
HAL Id: hal-00731992
https://hal.science/hal-00731992

Submitted on 29 Oct 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A reverse engineering form for Multi Agent Systems
François Gaillard, Yoann Kubera, Philippe Mathieu, Sébastien Picault

To cite this version:
François Gaillard, Yoann Kubera, Philippe Mathieu, Sébastien Picault. A reverse engineering form
for Multi Agent Systems. 9th International Workshop Engineering Societies in the Agents World
(ESAW’2008), Sep 2008, Saint-Etienne, France. pp.137-153. �hal-00731992�

https://hal.science/hal-00731992
https://hal.archives-ouvertes.fr


A Reverse Engineering Form for Multi Agent

Systems

François Gaillard, Yoann Kubera, Philippe Mathieu, Sébastien Picault

Equipe Systèmes Multi-Agents et Comportements
Laboratoire d’Informatique Fondamentale de Lille
Université des Sciences et Technologies de Lille

UMR CNRS USTL 8022
59655 Villeneuve d’Ascq cédex – FRANCE

www2.lifl.fr/SMAC/
mail: firstname.lastname@lifl.fr

Abstract. The usual way to design a simulation of a given phenomenon
is to first build a model and then to implement it. The study of the simu-
lation and its outcomes tells if the model is adequate and can explain the
phenomenon. In this paper, we reverse this process by building a browser
in simulations space: we study an automatically built simulation to un-
derstand its underlying model and explain the phenomenon we obtain.
This paper deals with automated construction of models and their im-
plementations from an ontology, consisting of generic interactions that
can be assigned to families of agents. Thanks to the measurement tools
that we define, we can automatically qualify characteristics of our simu-
lations and their underlying models. Finally, we offer tools for processing
and simplifying found or existing models: these allow an iterative con-
struction of new models by involving the user in their assessment. This
simulation space browser is called LEIA for “LEIA lets you Explore In-
teractions for your Agents”.

1 Introduction

Agent-based simulations have taken a preponderant place in life simulation tools,
in domains as different as the movie industry, video games, biology, etc. These
simulations establish a link between experts of their domain and experts in
computer science[12]: this multidisciplinary aspect gave birth to a whole range
of frameworks more or less related to the simulated domains.

Many of these platforms like Swarm[14], Madkit[7] or Magic[16] allow con-
siderable freedom to the designer to create agents, the behaviour of those agents
and the environment. All design refinements are possible: reusability, genericity,
design patterns, components... Other tools like Netlogo[19] are designed to be
used by non computer scientists: they rely on a very simple programming. How-
ever, openness and genericity are chosen to the detriment of a clear framework
for the design of agent behaviour: there is a risk of mixing the framework code
with some specific knowledge to the model in the implementation of agents.



The IODA1 methodology[13] is based on a clear separation between agents,
their behaviour and the actions selecting process. In this methodology, interac-
tions are independently reified from agents which use them. As a result, we can
establish libraries of interactions for a particular area and adaptable to different
families of agents, increasing the genericity of modelling work.

An implementation achieved through the JEDI engine [12] offers a generic
support of the IODA methodology. This genericity is perfectly illustrated within
the generator called JEDI Builder2: from a model written according to IODA,
we can easily obtain a simulation which is executable with the JEDI engine.

We also offer measurement tools in order to describe the characteristics of
each model designed with IODA:

– simulation activity;
– characteristics of the environment and its population;
– development of populations;
– evolution of the use of interactions during the simulation.

LEIA
simulation browser

JEDI Builder
code generator

JEDI
plateform

IODA
methodology

Fig. 1. Hierarchy in the construction of the browser: LEIA is based on automatically
generated simulations for the JEDI platform, from a model specified in the methodology
IODA

Based on the abstraction provided by IODA and some measurement tools
that we set out, we present here a browser in simulations space, i.e. an applica-
tion which allows the simultaneous display and analysis of several simulations
running in parallel. Moreover, to browse the simulations space, we offer tools for
processing and simplifying models. These tools enable the iterative design of new
models in which the user and measurement tools are the evaluation functions.
This browser is called LEIA for “LEIA lets you Explore Interactions for your
Agents”. LEIA reverses the usual way to design multi agents simulations: we
generate a random series of models and their implementation from an already

1 for : Interaction Oriented Design of Agent simulations
2 www2.lifl.fr/SMAC/projects/ioda/demonstrations/



defined ontology, consisting of generic interactions that we can assign to families
of agents. Then, by successive refinements and use of tools, the user will be able
to create a model and study its underlying characteristics. The browser lets the
user make a reverse engineering work called “design recovery” by Chikofsky and
Cross [2]. The user is able to fully understand the implementations and their un-
derlying model and then study the relationship between interactions. Moreover,
by the variations of the models, it acts as a “brain stimulator” as Hofstadter
explains in “Metamagical Themas”[8]: “Variations on a thema should be con-
sidered as the fuel of creativity”.

Section 2 presents the IODA methodology and its relevance in the design
of the browser. We describe in section 3 some measurement tools analysing
the complexity of systems designed in accordance with the IODA methodology.
Then, we develop into section 4 the design of LEIA browser. Finally, section 5
presents the opportunities that the browser opens onto the creation of models
by using genetic algorithms.

2 The IODA methodology

The IODA methodology for simulation design[13] is focused on interactions: they
are independently reified from agents. Agents from A, the set of agents in the
environment, have basic primitives:

– perception primitives on the overall state of the simulation (noted E), the
environment, its internal state and communication with other agents;

– action primitives which can alter the simulation state: its own state, the
state of the environment or the states of other agents.

These primitives are used to define the role of the agent in specific interactions.
An agent a also has a perception halo HF (a) ⊆ E: i.e. the subset of the overall
state of the simulation which the agent a discerns through its perception primi-
tives. The neighborhood N (a) of an agent a is the set of agents in his perception
halo.

In the IODA methodology, the agents have a simple specification and are
homogeneously represented, allowing the integration of any agent in a simulation
model centered on interactions: an agent is an autonomous entity, instantiated
from an agent family F , noted a ≺ F . An agent family F in the set of families
F is the abstraction of a set of agents sharing all or part of their perception or
action primitives.

An interaction is a sequence of action primitives applied to several agents,
which could play the role of source or target (respectively S or T ), and is subject
to conditions of activation. The interactions are totally separated from agents
who use them, increasing their reusability through simulations and are applicable
to different families of agents.

We define the cardinality of an interaction I as the pair composed with the
number of source agents cardS(I) and the number of target agents cardT (I)
that we need to perform the interaction.



The assignations are the set of interactions that a source agent may perform
on target agents. We call assignation aS/T of an interaction set (Ik)k∈[1,n] be-
tween a source agent family S ∈ F and a set of target agent families T ⊆ F

the set of interactions belonging to agents S that they may perform as sources
together with sets of agents from T as targets. It is defined as a set of tuples
(Ik, pk, dk), k ∈ [1, n], called assignation elements, where :

– Ik : the interaction which could be performed by sources S and undergone
by targets T;

– cardT(Ik) = q the number of targets in T;

– pk : the priority given to an interaction Ik;

– dk : the limit distance below which the interaction can occur.

We define the interaction matrix as the matrix M = (aS/T)S∈F,T⊆FN of
each assignations between sources S and possible targets T (e.g. Fig.3). Building
of a model using the IODA methodology is done through 6 steps:

1. identification of families of agents and interactions, as elements of a matrix
of interaction;

2. writing activation conditions and sequences of actions which are primitives
of each interaction;

3. identification of action and perception primitives of agents;

4. specification of the priority and the limit distance of each interaction;

5. determining the dynamics, i.e. the evolution of the interaction matrix built
at the previous steps;

6. determining the specificities of the model.

During the development of models in the LEIA browser, agent families and in-
teractions are specified a priori. The conditions of action and perception of inter-
actions are also set. Then, the design of the model can be limited to the available
choice of interactions and families of agents without the need to generate code in
order to use them. We can modify in runtime the model of a simulation without
having to stop it.

3 The measurement tools

As proposed by Kubera[10], it is possible to characterize part of the complexity of
a computer simulation by quantifying the number of computation cycles between
the beginning and the end of the simulation. The complexity lies in different
aspects of the simulation:

– in the studied phenomenon;

– in the complexity of the cognition of agents;

– in the way to design the simulated phenomenon and the simulation engine;

– in the way to achieve those two models.



We specify in this section some heuristic measures which characterize the com-
plexity of a system designed through the IODA methodology and simulated on
the JEDI engine (Fig.2).

These tools are implemented in the JEDI engine [12] which is a sequential
engine with a discrete representation of time. An interaction I has only one
source S (cardS(I) = 1). At each time step, for each potential source S, it
selects a couple (interaction I, target T ). The interaction I is chosen following
the assignation of highest priority among all feasible assignations for this source
S. The target T of this interaction I must also be in the neigbourhood of the
source N (S). For the selected couple, then, we solve the action of the interaction
I between the source S and target T . This interaction I can be recorded as a
“resolved interaction”. At each time step, we can therefore have a specific and
quantified return on all the events of the simulation from which our tools of
measurement are defined.

Fig. 2. Screenshot of the environment of an “Age of Empire”-typed simulation using
the JEDI engine. Some peasants wander in the environment, find some gold or wood
and then bring back them to a forum. They also inform the other peasants where they
have found these ressources, creating a chain of workers starting from the forum to the
common objective.

These tools are designed to reveal the qualities and defects of simulated
models. In what follows, we put ourselves, using the LEIA browser, in a simplified
situation where each cell of the environment can only be occupied by one agent.



The initial distribution of agents and the primitives are accordingly implemented
from this situation.

3.1 Simulation activity

Agents activity. With the JEDI engine, we can monitor the activity of agents in
a simulation, particularly if an agent is able to perform some interactions. This
measure called “Agents activity” characterizes the interactivity of the simulation,
i.e. the ability of the simulation to run and therefore evolve.

Definition 1. Activity

With I(t) the set of “resolved interactions” during the time step t and A(t) the
set of agents in a given simulation, the activity of agents is given by:
Activity(t) = card(I(t)) / card(A(t))

The provided score is the ratio between the number of agents which are sources
of interaction and all agents of the simulation. We can underline that in the
JEDI engine, by default, upon being resolved, the source S and target T of an
interaction are disabled [12]: the target T cannot participate in another inter-
action at the same time step, either as target or source. The lower the value
of the activity metric, the greater are the number of passive agents: their state
will evolve through the few interactions that have been resolved (considering
that their internal state does not change by itself through internal lookup by
example). In the interaction point of view, this measure can thus reveal some
very complex models such as the sale or purchase of items which do not generate
changes in the environment and its representation.

3.2 Environment

Environment modifications. The JEDI engine provides an environment similar
to a collection of cells that can be occupied by agents (agents have real coor-
dinates [12]). The environment is graphically represented in the simulation as
a 2-dimensional grid, made from cells in which agents are represented. It has a
set of primitives, such as Put an agent or Remove an agent of the environment,
the use of which requires an update of the associated graphical representation.
Therefore, we propose to measure, at time step t, the number of calls for these
primitives of the environment, noted E(t), compared to the number of agents in
the simulation.

Definition 2. Modifications

At time step t, the number of modifications from agents is defined by:
Modifications(t) = E(t) / card(A(t))

We get an indicator of the visual entropy of the simulation: we mean here the
evolution of the representation of the environment between two time steps. This
measure is open, typically between 0 and 1 if the resolved interactions call to
only one environment primitive requiring an associated graphical update.



Environment stability. This indicator is a measure of stable points of the sim-
ulation. This is done through the evolution of the occupation of environment
cells in relation to each family of agents. A large deviation in some cells shows
that they are occupied repeatedly by the considered family of agents: so we can
conclude that this is a stable point in the simulation.

Definition 3. Stability

At time step t, with:

– NF (t) = card(AF (t)) the number of agents from family F ;
– p the number of cells in the environment;
– Oc,F (t) the cumulated presence of agents of the family F since the beginning

of the simulation in cell c;

– MF (t) = NF (t)×t
p the average occupancy of cells.

The standard deviation of cells occupancy is:

σF (t) =
√

1
p ×

∑p
c=1(Oc,F (t) −MF (t)2.

Let’s imagine a model in which there is absolutly no movement: since the
start, every agent has a different cell, cannot move into another cell and
the population Nb is absolutly the same in number since the beginning of
the simulation. At time step t, this model gives the worst standard deviation:

σdefF (t) =
√

1
p × (

∑p−Nb
c=0 (0 −MF (t))2 +

∑p
c=p−Nb(t −MF (t))2)

Then, the stability is defined as:
StabilityF (t) = σF (t)/σdefF (t)

If at time step t, the population Nb peaks and, subsequently, cell occupancy stag-
nates, the standard deviation will converge towards the unfavourable metric. A
simple measure of Agents stability would have been to determine the proportion
of agents with unchanged position after two time steps. Our measure takes into
account the cumulative presence of agents since the beginning of the simulation:
it enables us to reveal areas of convergence of agents in the environment.

We also provide two indicators on the environment: the mix and the cohesion.
The mix is the average percentage of agents from other families in the neigh-
borhood of each agent. Similarly, cohesion is the average percentage of agents
from the same family in the neighborhood of each agent. The general idea is the
commonly accepted idea of similarity percentage in the Moore neighborhood,
defined as the eight cells surrounding a cell centered on the given agent.

Definition 4. Mix and Cohesion

At time step t, with:

– N (x) the neighborhood of the agent x;
– F(x) the family from which agent x is instantiated;
– Diff (x) = card({a ∈ N (x)|F(a) 6= F(x)}) the number of agents in the

neighborhood of the agent x whose family is different;



– Same(x) = card({a ∈ N (x)|F(a) = F(x)}) the number of agents in the
neighborhood of the agent x whose family is the same;

– CellsP(x) the number of cells in the neighborhood of the agent x;
– Nb = card(A) the number of agents in the environment;
– p the number of cells in the environment.

The mix is defined as: Mix = (1/p) ×
∑Nb

x=1(Diff (x)/CellsP(x));

the cohesion is defined as: Cohesion = (1/p) ×
∑Nb

x=1(Same(x)/CellsP(x)).

We also use a traditional definition of density.

Definition 5. Density

At time step t, with Nb(t) = card(A(t)) the number of agents in the environment
and p the number of cells in the environment, the density of population is defined

as: Density = Nb(t)
p .

3.3 Study of the evolution of populations and the resolution of

interactions

Usage of interactions. Thanks to the IODA methodology, the separation of
interactions and agents allows us to easily record the “resolved interactions”
from each entity. The analysis of those records can reveal the behaviour of agents
and the overall usage of interactions, especially some cycles in their usage and
order between them, as shown in the next examples.

P
P

P
P

P
P
P

Source
Target

Envir. Plant Grasshopper

Plant - - -

Grasshopper - Graze 1 Devour 0

Fig. 3. Interactions matrix from a simple model of food search: Graze has an higher
priority than Devour

Let’s take two families of agent: Plant and Grasshopper ; and two interactions:
Graze and Devour. In Fig.3, the Grasshoppers will Graze the Plants by prior-
ity then, when the Plants will have disappeared, the Grasshoppers will Devour
themselves. The interaction Devour will only occur when there are no plants.

Let’s imagine that in this example, new Plants could grow during simulation
in sufficient numbers to feed the Grasshoppers: the interaction Devour can never
happen then, which allows a step of simplification in this model. Although we
do not have a knowledge of the evolution of the simulation, we can detect as a
heuristic measurement the interactions that do nothing to a given model.

Interactions dynamic. In a feedback phenomenon, the result of the phenomenon
in question acts back on itself. In the case of simulations, such feedback can
occur in solving interactions.



Fig. 4. Simple experience of object transmission between 3 characters

Let’s take a simple example (cf. Fig.4): 3 agents are placed around a table. At
the beginning of the simulation, an object Flower is given to one of the Char.
During simulation, if an agent has a Flower, it performs the interaction Give
the Flower to one of his neighboring agent. Considering one of the agents, the
interaction Give Flower will be made once every three time steps, waiting for
the Flower object to go around the table: this phenomenon is periodic. Having
a record of each “resolved interaction” for each agent in the JEDI engine al-
lows us to detect cyclic use of interaction that are part of a possible feedback
phenomenon.

Let’s consider the previous example that we modify (cf. Fig.5):
after receiving the object Flower, the agent first performs the interaction Thank
with its neighboring donor as target, then performs at next time step the inter-
action Give Flower with his other neighboring agent. If we study the interactions
of one agent, we find that the interactions Thank and Give Flower are performed
every 6 time steps (2 time steps for each charecter). Give Flower can only be
performed after Thank during the cycle of 6 time steps: there will be a phase of
2π
6 between the two interactions. If we follow the interactions in general, the in-

teractions Thank and Give Flower are alternately performed once at each time
step. An order between Thank and Give Flower is viewable, with a periodic
phenomenon of 2 time steps. In the case we have a low-level knowledge of the
scenario being modelled, we propose the use of frequency analysis tools in order
to determine the periodic phenomena in the use (frequency) and order (phase)
of interactions.

DFT. By seeing the use of interactions as a discrete signal, we can use the
classic definition of the Discrete Fourier Transform (DFT) in order to study
the interactions in the space of frequencies without constraint in the choice of
frequencies and the sampling.



Fig. 5. Simple experience of object transmission with thank between 3 characters

Definition 6. DFT

With sI(n) the evolution of usage of an interaction I and Nts the number of
time steps used by the DFT, the DFT is defined as:
SI(k) =

∑Nts−1
0 sI(n) × e−2ikn/Nts

Remarkable frequencies. We propose finding local maxima in the frequency spec-
trum obtained by Fourier transformation of the evolution of resolved interac-
tions.

Definition 7. Remarkable frequencies

With SI(k) the DFT of sI(n), the set Freq of Remarkable frequencies is:
Freq = {k/SI(k − 1) < SI(k) and SI(k) > SI(k + 1)}

If the sample is correctly selected, we can detect the periodic usage of an inter-
action. The sample is limited in time, so we can only find out periodic usage of
an interaction which repeats within the sample. As we can’t make an infinite run
of a simulation, we approximate a repeated usage of an interaction as a cycle.

We can reach 2 levels of analysis in monitoring the interactions:

– A macroscopic monitoring, i.e. taking into account all the interactions that
reveal the dynamics of the global system. The discovery of remarkable fre-
quencies may highlight the coupling of some interactions.

– A microscopic monitoring, focusing on one agent, where we can follow the
resolution of interactions. This analysis can reveal the dependency between
the behaviour of the agent and his assignations. It faces, however, the life
expectancy of agents in some models (for example, the model prey / pre-
dation). Moreover, some interactions can disable the agent (at the choice of
the developer): an agent may only undergo interactions.

The frequency analysis needs to be counterbalanced because some interactions
may follow a periodicity intrinsic to them (and therefore independent of the
conduct of the simulation itself).



Study of the evolution of populations. Some models, like the prey / predator,
will lead to the periodic variation of populations, revealing feedback phenomena.
The detection of these periodic phenomena is carried out by Fourier analysis, as
described for the analysis of interactions.

4 LEIA: a browser in simulations space

Fig. 6. LEIA, the browser in simulations space

The LEIA browser3 is an application using n instances of the JEDI engine.
It allows the user to instantly make a visual comparison of n simulations by
seeing all of them working in parallel (Fig.6). These n instances are created
from the same reference model, based on an ontology [6] constituted of already-
built family of agents and interactions. We can also define the beginning number
of agents and their initial distribution. By giving a domain ontology in input,
LEIA is able to build automatically several simulations from the simulations
space associated to this domain.

3 for LEIA lets you Explore Interactions for your Agents
www2.lifl.fr/SMAC/LEIA/applet.html



Model manipulation. The LEIA browser provides to the user a set of transforma-
tions and generation tools for model, and a set of tests to browse the simulations
space. These tools can vary the parameters of the model, either by adding or
deleting assignations, changing priorities or limit distance, the initial number
of agents, or operations on the interactions matrix as to symmetrize or merge
matrices of 2 models. The user can then, by these tools, automatically change
the reference model to generate N sub-models. These models are then loaded
into the N instances of the JEDI engine: the user can view and compare the N
simulations with separate behaviours. LEIA can be run with as many instances
as we want. Of course, LEIA will run slower proportionally to the number of in-
stances chosen. Nevertheless, each instance has its own thread, then we can have
benefit of a multi-core architecture. At this time, with a quad-core architecture,
we are able to run 4 instances at the same time as one.

Simulation analysis. The browser is assisted by a statistics engine to help the
user to appreciate the qualities and differences between the displayed models.
This statistics engine is based on measurement tools presented in the previous
section. We get a quantified return for each simulation in which we consider:

– all interactions resolved by time step compared with envisaged interactions;
– the number of modifications of the environment;
– the repartition of agents: cohesion and mix;
– the evolution of the occupation of the environment;
– remarkable evolution of populations;
– remarkable evolution of interactions.

These heuristic measures allow the user to access informations about each model
with complete detail of scores and the associated graphics display is updated in
real time.

Model analysis. In addition to the measurement tools that we have already pre-
sented, we can study in the specific context of LEIA browser the construction
of the model, especially its interactions matrix. The so-called circular assigna-
tions are remarkable: i.e. for the same interaction, priority and limit distance,
the sources and targets vary cyclically.

Definition 8. Cyclic assignations

With e = (I, p, d) an assignation element.
we define: Assi(e) = {(S, T ) ∈ F

2|e ∈ assiS/T } the set of assignations from the
Assignation Matrix with the same interaction I, priority p and limit distance d.
If assi ∈ assiS/T , then:

– Src(assi) = S is the agent family of the source of assi;
– Tgt(assi) = T is the agent family of the target of assi.

the cyclic assignations is the set of couples (S, T ) taking part in the cycle e:
Assicyliques(e) = {(S, T ) ∈ Assi(e)/∃(assii)i∈[1,n] ⊆ Assi(e)/Src(assi1) =
S ∧ Tgt(assi1) = T ∧ (∀i ∈ [1, n − 1],Src(assii+1) = Tgt(assii)) ∧ Src(assi1) =
Tgt(assin)}.



Definition 9. Cyclic aspect

The cyclic aspect is defined as:
Cyclique = card(Assicyliques)/card(Assi)

The cyclical aspect of a model is the proportion of cyclical assignations among
all assignations. The study helps to highlight cycles in the construction of model
that can possibly result in feedback loops.

More generally, the study model also opens the prospect of automated simpli-
fication of models, for which we are laying the foundations in LEIA by eliminating
unreachable interactions, e.g. due to their priorities or limit distance.

Scoring models. We provide to the user a total score to bring together the results
of all the tools of measurement.

Definition 10. Total score

With S = {S1, ..., SN} the set of scores provided by the measurement tools (scores
between 0 and 100), the total score is defined as:

Totalscore = 1/N ×
∑N

i=1(Si − 50)

We made the choice to reduce the total score in a note typically between −50
and 50 not to emphasize a score over another. The score is centered on 0 to give
a simple reference to the user. We don’t use multiplication because there is the
risk of hiding interesting data because of a particular score which would be zero.

By seeing the behaviour of all simulations in parallel, when one of them is
considered as interesting by the user with the help of the measurement tools,
its model can be defined as the new reference model. Then, the user can repeat
the process of replacing the reference model, either manually or by using our
tools of transformation. The LEIA browser therefore allows one to explore the
simulations space generated from the domain ontology board. It should be noted
that the LEIA browser is open to any domain ontology, as the interactions and
agent families are designed according to the IODA methodology.

P
P

P
P

P
P
P

Source
Target

Envir. Red Blue Green

Red - - Infect 0 (1.0) -

Blue - - - Infect 0 (1.0)

Green - Infect 0 (1.0) - -

Fig. 7. Interactions matrix of the infection model. It can be extended to a greater
number of agent families than two. “Infect 0 (1.0)” means that the interaction “Infect”
only occurs under a maximal distance of 1.0.

Results. The tools presented here allow the user to perform reverse-engineering
on simulations. This simulations can be discovered using the browser among the
simulations space.



Like Pachet shows with the “Continuator” [17], which stimulates musical
creativity, LEIA tends to be a “brain stimulator” for the discovery of new models,
and helps the user to identify interesting models. Even with a simple ontology,
with few classical interactions, benefits of the LEIA browser are outstanding, as
you can see with the following “infection model”.

The observation of an experiment displaying a synchronization phenomena
between some agent families pointed out an interesting set of interactions at
its origin. This set of interactions contains two interactions: one that clones the
source on a neighboring position, and the other that kills the target. Thanks to an
analysis of the interaction matrix, this set was simplified to a single interaction.
Briefly, the aim of this new interaction is to destroy a targeted agent found in
the neighborhood and to replace it with a copy of the source agent.

This model, found by LEIA, cyclically affects several families of agent with
this interaction called “Infect” (see Fig.7). At least three families of agent are
required to avoid deadlock in this simulation. From initial positions which are
random, this model led the agents to form spirals per infection (see left figure in
Fig.8). LEIA points out that the “infection model” can’t work without filling the
environment with a huge and equal amount of agents from each family. Indeed,
the greater the number of agents, the greater the probability for a source agent
to find a target. Moreover, the limit distance is really important: having a higher
limit distance for an interaction allows agents to find further a target for this
interaction. Thus, the higher the limit distance is for “Infect”, the higher is the
probablity to fire it. Of course, raising this limit distance helps to increase the
number of family agents.

We point out the robustness of this model by adding some obstacles in our
experiments. Those obstacles are empty agents that don’t interact with any
other agents in simulation: they just occupy a place in the environment. Spirals
can occur though the presence of obstacles. Moreover, these obstacles can make
easier the formation of spiral at their positions, like the right image in Fig.8.

It appears that this dynamic4 is well known in chemistry, e.g. in the Belousov-
Zhabotinsky cyclical reaction [20, 1]. Such phenomena are also examined with
the help of cellular automata in the Greenberg-Hastings model [5].

5 Towards a genetic evolution

In the LEIA browser, designing a model can be automated by drawing random
assignations. We can also dynamically implement this model with the view to
immediately test it in a simulation. The browser also allows the use of multiple
simulations at the same time. We can create and test a model, then help the
user to judge its quality by using our measurement tools. Indeed, they facilitate
the search for some phenomena, for example to identify:

– phenomena of segregation using the measurement tools about cohesion, mix-
ing and stability;

4 www2.lifl.fr/SMAC/LEIA/spirale.html



Fig. 8. Two screenshots of the environment of JEDI engine using the “infection model”.
At left, formation of a spiral in infection model between 7 colors. The figure on the
right shows the robustness of this model even if obstacles exists in the picture.

– cyclical evolution of the population from which we can detect remarkable
frequencies;

– point out some models which converge towards stable positions by observing
the variations of cells occupation;

– models causing a major renewal of the environment by studying its modifi-
cations.

The user can identify an interesting model by specifying precise research criteria
and, by successive iterations, refine the model in order to obtain a sought phe-
nomenon. Like the user can identify Dawkins biomorphs in “The Blind Watch-
maker”[3] whose development meets its desires, he can design models corre-
sponding to his needs by viewing them.

We can link the way to design new models in LEIA to the works about
Imagine [15]: designers suggest an original technique for building CSS stylesheets
by using a genetic algorithm and successive evaluations through a user interface.
Here, each stylesheet parameter is a gene that can be crossed or transferred. The
algorithm randomly generates stylesheets, used to the same text. A user can then
choose one or more stylesheets with pleasant characteristics. The algorithm then
generates new stylesheets by taking into account the previous choices in order to
converge, after some iterations, to a stylesheet that the user deems to his liking.

The browser in the simulations space opens the perspective of the generation
of models, written in the IODA methodology, through a genetic algorithm. When
a problem admits a set of solutions, a genetic algorithm solves it by evaluating
a set of solutions parametrized with a fixed number of genes. These genes can
evolve by crossing and mutations of the solution in order to maximize an evalua-
tion function [9]. The algorithm converges towards a solution which is considered
to be good. The designer also defines a fitness function to fit the sought solution.



In LEIA, the user’s choice of specific measurement tools allows the creation
of fitness functions. All scores are evaluation functions judging the quality of
models. We can see the assignations as genes with which a mutation factor is
involved. Then, the mutation can be applied to parameters of an assignation:
priority, limit distance, source, target, interaction with different probabilities
depending on the supposed impact of the parameter: modifying the distance
limit changes the behavior of a model less than changing the interaction.

6 Conclusions and Perspectives

The browser in simulations space allows the iterative design of multi-agent mod-
els through the IODA methodology, which provides a clear separation between
agents and their interactions allowing thus composition without code generation.
We offer a range of tools for processing and simplifying models that can then
be viewed in parallel. Then, we propose measurement tools designed from the
perspective of IODA. These heuristic measures highlight some features of these
models: system activity, spatial distribution, stability over time, feedback, etc.
They make easier the understanding of models built in this way.

We can reverse the usual way of model design, by firstly observing the result
(i.e. “what” happens) then the corresponding agent behaviors (i.e. “how” it hap-
pens). Through its tools and ease of model design, the LEIA browser acts as a
“brain stimulator” whose first result was to find a model similar to the dynamic
of Greenberg-Hastings model. Moreover, the browser is open to any ontology
as agents and interactions are being designed following the IODA methodology:
LEIA aims at exploring simulations space of domains as various as physics or bi-
ology. Ultimately, we envisage the construction of models by genetic algorithms,
models in which the matrix of assignation can be seen as a set of genes, our
measurement tools used for evaluating these models and the search for special
features.

References

1. B. P. Belousov. A periodic reaction and its mechanism. In Compilation of Abstracts
on Radiation Medicine, 1959.

2. Elliot J. Chikofsky and James H. Cross II. Reverse engineering and design recovery:
A taxonomy. IEEE Software, 07(1):13–17, 1990.

3. R Dawkins. The Blind Watchmaker. W.W. Norton & Company, Inc., New York,
1986.

4. Gabriel Desmeulles, Gabriel Querrec, Pascal Redou, Sébastien Kerdélo, Laurent
Misery, Vincent Rodin, and Jacques Tisseau. The virtual reality applied to biology
understanding : the in virtuo experimentation. Expert Systems with Applications,
30(1):82–92, 2006.

5. R. Fisch, J. Gravner, and D. Griffeath. Metastability in the Greenberg-Hastings
Model. In eprint arXiv:patt-sol/9303005, pages 3005–+, March 1993.

6. Thomas R. Gruber. Towards Principles for the Design of Ontologies Used for
Knowledge Sharing in Formal Ontology in Conceptual Analysis and Knowledge
Representation. Kluwer Academic Publishers, London, 1993.



7. Olivier Gutknecht and Jacques Ferber. The MADKIT agent platform architecture.
In Agents Workshop on Infrastructure for Multi-Agent Systems, pages 48–55, 2000.

8. D. Hofstadter. Ma thémagie: En quête de l’essence de l’esprit et du sens. Intered-
itions, London, 1988.

9. J. Holland. Adaptation in natural and artificial systems. University of Michigan
Press, 1975.

10. Yoann Kubera, Philippe Mathieu, and Sébastien Picault. La complexité dans les
simulations multi-agents. In Valérie Camps and Philippe Mathieu, editors, Actes
des 15e Journées Francophones sur les Systèmes Multi-Agents (JFSMA’2007),
pages 139–148. Cépaduès, 2007. JFSMA’2007 – Carcassone (France) – 17-19 oc-
tobre 2007.

11. Yoann Kubera, Philippe Mathieu, and Sébastien Picault. Interaction-oriented
agent simulations : From theory to implementation, ECAI 08 July 21-25 2008.

12. Yoann Kubera, Philippe Mathieu, and Sébastien Picault. Une architecture orientée
interactions. Revue d’Ingéniérie des Systèmes d’Information (ISI), 2008. Numéro
spécial Architectures Logicielles.

13. Philippe Mathieu, Sébastien Picault, and Jean-Christophe Routier. Donner corps
aux interactions. In Actes des 4e Journées Francophones sur les Modèles Formels
de l’Interaction (MFI’07), pages 333–340. Université de Paris Dauphine, 2007.
MFI’07 – Paris (France) – 30 mai, 1er juin 2007 – Papier court.

14. N. Minar, R. Burkhart, C. Langton, and M. Askenazi. The swarm simulation
system, a toolkit for building multi-agent simulations, 1996.

15. N. Monmarché, G. Nocent, M. Slimane, and G. Venturini. Imagine: a tool for
generating HTML style sheets with an interactive genetic algorithm based on genes
frequencies. In IEEE International Conference on Systems, Man, and Cybernetics
(SMC’99), volume 3, pages 640–645, Tokyo, Japan, October 12-15 1999.

16. Philippe Mathieu Nouredine Bensaid. A framework for cooperation in hierarchical
multi-agent systems. Journal of Mathematical Modelling and Scientific Computing,
8, September 1998.

17. F. Pachet. De la co-construction d’un langage homme-machine: quelques
expériences en musique. In Valérie Camps and Philippe Mathieu, editors, Actes des
15e Journées Francophones sur les Systèmes Multi-Agents (JFSMA’2007), page 9.
Cépaduès, 2007. JFSMA’2007 – Carcassone (France) – 17-19 octobre 2007.

18. Yves Demazeau Pierre-Michel Ricordel. La plate-forme volcano - modularité et
réutilisation pour les systèmes multi-agents. Technique et Science Informatiques,
21(4):447–471, 2002.

19. Uri Wilensky. Netlogo (and netlogo user manual), 1999.
20. A. M. Zhabotinsky. Periodic processes of malonic acid oxidation in a liquid phase.

In Biofizika, 1964.


