
HAL Id: hal-00731953
https://hal.science/hal-00731953

Submitted on 29 Oct 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Interaction Selection Ambiguities in Multi-agent
Systems

Yoann Kubera, Philippe Mathieu, Sébastien Picault

To cite this version:
Yoann Kubera, Philippe Mathieu, Sébastien Picault. Interaction Selection Ambiguities in Multi-agent
Systems. IEEE/WIC/ACM International Conference on Intelligent Agent Technology (IAT’08), Dec
2008, Sydney, France. pp.75-78, �10.1109/WIIAT.2008.260�. �hal-00731953�

https://hal.science/hal-00731953
https://hal.archives-ouvertes.fr

Interaction Selection Ambiguities in Multi-Agent Systems

Yoann Kubera

yoann.kubera@lifl.fr

Philippe Mathieu

philippe.mathieu@lifl.fr

Sébastien Picault

sebastien.picault@lifl.fr

LIFL UMR USTL-CNRS 8022

Laboratoire d’Informatique Fondamentale de Lille

Université des Sciences et Technologies de Lille

Cité Scientifique - 59655 Villeneuve d’Ascq Cedex – FRANCE

Abstract

To ensure multi-agent based simulation models repro-

ducibility, particular attention must be payed on its possible

implementation ambiguities. This concerns every aspect of

simulation’s architecture, including how the agent selects

the actions it performs, and on which agents it is performed.

On this point, classical agent-centered design methodolo-

gies leave room to implicit design choices.We show in this

paper how an interaction-centered design methodology pro-

vides guidelines to elicit these choices, and to remove pos-

sible implementation ambiguities underlying agent design.

To illustrate this issue, we study which ambiguities underly

even simple models and how our interaction-based method-

ology makes them appear.

1 Introduction

Each step of the simulation design process involves

choices – both explicit or implicit – regarding ambiguous

parts of the model. Those choices have a more or less dra-

matic influence on the execution and outcomes of the sim-

ulation. The simulation biases they introduce must be stud-

ied. Otherwise, the ambiguity of the models leads to sim-

ulations that do not behave as it was initially expected and

thus produce also unexploitable results.

The spectrum of implicit choices is wide, and concerns

very different parts of simulation’s architecture. To study

these choices separately, a decomposition of a MABS in

three different functional units was proposed in [3] that

manage either the knowledge of agents, their action selec-

tion process, or when and under what conditions agents act

(see section 2). That paper studied the impact of implicit

choices concerning this last unit called “Agents and Envi-

ronments Activation Unit”.

We consider in this paper a second unit of this decom-

position called the “Interaction Selection Unit”. This unit

describes the process that leads an agent to select from his

knowledge the interaction if performs.

Interactions between agents – i.e. actions involving si-

multaneously two or more agents – are the source of sim-

ulations emergent properties. Thus, they have a major role

in Multi-Agent Based Simulations (MABS). But, because

current MABS design methodologies focus only on the be-

havior of independent agent, many design choices concern-

ing interactions are not explicit. In particular, agents only

define how they select the action they perform [2, 1], but do

not provide guidelines on how target agents are selected (see

next section). In this paper we use the interaction-oriented

methodology IODA [4] to emphasize these choices.

We uphold that these selection principles have to be

made explicit in the earliest steps of every simulation

design, to determine precisely what interpretation of the

model is made. This provides design guidelines that clear

many implementation ambiguities, and makes sure that the

model is implemented as it was thought.

2 Multi-agent Simulations

Even if the application domains of multi-agent simula-

tions are heterogeneous, they can be split up into different

and weakly dependent functional units [7, 3] that under-

lie any kind of simulation. Especially, it elicits the notion

of interaction that often exists in agents code, but does not

appear explicitly.

We consider a particular decomposition of a simulation

in three main functional units, called Agents and Environ-

ments Activation Unit (AEAU), Interactions Definition Unit

(IDU) and Interaction Selection Unit (ISU) (see [3] for

more details). Because the design of simulations implies

crucial choices about those three units, we claim that it is

important to make this separation clear, even in reactive

simulations, in order to make modeling choices explicit.

The significance of the IDU specification and generic

representation has been addressed in [4], and the impact of

implementation choices of the AEAU was dealt with in [3].

Thus, we focus in this paper on the latest unit, the ISU.

In summary, this unit defines how an agent selects the

interaction it performs among its perceived affordances [6].

Interactions

The definition of interactions, and how they are inte-

grated in the knowledge of agents, are based on IODA con-

cepts [4]. Please note that IODA provides advancedmethod-

ological and software engineering tools to design interac-

tions in MABS. Since we do not need all refinements it pro-

vides, we use a simplified version of [4] definitions.

To make the difference between the abstract concept of

agent (for instance Wolves), and agent instances (a partic-

ular Wolf), we use the notion of agent families as abstract

concept of agent and agent as an agent instance.

Definition 1 An agent family (or agents equivalence class

or agent class) is an abstract set of agent instances, which

share all or part of their properties and behavior.

From this point on, if F is an agent family and x an agent,

x ≺ F means x is an instance of the F agent family.

Definition 2 An interaction is a structured set of actions

involving simultaneously a fixed number of agents instances

that can occur only if some activation conditions are met.

It is represented as a couple (conditions, actions), where
condition is a boolean function and action is a procedure.

Both have agent instances as parameters.

Agents involved in an interaction do not play the same role.

We make a difference between Source agents that may per-

form the interaction (in general the one selected by the

AEAU) and Target agents that may undergo it.

This definition is more general than the coordination lan-

guage’s one where an interaction is restricted to a structured

set of messages between agents : we consider here all kinds

of actions, including messages exchanges.

Definition 3 If S and T are agent families, aS/T is the set

of all interactions an instance of the S agent family is able
to perform with an instance of the T agent family as target.
By extension, if x ≺ S and y ≺ T , then ax/y ≡ aS/T .

Adding to that, we use the notion of realizable interac-

tion to determine if agents can participate in an interaction.

Definition 4 Let I be an interaction, and x, y two agents.

The tuple (I, x, y) is realizable (r(I, x, y)) if and only if :
r(I, x, y) = I ∈ ax/y and I.conditions(x, y) = TRUE.

Thus, at a time t, x agent’s perceived affordances Rt(x)
are the set of all realizable tuples that x may perform.

Definition 5 Let At be the set of all agents present in the

simulation at a time t, and x ∈ At.

Then, the list of all realizable tuples that x may perform is :

Rt(x) = ∪y∈At ∪I∈ax/y
{(I, x, y)|r(I, x, y)}

3 Experimental Frame

In many simulation platforms, the declaration of inter-

actions, that belongs to the IDU, is mixed with the imple-

mentation of agent behavior, that belongs to the ISU. As a

consequence, an agent uses implicitly particular algorithms

to select among all realizable tuples it can perform – i.e. the

perceived affordance of the agent – the one it will perform.

These algorithms are more-or-less suited to represent the

model, and may introduce biases in simulation outcomes.

The aim of this paper is to stress out the benefits brought

by an algorithmic study of the Interaction Selection Unit

(ISU), and how it can be used as model design guide-

lines. This point is illustrated through the experiment below,

where the focus is on the results of a single agent behavior,

instead of the whole simulation results. Experiment’s main

issue is to define an ISU corresponding to the specifications

of the problem – i.e. how a source agent selects the interac-

tion it performs, and with which target agent it is performed.

4 Multiple Interpretations of Probabilities

This experiment aims at representing the behavior

of an agent that selects an interaction with a particular

probability. It illustrates a first advantage of the early study

of the ISU : the detection of different possible interpretation

of a single model. Moreover, it identifies two different pat-

terns to select a perceived affordance of an agent. Even if

the solution is provided for the ecosystem example, it re-

mains valid for the generic problem in bold fonts.

Experiment Definition The experiment describes a sim-

ple ecosystem where Goat agents may :

EAT an agent, to reduce the source agent tiredness. This

removes the target agent from the environment;

REPRODUCE with an agent if both source and target are

not tired. This creates a copy of the source agent on a neigh-

boring place, and raises source and target agent tiredness.

A Goat agent REPRODUCES with other not tired Goats

with a pr = 60% probability.

Experimental Frame We suppose that a Goat labeled g0

is not tired, and is in a situation such that it cannot EAT

Grass. Moreover, we suppose that there are m other Goat

agents in the environment, that we label (gi)i∈[1,m], and that

n < m among them are not tired. We consider the two

different implementations of g0’s ISU presented in Fig. 1.

Let i = 1.
Let select = ∅.
While i ≤ m Do :

| If ¬tired(gi) and random([0, 100[) < 60 Then :
| | Set select = select ∪ {(REPRODUCE, g0, gi)}.
| End If.
| Set i = i + 1.
End While.

If select = ∅ Then :
| Return nill.

Else :

| Return random(select).
End If.

(a) “Equitable Tuple” selection policy

Let r = random([0, 100[).
If r < 60 Then :
| Let select = ∅.
| For All g in (gi)i∈[1,m] Do :

| | If ¬tired(g) Then :
| | | Set select = select ∪ {REPRODUCE, g0, g}.
| | End If.
| End For.
| If select = ∅ Then :
| | Return nill.

| Else :
| | Return random(select).
| End If.
Else :

| Return nill.

End If.

(b) “Weighted Interaction-driven” selection policy

Figure 1. Implementations of the ISU used by

a g0 Goat agent in the studied experiment.

Selection Policies Interpretation : In the first algorithm

(a in Fig. 1) 60% is the probability that g0 REPRODUCES

with an other Goat agent. Thus, the probability that g0 does

not reproduce depends on the number n of not tired Goats

agents, and is equal to (1 − pr)
n.

The second one (b in Fig. 1) considers 60% as the proba-
bility that g0 performs REPRODUCE independently from the

number of not tired Goats agents. Thus, the probability that

g0 does not reproduce does not depend on the number n of

not tired Goats agents, and is equal to (1 − pr).

Both reflect two different interpretations of the model.

In the first one, the REPRODUCTION probability is tried

independently by every possible target t. A tuple

(REPRODUCE, go, t) is listed in the select set only if this
probability is met. Thus, the probability test belongs to the

condition of REPRODUCE interaction, and the ISU just se-

lects a realizable tuple at random. We name this first inter-

action selection policy “Equitable Tuple” selection policy.

In the second one, the REPRODUCTION probability is

tried once. If this probability is met, then a target t for the

REPRODUCE interaction, such that r(I, g0, t), is selected at
random. Thus, in that process, a particular interval [0, 60[⊆
[0, 100[is associated with the REPRODUCE interaction. The
length of this interval depends on the probability to trigger

REPRODUCE (the length of this interval is called the weight

of REPRODUCE). This ISU gets a number r ∈ [0, 100[at
random. If r belongs to the interval of REPRODUCE, then a

realizable tuple of the REPRODUCE interaction is selected at

random. We name this second interaction selection policy

“Weighted Interaction-driven” selection policy.

Interaction-Oriented Design : If this problem was to be

represented in an interaction-oriented methodology, then,

in the first interpretation (a in Fig. 1), REPRODUCE con-

dition would be “¬tired(Target) ∧ random([0, 100[) <

60”, and its selection policy would be an Equitable Tu-
ple one. If this problem was to be represented in an

interaction-oriented methodology, then, in the first inter-

pretation (a in Fig. 1), REPRODUCE condition would be

“¬tired(Target) ∧ random([0, 100[) < 60”, and its se-
lection policy would be an Equitable Tuple one.

On the opposite, in the second interpretation (b in Fig. 1),

the condition of REPRODUCE would be “¬tired(Target)”,
the interaction selection policy would be the Weighted

Interaction-driven one, and the weight of REPRODUCE in

this policy would be pr.

Thus, the specification of the ISU in an interaction-

oriented methodology clears such interpretation ambiguity.

5 Summary of Experimental Results

The experiment above is part of an experiment set we

led. Their study ended up with two different observations.

First they show that two different implementations of a

same model are the fruit either of different interpretations of

the model, or of wrong implementations of that model. To

avoid implementation biases and ambiguities, the modeler

has to elicit the choices concerning the ISU. This requires

to have ISU design guidelines, and to identify the different

possible choices that occur in that process.

Secondly, their interpretation and confrontation elicited

the overall structure that the ISU follows. This section sum-

marizes its main elements, and how to express them in the

interaction-oriented methodology IODA.

Overall structure of the ISU In reactive simulation,

agents try in general to perform actions sequentially until a

realizable one is found. We propose to use a similar overall

principle in the ISU : every possible interaction I between a

source S and a target agent family T is assigned a priority
p(I,S, T), just as [5] did for normal actions.

The execution of x ≺ S agent’s ISU consists in :

1. gathering the priorities of all the interactions x can per-

form in an ordered set P(S);

2. selecting the next priority p of P(S). If there is not
such a priority, then the agent does nothing;

3. getting the set R
p
t (x) ⊆ Rt(x) containing all realiz-

able tuples of p priority. R
p
t (x) = {(I, x, y)|∃T |y ≺

T and p(I,S, T) = p};

4. applying a particular interaction selection policy, that

depends on p, to select a tuple (I, x, y) from R
p
t (x).

5. returning to step 2 if no tuple is selected;

6. executing the selected tuple (i.e. I.actions(x, y)).

Interaction Selection Policies Thanks to the interaction-

oriented study of experiments, four interaction selection

policies, used to select a tuple from a set of realizable tu-

ples R
p
t (x), were identified :

An “Equitable Tuple” selection policy that selects one

tuple of R
p
t (x) at random. This is the most implicitly used

policy in reactive simulations.

An “Equitable Interaction” selection policy that first

selects an interaction present in tuples of R
p
t (x) at random,

and then selects one tuple of R
p
t (x) that contains this inter-

action at random.

A “Weighted Interaction-driven” selection policy that

gives to every interaction I present in tuples of R
p
t (x) a

weight p(I). It associates to every interaction I pairwise

non-intersecting subsets Y(I) ⊆ [0, 100[of length p(I).
Then, it selects r ∈ [0, 100[at random, and selects the inter-
action I such that r ∈ Y(I). Finally, it selects one tuple of
R

p
t (x) that contains this interaction at random. To use this
policy, the user has to define the weights of interactions.

A “Preferred Tuple” selection policy, that gives to ev-

ery tuple t ∈ R
p
t (x) a utility value v(t). It selects the tu-

ple that has the maximal value among tuples of R
p
t (x). If

more than one tuple has the maximal value, then the selec-

tion is made at random between these last tuples. To use

this policy, the user has to define how the value of a tuple is

computed. This last one is well known for its applications

in reactive simulations such that pheromone following, and

for its intensive use in cognitive agents.

Design Guidelines of the ISU To design an ISU contain-

ing the fewest ambiguities, the modeler has to provide :

• priorities to every interaction an agent may perform;

• an interaction selection policy for each couple (source
agent family, priority);

• if necessary, their weight or value computing function.

This is possible only if interactions are at center of simula-

tion, with a modeling methodology like IODA [4]1.

6 Conclusion

The biases that may result from implementation choices

must be identified and quantified. Otherwise simulations

remain ambiguous and are not reproducible nor viable [3].

This paper shows that the reproducibility of a simulation

is not possible without specifying a domain-independent

functional unit underlying any simulation : the interaction

selection unit. This unit defines how an agent selects an

interaction among its perceived affordances.

Experiments concerning this unit showed that, even in

simple cases, a single choice may greatly influence simula-

tion outcomes. For instance, it may change the actual inter-

pretation of the probabilities used to trigger behaviors.

Those problems can be pointed out through the iden-

tification of the interaction selection concepts used in the

model. This identification requires to elicit the notion of in-

teraction underlying any kind of simulation, just like in the

IODA methodology and JEDI framework [4], and to sepa-

rate the domain-dependent interaction declaration from the

domain-independent selection of a performed interaction.

This paper identifies an overall description of this unit

for reactive agents, and the four main interaction selection

policies that it uses. It provides design guidelines for that

unit, that elicit the choices that were otherwise implicit.

Without the specification of this point, different develop-

ers will likely obtain different outcomes for the samemodel.

References

[1] J.-P. Briot and T. Meurisse. An experience in using com-

ponents to construct and compose agent behaviors for agent-

based simulation. In Proceedings of IMSM’07, 2007.
[2] R. A. Brooks. A robust layered control system for a mobile

robot. iEEE journal of robotics and automation, 2(1), 1986.
[3] Y. Kubera, P. Mathieu, and S. Picault. Biases in multi-agent

based simulations : An experimental study. In Proceedings of

ESAW 08, St Etienne, France, 2008.
[4] Y. Kubera, P. Mathieu, and S. Picault. Interaction-oriented

agent simulations : From theory to implementation. In Pro-

ceedings of ECAI 08, Patras Greece, 2008.
[5] N. J. Nilsson. Teleo-reactive programs for agent control. Jour-

nal of Artificial Intelligence Research, 1, 1994.
[6] D. A. Norman. The Psychology of Everyday Things. Basic

Books, 1988.
[7] D. Weyns, H. Parunak, F. Michel, T. Holvoet, and J. Ferber.

Environments for multiagent systems: State-of-the-art and re-

search challenges. In Environments for Multiagent Systems,

New York, NY, USA, 2004.

1See http://www.lifl.fr/SMAC/projects/ioda

