence of the chemical potential
distribution

We describe the grain by the following reduced BCS
Hamiltonian, where only the time-reversal states are paired

Ĥ =
∑
p,σ

εpa†
p,σap,σ −

∑
p,q

Vp,qa†
p↑a

†
p↓aq↓aq↑. (1)

Here p, q are integers numbering the single-particle energy
levels εp and the operator ap,σ (a†

p,σ ) annihilates (creates) an
electron in state p with spin σ . The interaction matrix element
Vqp is given by

Vqp = g
∫

d3r |ϕq(r)|2 |ϕp(r)|2, (2)

with g denoting the coupling constant and ϕq(r) the
single-electron wavefunction. The first term in equation (1)
contains the single-electron energies, and the second term
is the attractive (when g > 0) pairing interaction due to
the exchange of virtual phonons. We have assumed that
the electron–electron interaction is unaffected by quantum
confinement and it is the same as in the bulk. In the bulk
the real inter-electron potential is well approximated by
a δ-function pseudopotential. Employing such a simplified
interaction requires a regularization, which makes the matrix
elements non-zero only between states within the Debye
window around the Fermi surface.

For a given value of the chemical potential the parity
projected BCS self-consistency equation is [15, 31]

1ηq =
∑

|εp−µ|<h̄ωD

Vqp
1
η
p

2Ep
tp

[
1−

ηRπ t−2
q (1− t−2

p )

1+ ηRπ t−2
q

]
, (3)

where tp = tanh(βEp/2) with Ep the quasi-particle energy,
which is given by a complicated expression but is well
approximated by Ep = [(εp−µ)

2
+|1p|

2
]
1/2, Rπ/2 ≡

∏
p tp

and η is the parity index (η = −1, 1 for the odd and even
cases, respectively).

For a given number Ne of electrons in the grain the
chemical potential µ is determined from equation

Ne =
∑

p
fp

(
1−

ξp

Ep

)
+
(
1− fp

) (
1+

ξp

Ep

)
, (4)

with ξp = (εp − µ) and fp = (1 − tp)/2. The coupled
set of equations (3) and (4) were solved numerically by
iterations until full self-consistency was reached. At the first
iteration the value of the chemical potential in the absence of
superconducting correlations is taken.

Numerical calculations were performed with parameters
typically for Sn, namely, h̄ωD/kB = 195 K and gN(0) =
0.25, with N(0) the bulk density of states at the Fermi level,
and we used the bulk electron density ne = 148 nm−3. In
the rest of the paper we consider a nearly cubic grain with
Lx = D + a + ν1, Ly = D − a + ν2 and Lz = D + b, while
varying the thickness of the grain D. Here a = 0.2 nm;
ν1, ν2 are the random deviates with a normal (Gaussian)
distribution used to generate a large sample of single-electron
level configurations in a grain. The standard deviation for
the normal distribution was chosen to be 0.1 nm. b is fixed
to a value that keeps the volume of the grain constant
for given D constant, i.e. b = (D + a)(D − a)D/LxLy.
Parallelepiped-shaped grains were taken in order to avoid
strong degeneracy of the single-electron levels typical for the
highly symmetric samples. The single-electron wavefunction
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Figure 1. The chemical potential probability distribution for a superconducting Sn ensemble of grains with thickness D = 2.107 nm:
(a) without Soloviev blocking; (b) with Soloviev blocking.

in such a grain reads

ϕp(x, y, z) =
∏

l=x,y,z

√
2
Ll

sin
[
π jl

rl

Ll

]
, (5)

where p = {jxjyjz}. In this case the interaction matrix element,
equation (2), acquires the form

Vqp = g
∏

l=x,y,z

vql,pl , (6)

where

vql,pl =


3

2Ll
, if ql = pl,

1
Ll
, if ql 6= pl.

(7)

The odd-N BCS solution with lowest energy assigns a
specific role to the twofold-degenerate individual level whose
energy εp is closest to the chemical potential µ. Throughout
this paper, any quantity pertaining to this level is labeled
by the index p = 0, and the level with second smallest
quasi-particle energy is denoted by the index p = 1. For zero
temperature, q 6= 0 and η = −1, equation (3) is simplified to

1q6=0 =
∑

p(p6=0)

Vqp
1p

2Ep
, (8)

and (for q = 0)

1q=0 =
∑

p(p6=0,1)

V0,p
1p

2Ep
. (9)

For convenience, we no longer mention explicitly that
only single-electron states with |εp − µ| < h̄ωD are
taken into account; i.e., the odd-ground state is obtained
by creating a p = 0 quasi-particle above the BCS
vacuum. The only formal difference between equation (8)
and the usual BCS model is the suppression of the
term with p = 0. Nevertheless, this difference may
lead to a significant decrease of the pairing [1, 31],

because the p = 0 quasi-particle prohibits Cooper pair
scattering involving p = 0. In nuclear physics, the above
approximation is usually referred to as the blocking (Soloviev)
approximation [32].

The gap 1q=0 does not enter in equation (8), which
determines all the other gaps at sufficiently low temperatures.
However, the presence of such a gap associated with the
blocked level allows one to relax the requirement ofµ= µ0 =

ε0 for the odd case [33]. We can expect thatµ−ε0 can be of the
order of 1q=0 ∼ 10. Indeed, this is seen from our numerical
simulations.

Figures 1(a) and (b) show the probability distribution
of the chemical potential in odd grains with D = 2.107 nm
without and with the blocking effect, respectively. The
numerical simulations were performed with N = 2.0 ×
104 energy level configurations and with energy steps
1E = 0.025 meV (the number of discrete nodes for
sampling the energy space is 200). The distribution
is scaled by its maximum value. In the absence of
superconducting correlations in the grains all single-electron
level configurations result in a chemical potential pinned to
the half-filled level µ = ε0 for an odd number of electrons.
The zero energy in the figure is the position of this level,
µ0 = 0. One can see from figure 1(a) that switching on
the inter-electron correlations leads to a chemical potential
probability distribution that is different from the δ(µ −

µ0)-function. However, as seen from figure 1(b), the blocking
of the p = 0 level weakens the effect of the redistribution
of the chemical potential around µ0 by weakening the pair
correlations. It has a very sharp peak in the very vicinity of its
average value (for |E| = |µ − µ0| < 1E). Nevertheless, for
this particular case of D = 2.107, 66.5% of the configurations
resulted in a chemical potential in the range |µ− µ0| > 1E.

Figures 2(a)–(c) illustrate the probability distribution of
the chemical potential in odd grains with thicknesses D =
3.068, 5.190, and 7.5 nm. The inset in the upper panel is
a zoom of the lower part of the probability distribution for
D= 3.068 nm. It is seen that an increase of the grain size leads
to a decrease of the distribution width and at the same time
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Figure 2. The chemical potential probability distribution for a superconducting Sn ensemble of odd grains with thicknesses (a) D = 3.068
nm; (b) D = 5.190 nm; (c) D = 7.5 nm.

Figure 3. The chemical potential probability distribution for a superconducting Sn ensemble of even grains with thickness (a) D = 2.330
nm; (b) D = 3.448 nm; (c) D = 8.0 nm.

to a decrease of the relative height of the central peak in the
probability distribution. For large grains the redistribution of
the chemical potential due to the pair correlation is negligible
and when calculating superconducting characteristics for the
chemical potential one can use its value for the grain without
correlation as an acceptable approximation. The reason is
that in this case there are a lot of single-electron levels in
the Debye window, which allows the system to conserve the
particle–hole symmetry without a large perturbation of the
chemical potential position.

Figures 3(a)–(c) illustrate the probability distribution of
the chemical potential in the even grain case with thicknesses
D = 2.33, 3.448, and 8.0 nm. The behavior of the probability
distribution is the same as in the odd case. The only noticeable
difference is that the height of the redistribution does not
approach zero when reducing the width of the sample (at least
for the given range of the grain thicknesses).

To investigate the size dependence of the probability
redistribution more qualitatively we fit part of the distribution,
from which the central peak is removed, by a Gaussian
function of the form

G(µ, σ ) =
B

σ
√
π
2

e

(
µ−µ0
σ

)2

. (10)

Then the evolution of the chemical potential distribution with
grain thickness can be represented with the found dependence
of the fitting parameters σ and B on the grain thickness. The
result is shown in figures 4(a) and (b). The upper panel here
illustrates the relative height of the Gauss distribution (the
height A = B

σ
√

π
2

is normalized by the height of the central

peak in the original distribution). The curve is obtained by
fitting our numerical results with the function y = a + bxc,
with a = 0.0, b = 0.005 and c = 2.3 in the odd case and
with a = 0.28, b = 6.6 × 10−4 and c = 2.8 in the even case.
The lower panel shows the standard deviation σ as a function
of the grain size. The results were fitted by the curves with:
a = 0.0, b = 9 and c = −2 (odd case), a = 0.0, b = 4.9 and
c = −1.8 (even case).

The dependence of the standard deviation of the Gauss
distribution of the part of the original distribution is strongly
correlated with the strength of the pair correlation, which
is described by the mean value of the superconducting
order parameter. This is seen from figure 5, where the
order parameter as a function of the grain thickness is
shown [15]. To plot this figure we performed calculations for
a parallelepiped-shaped grain with Lx = D + a, Ly = D − a
and Lz = D, while varying the thickness of the grain D.
Comparing this figure with the lower panel of figure 4 we can
see that for D < 6–8 nm the average of the order parameter is
approximately equals to 2σ .
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Figure 4. The relative height (panel (a)) and the standard deviation (panel (b)) of the normal distribution as a function of the grain size D.

Figure 5. The mean value of the superconducting order parameter
versus the grain thickness D.

3. Critical level spacing

Let us now investigate the possible consequences of the
chemical potential distribution on the critical level spacing in
the superconducting grains.

The odd case (η = −1): for the purpose of simplicity in
the rest of our work we assume that quantum confinement
does not modify the matrix elements Vqp, i.e. we disregard
the spatial variations of the order parameter [9, 10], and Vqp’s
are taken the same as in the bulk, namely Vqp =

g
V = λδ,

with λ the dimensionless coupling. This assumption results
in 1p(δ,T) = 1(δ,T). Now, keeping this in mind and using
equation (8), for kBT/10 � 1 we obtain

1 = λ δ
∑

p(p6=0)

tp
2Ep

. (11)

Adding and subtracting the energy ε0 of the single-electron
level p = 0, which is closest to the chemical potential µ, we

obtain

1 =
λδ

2

∫ h̄ωD

−h̄ωD

dω
tω
∑

p6=0 δ
(
ω − εp + ε0

)√
(ω + ε0 − µ)2 + |1(δ,T)|2

. (12)

The position of the electron energy levels in a grain strongly
depends on the boundary conditions and the interaction of
the electrons inside a grain. However, disorder related to
irregularities of the shape of individual grains, or internal
defects inside a grain, plus the interaction with charged
impurities in the insulating substrate, make a calculation of
the energy levels a daunting task. To overcome this difficulty
one usually performs a statistical description of the grain
characteristics, instead of calculating the precise position of
the energy levels in a specific dot. In this case the energy
spectrum is characterized by the mean level spacing and by
the level fluctuations [30, 34].

Thus we average equation (12) over disorder and shape
irregularities

1 =
λ

2

∫ h̄ωD

−h̄ωD

dω
tωR

(
ω π
δ

)√
(ω + ε0 − µ)2 + |1(δ,T)|2

, (13)

where we introduce

R(ε)/δ =
〈∑

p
δ
(
ε − (εp − ε0)

)〉
. (14)

As shown in [2], this average can be related to the two-level
correlation function (TLCF), describing the level fluctuations
in the system. Since we consider the system without magnetic
or spin–orbit interactions, which possess time-reversal and
spin-rotation invariance, the TLCF given by RMT is that for a
Gaussian orthogonal ensemble [30]

R(x) = 1−
sin2x

x2 −
d
dx

(
sin x

x

)∫
∞

x
dt

sin t

t
. (15)

Inserting equation (15) into (13), we arrive at the basic
equation of the Smith–Ambegaokar model [2].
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In the next step, we treat the position of the chemical
potential statistically as was discussed in section 24. As
follows from that discussion, we have to model the statistical
distribution of the chemical potential as the sum of two
functions: one describing the central peak and another one
for the redistributed part. However, since we are only
interested in qualitative effects due to the redistribution of
the chemical potential, we will neglect the central peak
and approximate the redistribution part by the Gaussian
function. Our approximation will result into an upper limit
for the critical level spacing. The opposite situation, when
we take into account only the central peak, leads to the
Smith–Ambegaokar model.

So, the chemical potential is taken normally distributed
around ε0. In addition, we assume that (εp− ε0) and (ε0−µ)

are independent random variables. Then, we obtain

1 = λ
∫ h̄ωD

0
dω R

(πω
δ

)
×

∫
∞

−∞

dy
tωG (y, σ )√

(ω + y)2 + |1(δ,T)|2
, (16)

where G (y, σ ) is the Gaussian distribution function of the
chemical potential given by equation (10).

The critical level spacing δo
c for the odd case is defined as

the solution of equation (16) in the limit 1(δ,T)→ 0, thus

ln
(

2h̄ωD

10

)
=

∫ π h̄ωD/δ
o
c

0
dx R (x)

∫
∞

−∞

dy
tx,yG (y, σ )∣∣x+ πy/δo

c

∣∣ , (17)

where we introduce the new variable x = πω/δ and take into
account that λ−1

= ln(2h̄ωD/10) with 10 = 1(0, 0). Here
tx,y = tanh( δ

o
c

2π β|x+πy/δo
c |). Equation (17) can only be solved

numerically. When neglecting fluctuations of the chemical
potential, i.e., G(y, σ = 0) = δ(y), this equation reduces to
(at T = 0)

ln
(

2h̄ωD

10

)
=

∫ π h̄ωD/̃δ
o
c

0
dx

R(x)

x
. (18)

This can be solved analytically resulting in the odd-case result
of Smith and Ambegaokar [2], i.e., δ̃o

c = πeγ+π
2/16−7/410 ≈

1.810, with γ the Euler constant.
The integrations in equation (17) are done numerically,

from which we obtain the critical level spacing as δo
c =

δo
c (σ,T). Figure 6 illustrates how the critical level spacing δo

c
depends on the standard deviation for the distribution of the
chemical potential. The mean value of the chemical potential
in the odd case is the energy of the half-filled level ε0. Since,

4 The physics behind this is as follows. The distribution of energy levels is
a function of a certain number of statistical variables. Since the quasiparticle
energy is defined according to the expression Ep = [(εp − µ)

2
+ |1p|

2
]
1/2,

the distribution of the chemical potential µ is a function of the same statistical
variables (levels) plus an additional variable due to the order parameter. This
additional variable is a function of the statistics of the system wavefunctions.
In the GOA ensemble the statistics of the levels is independent of the statistics
of the wavefunctions [35].

Figure 6. The odd case: the critical level spacing δo
c versus the

standard deviation σ of the chemical potential for different
temperatures ranging from kBT/10 = 0 to 0.15.

as it was shown in section 2, the deviation of the chemical
potential from ε0 is due to electron correlations (for T → 0)
characterized by 1, the standard deviation in this figure is
normalized by 10. Note that fluctuations in the position of
the chemical potential significantly enhance the critical level
spacing, i.e., the regime of conventional superconductivity
can persist in samples with smaller sizes. This effect can
be explained as follows. The pair correlations are different
from zero within a finite energy range around the chemical
potential µ, and are strongest exactly at µ [31]. However,
the unpaired particle which occupies the level ε0 forbids the
formation of the pair state (0̄, 0), with 0̄ the time-reversed
counterpart. Consequently, when the chemical potential is
pinned to the level ε0 we obtain the strongest decrease of the
pairing correlations in the system. The redistribution of the
chemical potential frees up phase space for the strongest pair
scattering and so achieves a gain in interaction energy, and
hence in the critical level spacing. This effect is suppressed
by temperature because temperature diminishes the effect
of Soloviev blocking. At finite-T the peak in the pairing
correlations at the chemical potential level diminishes and,
hence, the effect of the redistribution of the chemical potential
is weakened for increasing T .

The even case (η = +1): the chemical potential is now
distributed around the energy being halfway between the last
filled level ε0 and the first empty level ε1. The equation for the
critical level spacing can be obtained as follows. We start with
the chemical potential residing exactly at µ0 = (ε0 + ε1)/2,
which yields

1 = λδ
∑

p

tp

2
√(
εp − µ0 + µ0 − µ

)2
+ |1(δ,T)|2

. (19)

Then, for εp 6= ε0 and εp 6= ε1 we can write εp − µ0 =

(εp − ε1) + (ε1 − ε0)/2. Following similar arguments as for
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Figure 7. The even case: the critical level spacing δe
c versus σ for

different temperatures from kBT/10 = 0 to 0.15.

the odd case we found

1
λ
=

∫ ωD

0
dω
∫
∞

−∞

dz
tω R(ω π

δ
)G (z, σ )√

(ω +
ε1−ε0

2 + z)2 + |1(δ,T)|2

+

∫
∞

−∞

dz
tωG (z, σ )√

(
ε1−ε0

2 + z)2 + |1(δ,T)|2

+

∫
∞

−∞

dz
tωG (z, σ )√

(
ε0−ε1

2 + z)2 + |1(δ,T)|2
.

The distribution of (ε1 − ε0) is given by the nearest
level spacing distribution, P (y). This distribution is well
approximated by the ‘Wigner surmise’ expression [30]

P (y) =
y

2π
exp

(
−

y2

4π

)
, (20)

where y = π (ε1 − ε0) /d. Assuming now that the distribu-
tions of

(
εp − ε1

)
, (ε1 − ε0) and

(
ε0+ε1

2 − µ
)

can be treated
independently, we obtain the following equation for the
critical level spacing δe

c in the even case:

1
λ
= 2π

∫
∞

0
dy P(y)

∫
∞

0
dz ty,z G(z, σ )

×

(
1∣∣y+ 2πz/δe

c

∣∣ + 1∣∣y− 2πz/δe
c

∣∣
)

+

∫ π h̄ωD/δ
e
c

0
dx R(x)

∫
∞

0
dy P(y)

∫
∞

0
dz tx,y,z G (z, σ )

×

(
1∣∣x+ y/2+ πz/δe

c

∣∣ + 1∣∣x+ y/2− πz/δe
c

∣∣
)
.

This equation is solved numerically and the results for δe
c are

shown in figure 7 as function of σ/10. Now the mean value of
the chemical potential is µ0. Notice that deviations of µ from
µ0 result in a monotonic increase of the critical level spacing
δe

c with increasing standard deviation σ . This can be explained
as follows. The pair correlations are strongest exactly at µ.

The redistribution of the chemical potential shifts one of the
neighboring levels (either ε0 or ε1) towards the maximum
of the pairing correlation function—or in other words shifts
one of them towards the chemical potential—where the pair
scattering is stronger. At the same time the pair scattering that
involves another neighboring level becomes weaker. However,
an increase of the correlations on the former level exceeds
the decrease on the latter one, resulting in a total gain in
interaction energy and, hence, in the critical level spacing.
As expected, temperature diminishes this effect. Notice that
for T = 0 and σ = 0 we obtain δe

c/10 = 18.7, which is
substantially larger than the approximate estimate δe

c/10 ≈

13.8 found by Smith and Ambegaokar [2].

4. Conclusion

Concluding, we have studied the influence of the super-
conducting pair correlations in a grain on the probability
distribution of the chemical potential. It is shown that pair
correlations result in a redistribution of the chemical potential,
which depends on the grain size. In the odd case, for
ultra-small grains the effect of the redistribution is sufficiently
suppressed due to the blocking effect.

We also investigated the possible effect of the statistical
fluctuations of the chemical potential on the superconducting
correlations in nanoparticles. A statistical description of the
chemical potential is justified by the presence of a pairing
gap in superconducting grains. The deviation of the chemical
potential from a fixed value typical for normal metals frees up
the phase space that becomes available for the scattering of
Cooper pairs. As a result, the critical level spacing increases.
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