
HAL Id: hal-00731987
https://hal.science/hal-00731987

Submitted on 29 Oct 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Interaction-Oriented Agent Simulations : From Theory
to Implementation

Yoann Kubera, Philippe Mathieu, Sébastien Picault

To cite this version:
Yoann Kubera, Philippe Mathieu, Sébastien Picault. Interaction-Oriented Agent Simulations : From
Theory to Implementation. 18th European Conference on Artificial Intelligence (ECAI’08), Jul 2008,
Patras, Greece. pp.383-387. �hal-00731987�

https://hal.science/hal-00731987
https://hal.archives-ouvertes.fr


Interaction-Oriented Agent Simulations:
From Theory to Implementation

Yoann Kubera and Philippe Mathieu and Sébastien Picault1

Abstract. This paper deals with the software architecture
for individual-centered simulations, i.e. involving many enti-
ties interacting together. Many software architectures have
been developped in this context, especially many advanced
– but domain specific – frameworks. Yet those frameworks
imply tight software dependencies between agents, behaviors
and action selection mechanisms, which leads to many diffi-
culties in modelling and programming. We propose a method
and an architecture where interactions are reified regardless
of agents, in order to obtain a complete interaction-oriented
design process for simulations. Then, an agent is only an en-
tity that can perform or undergo a set of interactions, even
not specifically developped for it. Thus most interactions can
be re-used in many contexts. In addition, our method clearly
separates knowledge about behaviors from its processing, and
thus makes the design of simulations easier. Moreover, this
new and user-friendly approach helps programmers to build
simulations with a large number of different behaviors at the
same time, especially in the context of large-scale simulations.

1 Introduction

In recent years, agent-based simulations became preponder-
ant among living beings simulation tools, either to understand
their mechanisms or to copy them for leisure use (video games,
animation in films, etc.). It links up experts from both spe-
cific domains (biology, sociology, etc.) and computer science.
Its multidisciplinary nature has given birth to more-or-less
domain-specific platforms.

A large subset of those – like Swarm [4], Madkit [6] or Mag-
ique [2] – are open, and thus enable the user to freely imple-
ment agents, behaviors and environments. They offer different
levels of software refinement and allow the use of many engi-
neering tools – design patterns, components, inheritance, etc.
Moreover, the platforms cited above are not only dedicated
to simulations, but can also be used to build agent-based ap-
plications. Others – like Netlogo [12] – are based on a simple
programming paradigm designed for non-computer scientists.
The generic aspect of all those open platforms is obtained at
the expense of a formal way to guide the design of behav-
iors. Data is indeed mixed with its processing – i.e. the action
selection mechanism is mixed with behavior representation –
which implies a complete reimplementation of the agent when
adding or deleting an interaction in which it is involved.

On the opposite, many formalisms – like Petri nets, sub-
sumption, rules sets, artificial neural networks – may strongly

1 University of Lille, France, email: name.surname@lifl.fr

guide agent architecture, at the expense of reusability in other
formalisms. Some of the rare ones that make possible behav-
ior reuse are the cognitive architectures with plans like in
Act-R [1] where knowledge is separated from its processing.
However they are often not fitted neither to build multiagent
simulations because of their poor performances nor to design
reactive agents.

In order to build reusable and generic behaviors, we pro-
mote in this paper the Interaction-Oriented Design of Agent
simulations (IODA) formal method and architecture based
on [9, 8] works. It consists in abstracting from the agents the
actions they participate in, by reifying them into the notion
of interaction. An agent may perform or undergo a set of in-
teractions which are not specifically developped for it. Thus
most interactions can be re-used in many contexts. In addi-
tion, this architecture clearly separates data from processing,
and thus makes the design of simulations easier. We also de-
scribe the Java Environment for the Design of agent Inter-
actions (JEDI) platform, which is a Java implementation of
IODA for simulations with reactive situated agents.

The second section contains a brief introduction to related
work on generic agent behavior achitectures. The third section
describes the IODA methodology and its advantages – like the
separation between data and its processing, interactions li-
braries, or large-scale simulation construction. The fourth sec-
tion presents the generic features of IODA concepts, through
an easy to customize simulation platform called JEDI. Even-
tually, the last section concludes about IODA and JEDI.

2 Additional Related Work

Research on multiagent systems and on agent design is very
active, and many generic agent description models do ex-
ist. Formal description methods and generic architectures for
agents behavior can be examined from two points of view.

The first one is about interactions design : the way agents
communicate with each others are extracted from their model
into abstract communication patterns and protocols. Gener-
ally, this abstraction is limited to the model design step, and
the interaction protocol and the agent’s behavior are mixed
together during implementation – like in JADE, AgenTalk,
Swarm, etc. This leads to a decreased maintainability due to
dispersal of the protocol’s implementation. As proposed in
[5], one solution is to abstract the interaction protocol from
agents, and then reify it as a single entity defined by roles and
messages sequences, which use functionalities that agents im-
plement on their own according to their role.



The second one is about agents behavior itself. Many
generic methodologies stop at the formal specification of a
simulation, giving place at worse to implementation errors
and at best to mixing data (i.e. actions an agent can per-
form) and its processing (i.e. selection of an action given a
particular valuation of the global state of the simulation).

Definition 1 The global state of the simulation is the
union of the set of all states of the environment and the states
of all agents in the environment.

Formal methods and architectures allow to keep the sepa-
ration between data and processing with agent-independent
actions, like in [3] where actions are agent-independent com-
ponents, so that the behavior of an agent is defined by a set
of interconnected components. This kind of solution is well
suited to complex action scheduling, but the connectivity of
these components decrease the maintainability of the agents,
especially if their behavior change during simulation, or if the
simulation is using a large scale knowledge representation.

Definition 2 A simulation is called large scale simulation

if its environment contains a great amount of agents (namely
simulation with large scale computations) or if it con-
tains a large number of agents with different behavior and a
large number of actions per agent (namely simulation with

large scale knowledge representation).

In the following sections, we propose a formal method and
an architecture providing the advantages of both interaction
reification and separation between knowledge and processing,
fitting large scale knowledge representation requirements with
an homogeneous design of agents and interactions.

3 The IODA Methodology

In general, a communication protocol is used in order to de-
scribe a particular abstract process involving many agents, for
instance “to exchange goods”. In order to build reusable and
generic behavior, we present in this paper the IODA formal
method and architecture. It relies on an homogeneous repre-
sentation of actions performed by agents, called Interaction,
close to the concept of design/perceived affordance of Nor-
man [11]. This formal representation is adapted to represent
actions involving only one agent as well as complex actions
involving many communicating agents.

3.1 An Interaction-centered Methodology

The behavior of an agent is defined by a specific arrangement
of semantic blocks called interactions (see § 3.5). An inter-
action is itself a set of primitives simultaneously involving a
fixed number of agents, which describes how and under what
kind of conditions agents may interact one with others or with
the environment.

An agent owns a set of perception primitives – used to get
information from the global state of the simulation – and a set
of action primitives – used to change this global state (change
the environment’s, other agent’s or his own local state). These
are the atomic elements of interactions.

Definition 3 An Interaction is a structured set of action
primitives involving simultaneously a fixed number of agents.

An interaction can occur only if the activation conditions – a
boolean expression of perception primitives – are met.

Definition 4 Agents involved in an interaction generally
do not play the same role. We make a difference between
Source agents that may perform the interaction, and Tar-

get agents that may undergo it.

As described in Def. 3, an interaction sets the logical se-
quence of primitives required in order to make agents interact.
These primitives may be implemented differently according to
the agent specificities. As a consequence, it leads to a more
enhanced and easier-to-use polymorphism in agent behavior
compared to other agent architectures like [3] where close be-
haviors cannot be expressed without complex means.

An interaction is not agent-dependent and may be re-used
in other simulations. Thus, building simulations leads to the
construction of interaction and agent libraries, and facilitates
further simulation design.

3.2 IODA Agents

In IODA, agents follow a simple architecture which makes
possible to design homogeneously agents with different speci-
ficities in the same simulation.

Definition 5 An agent x is an autonomous entity of a sim-
ulation. Its minimal specification :

• has properties;
• has a local state, which is a valuation of its properties;
• implements a set of action and perception primitives;
• perceives other agents and the state of the environment only

in a subset of the environment H(x) called halo. The set
N (x) of agents present in H(x) is called neighborhood;

• is assigned a set of interactions it can perform or undergo
(see § 3.5);

• implements an interaction selection process (see § 3.7).

Definition 6 An agent family (or agents equivalence

class or agent class) is an abstract set of agents, in which
all agents share all or part of their properties, action or in-
teraction primitives, or behavior.

From this point on, if S ∈ F, x ∈ S means x is an agent
from the S agent family.

A IODA agent is not restricted to a particular kind of agent.
Programmers may freely define a cognitive or reactive in-
teraction selection process, reactive or cognitive perception
primitives, more or less complex neighborhood computations.
Besides, neighborhood computation taken apart, the interac-
tion selection process is independent from the environment’s
topology, and needs only a notion of distance between agents.

3.3 Interactions and cardinality

As its name implies, an interaction may occur between a
source agent and a target agent. However, complex prob-
lems need to define other situations like the interaction of an
agent with itself (to sleep, to think) or with the environment
(to move, to die). Even more complex situations may occur,
where interactions involve more than one source or target (for
instance to burst involving many casualties). Cardinality (see
Def. 7) unifies those notions.



Definition 7 The cardinality of an interaction I is the pair
(cardS(I), cardT (I)) where cardS(I) (resp. cardT (I)) is the
number of source agents (resp. target agents) involved in the
interaction. Particular interactions where an agent interact
with itself or with the environment, i.e. with T = ∅, are called
degenerate interactions.

Definition 8 An interaction I is in normal form if and
only if cardS(I) = 1.

It has been shown that any interaction can be expressed
into normal form [8]. Thus, in the following sections of this
paper, interactions are supposed in normal form, mainly for
complexity matters [8].

3.4 Problem analysis

In addition to the formal specification of simulations, IODA
provides a set of algorithms to go from model analysis to
concrete implementation. Those algorithms are demonstrated
in the JEDI platform (see § 4) in the context of reactive and
situated agents, but could also be implemented for any other
kind of multi-agent system as well.

According to our methodology, the design of a simulation
follows 5 steps :

1. Identify all agent families as well as all interactions

of the simulation. It leads to the definition of a matrix
between source agents and target agents containing inter-
actions. This step is called “assignation of interactions to
source and target agents”.

2. Define all primitives needed to write the activation con-

ditions and the action sequence of the interactions.
3. Identify the action and perception primitives that will

be implemented by each agent family, and how they will be
implemented.

4. Define for each assigned interaction I a priority p(I) and
a limit distance d(I) (see § 3.7). It implies refining the
initial matrix.

5. Define how the matrix evolves during simulation, i.e. if
agents can change their own or other’s behavior by chang-
ing a line or a colmun of the matrix.

To help the design of simulations, the assignation of interac-
tions to source and target agents is summarized into a matrix
called Interaction Matrix .

3.5 The Interaction Matrix

Agents may interact only if target agents are present into the
neighborhood of the source agent, but interaction is also con-
strained by a limit distance. Indeed, seeing a target doesn’t
means a source agent may perform the interaction to slap tar-
get with it : it has to be close enough to the target, and this
distance depends on the source agent’s properties. This no-
tion is independent of grid-like environments : it may be a
Minkowski distance as well as a social distance, etc.

Additionally, every assigned interaction is endowed with
a priority, so to build a hierarchy between them from the
viewpoint of the source agent, which is used in the interaction
selection process (see § 3.7). These priorities may be constant
or dynamic, depending on the nature of the source agent.

Definition 9 The assignation aS/T of an interaction set
(Ij)j∈[1,n] between a source agent family S and a set of target
agent families T describes the set of interactions that agents
belonging to S may perform as sources together with sets of
agents from T as targets. It is defined by a set of tuples
(Ij , pj , cj , dj)j∈[1,n], named assignation elements, where :

• Ij is an interaction that S can perform and all x ∈ T can
undergo;

• pj is the priority of this assignation of interaction Ij;
• cj is the interaction’s cardinality (i.e. the number of

awaited targets);
• dj is the limit distance allowed between S and all x ∈ T

so that S may perform the interaction with T .

N.B.: Elements of the assignation aS/∅ of degenerate inter-
actions are (Ij , pj) pairs.

Definition 10 If F is the set of all agent families in a sim-
ulation, then the interaction matrix of the simulation is
the set M = (aS/T )S∈F,T⊆F of all assignations between all rel-
evant source agent family S and target agent family set T ,
according to the behaviors to be modeled (see Fig. 1).

3.6 Agent libraries

Because agents from different families may have some similar
behavior, agents from an A agent family may be a particular
subset of a B agent family. Thus, if M = (aS/T )S∈F,T⊆F is the
interaction matrix of a simulation, S and T may be abstract
sets of agent families like groups, teams, etc. We define a par-
ticular algebra to specify the relations between agent families,
especially how they share their assignation elements through
3 matrix modification operators :

Definition 11 Let F be the set of all agent families.

• The specialization of an agent family X by a agent family
Y is noted Y : X. It means agents of the Y family inherit
all assignation elements, perception process, primitives and
properties of the X family.

• The addition of an assignation element e with source
agent family S ∈ F and target agent families T ⊆ F to the
interaction matrix is noted +(aS/T , e).

• The suppression of an inherited assignation element

e with source agent family S ∈ F and target agent families
T ⊆ F is noted −

`

aS/T , e
´

.
• The modification of an inherited assignation ele-

ment e = (I, p, c, d) with source agent family S ∈ F and
target agent families T ⊆ F is noted ∗

`

aS/T , e, I ′, p′, c′, d′
´

.
• The modification of an inherited assignation ele-

ment e = (I, p) with source agent family S ∈ F and target
agent families T ⊆ F is noted ∗

`

aS/T , e, I ′, p′
´

.

Property 1 Let F be the set of all agent families, X, S, Y ∈
F, T ⊆ F, e an assignation element, I, I ′ two interactions,
d, d′ ∈ R and c, c′, p, p′ ∈ N.

• Generally, (Y : X) ⇒
`

∀T ⊆ F, aX/T ⊆ aY/T

´

• +
`

aS/T , e
´

⇒ e ∈ aS/T

• −
`

aS/T , e
´

⇒ e /∈ aS/T

• ∗(aS/T , (I, p, c, d), I ′, p′, c′, d′) ⇒ ((I, p, c, d) /∈ aS/T ∧
(I ′, p′, c′, d′) ∈ aS/T )



`
`

`
`

`
`

`
`
`

source
target

∅ Grass Sheep Goat Wolf

Grass +(Grow;0)

Animal
+(Die;3)

+(Move;0)
Herbivore +(Eat;2;1;0)

Sheep:Animal,Herbivore +(Breed;1;1;1)
Goat:Animal,Herbivore +(Breed;1;1;1)

Wolf:Animal *((Die;3),Die,4) +(Eat;2;1;0) +(Eat;3;1;0) +(Breed;1;1;1)

Figure 1. Example of an interaction matrix for a predator/prey simulation with 4 species. The ’∅’ column contains degenerate
interactions. In this example, the ’+’ operator uses either one integer representing the degenerate assignation element’s priority, or three

integers representing the assignation element’s priority, its cardinality and its limit distance. The ’∗’ operator, in this case, is used to
modify the priority of the inherited “Die” interaction for wolves.

• ∗(aS/T , (I, p), I ′, p′) ⇒ ((I, p) /∈ aS/T ∧ (I ′, p′) ∈ aS/T )

In the interaction matrix, a cell is the intersection of a line,
corresponding to the interactions that an agent of S family
can perform, and a column, corresponding to the interactions
that a set of agents of T families can undergo. Thus aS/T is
implicit in the operators used in the matrix on Fig. 1. Such a
formalism is platform-independent, especially the specializa-
tion notion which meaning changes along the programming
language : inheritance for a language object, kind of in a
frame language, etc.

3.7 Interaction Selection Basics

The core of an agent’s behavior is the interaction selection
process (see Def. 12). This process checks if activation con-
ditions are met, finds targets to interact with, selects a par-
ticular set of targets, considers interactions with the correct
priorities, and finally performs the sequence of actions.

Definition 12 Interaction selection is the process an
agent uses in order to select an interaction to perform (i.e.
as a source) on particular targets given a particular valuation
of the global state of the simulation.

Both the eligibility syntaxic criterion and realizability se-
mantic criterion, as well as the Interaction potential set
are defined in this section to help the census of all possible
interactions for a source agent x.

Definition 13 Let dist(x, y) be the distance between two
agents x and y.

The assignation element e = (Ij , pj , cj , dj) is said eligible

for the source agent x and the set Targ of target agents –
written eligible(e, x, Targ) – if and only if e ∈ ax/Targ

and

cardT (Ij) 6= 0 ⇒
“

∀y ∈ Targ, y ∈ N (x) ∧ dist(x, y) ≤ dj

”

.

Definition 14 Let cond(I, x, Targ) be the activation condi-
tions of the interaction I applied to the source agent x and
the set of target agents Targ.

The assignation element e = (Ij , pj , cj , dj) is said real-

izable for the source x and the set Targ of targets – written
realizable(e, x, Targ) – if and only if: eligible(e, x, Targ) ∧
cond(e, x, Targ)

Definition 15 The “p-level interaction potential” of

an agent x – written Pp(x) – is the set of all realizable assig-
nation elements with x as a source for any target set :

Pp(x) = {(e, T ), e = (Ie, pe, ce, de) |T ⊆ N (x) ∧ p = pe ∧
realizable(e, x, T )}

As a consequence, interaction selection is the process where
an x agent selects an element from Ppmax

(x) where pmax is
the highest priority such that Ppmax

(x) 6= ∅.
All the definitions and properties defined in this section

are platform independent. Their implementation on a specific
programming language implies many choices. We propose in
the following section a possible implementation of IODA con-
cepts in the Java language.

4 From Methodology to Implementation

The JEDI platform implements the formal concepts defined
in IODA, which means there is an univocal path from prob-
lem analysis in IODA to implementation in JEDI. Besides,
this transition between model and implementation is auto-
mated by a generator called JEDI-Builder . Note that JEDI
is more a proof of usefulness of IODA concepts than a regular
simulation platform : the IODA methodology may be imple-
mented in other languages, so we did in Netlogo.

4.1 Implementation Choices

Implementation choices define the scope of simulation models
supported by a platform. Their consequences are displayed in
[7], therefore this section does not argue in details about the
reasons of those choices. In JEDI, these are :

• Interaction cardinality is restricted.

• Simulation is in discrete time.

• Situated : simulation is in a two-dimensional grid.

• Everything is agent, which allows an uniform treatment
of things (called artifacts, objects, tools, patches, etc.) and
“true” agents at implementation.

Definition 16 An agent is said active if he can perform at
least one interaction. Otherwise he is said passive.

In JEDI, the only difference between passive and active agents
depends on the interaction matrix. This homogeneous repre-
sentation of agents makes transition of agents between passive
and active easier.

Interactions are reified in a Java abstract class called
Interaction. Each agent family S ∈ F – represented by a
class inheriting from Agent – contains a set canPerform

which is a part of the interaction matrix. It is defined such
that ∀x ∈ S, canPerform(x) = {aS/T ∀T ⊆ F}. Thus each
line of the interaction matrix is defined in an agent family.
The abstract class Moteur is the core of the simulation, where
the run() method executes the main algorithm of the simu-
lation, i.e. performs every steps of the simulation (see Fig. 2).



Let A be the set of agents in the environment and Aact ⊆ A the
set of active agents.

1. Reorder Aact according to a particular criterion (see Sect. 4.2),
for instance a random order (equitable choice);

2. Set all agents in A operative;

3. For each operative agent a ∈ Aact do :

(a) Define the part of the environment H(a) perceived by a;

(b) Define the set of all neighboring agents N (a), and remove
from it all non-operative agents;

(c) Let p = maximal priority in canPerform(a);

(d) Compute Pp(a); while Pp(a) = ∅, decrement p and compute
again;

(e) If p = 0 and P0(a) = ∅, then a cannot perform any interaction.
It remains operative but ends its simulation step;

(f) Else, select at an element from Pp(a), i.e. elements
((I, p, c, d), Targ) containing an assignation element and a set
of target agents, using the interaction selection process of the
agent; for instance a random choice;

(g) Perform the interaction I with a as source and Targ as targets;

(h) Deactivate a and all agents in Targ .

Figure 2. Algorithm of a simulation step.

4.2 JEDI Tuning

In order to build simulations with large-scale computations,
the programmer has to control the complexity of many parts
of the simulation platform in order to find a tradeoff between
performances and implementation bias. JEDI’s modular de-
composition defines a set of parameters for this purpose :

• Agents’ halo H(x) may be defined at will as a set of cells.
• “P-level interaction potential“ computing complex-

ity (3f in Fig. 2) may be reduced if needed, though it may
introduce a bias in the evaluation order of assignation el-
ements and target sets; for instance a census of only one
target set Targ per assignation element e.

• Interaction Selection process may easily be customized
by writing how to select an element from Pp(x).

• Pseudo parallelism may be tuned by the order according
to which agents are evaluated (1 in Fig. 2), knowing what
kind of bias are introduced [10].

• Interaction matrix is a shared object between agents
when is not modified during the simulation.

5 Conclusion

Designing a simulation is the art of finding a tradeoff between
model precision – in order to implement the model without
any ambiguities – and model universality – in order to easily
implement it on any simulation platform. Most simulation
platforms neglect one of those points and sometimes do not
even clearly define the model they use.

In this paper we have presented a formal method and an
architecture for the design of multiagent simulations, called
IODA, which uses an homogeneous representation of actions
performed by agents named Interaction. Actions involving a
single agent, or complex actions involving many communicat-
ing agents, are both represented with the same formalism. As
a consequence of this, the interaction selection process is also

the same for all agents, and can be defined independently from
both agents and interactions. Knowledge and processing are
not mixed, therefore the user is able to build reusable agent
and interaction libraries along with simulations. Moreover,
the interaction matrix helps to design simulations with large-
scale knowledge representation, and to build automatically
the corresponding implementation through a code generator.

The JEDI simulation platform provides a simple implemen-
tation tool of IODA models, and defines an interaction selec-
tion process suitable to reactive, cognitive or any other kind
of agents. In addition, it points up a set of parameters that
can be tuned at will. This aims at controlling implementation
bias when adapting the complexity of the platform to match
with large-scale computations requirements.

Acknowledgements

This research is supported by the FEDER and the “Contrat-
Plan État Région TAC” of Nord-Pas de Calais.

REFERENCES

[1] J. R. Anderson, D. Bothell, M. D. Byrne, S. Douglass,
C. Lebiere, and Y Qin, ‘An integrated theory of the mind’,
Psychological Review, 111(4), (2004).

[2] Nourredine Bensaid and Philippe Mathieu, ‘A hybrid and hi-
erarchical multi-agent architecture model’, in Proceedings of
the Second International Conference and Exhibition on the
Practical Application of Intelligent Agents and Multi-Agent
Technology, London, UK, (april 1997).

[3] Jean-Pierre Briot, Thomas Meurisse, and Frédéric Peschan-
ski, ‘Une expérience de conception et de composition de com-
portements d’agents à l’aide de composants’, L’Objet, Revue
des Sciences et Technologies de l’Information, 12(4), (2006).

[4] R. Burkhart, ‘The swarm multi-agent simulation system’, in
Position Paper for OOPSLA’94 Workshop on ’The Object
Engine’, (1994).

[5] Takuo Doi, Yasuyuki Tahara, and Shinichi Honiden, ‘IOM/T:
an interaction description language for multi-agent systems’,
in AAMAS’05: Proceedings of the fourth international joint
conference on Autonomous agents and multiagent systems.
ACM, (2005).

[6] Olivier Gutknecht, Jacques Ferber, and Fabien Michel, ‘Inte-
grating tools and infrastructures for generic multi-agent sys-
tems’, in Proceedings of the Fifth International Conference on
Autonomous Agents, eds., Jörg P. Müller, Elisabeth Andre,
Sandip Sen, and Claude Frasson, Montreal, Canada, (2001).
ACM Press.

[7] Yoann Kubera, Philippe Mathieu, and Sébastien Picault,
‘La complexité dans les simulations multi-agents’, in Actes
des Journées Francophones sur les Systèmes Multi-Agents
(JFSMA07), ed., Cépaduès-Editions, Carcassonne, France,
(2007).

[8] Philippe Mathieu, Sébastien Picault, and Jean-Christophe
Routier, ‘Donner corps aux interactions (l’interaction enfin
concrétisée)’, in Actes de la conférence MFI’07, Paris, France,
(2007).

[9] Philippe Mathieu, Jean-Christophe Routier, and Pascal Urro,
‘Un modèle de simulation agent basé sur les interactions’, in
Actes des Premières Journées Francophones sur les Modèles
Formels de l’Interaction (MFI’01), Toulouse, France, (2001).

[10] Fabien Michel, Jacques Ferber, and Olivier Gutknecht,
‘Generic simulation tools based on mas organization’, in Pro-
ceedings of the 10 European Workshop on Modelling Au-
tonomous Agents in a Multi Agent World MAMAAW’2001,
Annecy, France, (2001).

[11] Donald A. Norman, The Psychology of Everyday Things, Ba-
sic Books, 1988.

[12] Uri Wilenski, ‘Netlogo’, Technical report, Center for Con-
nected Learning and Computer-Based Modeling, (1999).


