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Portmanteau inequalities on the Poisson space:
mixed regimes and multidimensional clustering

by Solesne Bourguin∗ and Giovanni Peccati†

Université du Luxembourg

Abstract: Using Malliavin operators together with an interpolation technique inspired by Arratia,
Goldstein and Gordon (1989), we prove a new inequality on the Poisson space, allowing one to measure
the distance between the laws of a general random vector, and of a target random element composed of
Gaussian and Poisson random variables. Several consequences are deduced from this result, in particu-
lar: (1) new abstract criteria for multidimensional stable convergence on the Poisson space, (2) a class
of mixed limit theorems, involving both Poisson and Gaussian limits, (3) criteria for the asymptotic in-
dependence of U -statistics obeying to Gaussian and Poisson asymptotic regimes. Our results generalize
and unify several previous findings in the field. We provide an application to joint sub-graph counting
in random geometric graphs.

Key words: Chen–Stein Method; Contractions; Malliavin Calculus; Poisson Limit Theorems; Poisson
Space; Random Graphs; Total Variation Distance; Wiener Chaos
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1 Introduction and framework

1.1 Overview

The well-known Portmanteau Theorem of measure theory (see e.g. [6, p. 15 ff.]) is a powerful statement,
providing several necessary and sufficient conditions in order for a sequence of probability measures on
a metric space to converge weakly towards some limit. The term ‘portmanteau’ indicates that these
conditions have a priori different natures, in such a way that they appear as artificially packed together
at first reading.‡

The aim of this paper is to prove and apply a new portmanteau inequality, involving vectors of random
variables that are functionals of a Poisson measure defined on a general space. This estimate – which
is formally stated in formula (2.9) below – is expressed in terms of Malliavin operators, and basically
allows one to measure the distance between the laws of a general random element and of a random vector
whose components are in part Gaussian and in part Poisson random variables. As we shall abundantly
illustrate in the sequel, the inequality (2.9) is a genuine ‘portmanteau statement’ – in the sense that it can
be used to directly deduce a number of new results about the convergence of random variables defined
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on a Poisson space, as well as to recover known ones. These results span a wide spectrum of asymptotic
behaviors that are dealt with for the first time in a completely unified way. Apart from Malliavin calculus
(that we apply in a form analogous to the one developed by Nualart and Vives in [32]), our techniques
involve the use of the Chen-Stein method (see e.g. [3]), and provide a substantial refinement of several
recent contributions concerning Central Limit Theorems (CLTs) and Poisson approximation results on
the Poisson space (see [25, 26, 33, 35, 42, 49, 55]). One of our main technical tool is an interpolation
technique used in [3] for proving multidimensional Poisson results. See e.g. [30, 31] for a discussion of
the use of Stein-Malliavin techniques on a Gaussian space.

As the title indicates, the two new main theoretical applications developed in the sequel are the following:

– Mixed limits: Our results allow to deduce quantitative limit theorems (that is, limit theorems
with explicit information on the rate of convergence), where the target distribution is a multi-
dimensional combination of independent Gaussian and Poisson components. This new class of
approximation results is described in Section 2.1. They will be applied both to characterize the
asymptotic independence of general U -statistics (see Section 2.3), and to subgraph counting in
stochastic geometry (see Section 2.4). By virtue of an approximation argument borrowed from
[15], part of the results discussed in Section 2.3 extends to de-poissonized U -statistics.

– Multi-dimensional Poisson convergence: A particular choice of parameters in our main estimates
allows one to deduce multidimensional Poisson approximation results, having moreover a stable
nature – in the classic sense of [2, 50]. This substantially generalizes the one-dimensional findings
of [33]. See Section 2.2.1 and Section 2.2.2, respectively, for general statements and for applications
to sequences of multiple Wiener-Itô integrals, as well as for several comparisons with the CLTs
established in [35, 42]. One should note that this type of Poisson approximation results has found
a number of applications in stochastic geometry, see [57].

The basic intuition underlying our approach is the following: in order to properly understand the
connections between Poisson approximations and CLTs in the context of random point measures, it
is very much instructive to study probabilistic models where Poisson and Gaussian random structures
emerge simultaneously in the limit. The present paper demonstrates how Portmanteau inequalities
provide the correct tool for accomplishing this task in a fully multidimensional setting.

We will illustrate our findings by completely developing an application to random geometric graphs, as
described in Section 2.4 and Section 4. In particular, two results will be achieved: (i) a new bound for
the multidimensional Poisson approximation of subgraph-counting statistics, and (ii) a proof of a new
mixed limit theorem involving the joint convergence of vectors of subgraph-counting statistics exhibiting
both a Poisson and a Gaussian behavior. Our results extend several findings in the field – see [5, 22, 43].

Remark 1.1 Due to the use of the Chen-Stein method, one of the main technical difficulties in develop-
ing our results has been the choice of a “good” version of a discrete multivariate Taylor-type expansion
for functions defined on the set Zd+ = {0, 1, 2, ...}d, d ≥ 2. The formula that best fits our approach ap-
pears in Lemma 3.1: it provides a representation of the remainder as a double sum, where diagonal and
non-diagonal terms play asymmetric roles. Our analysis implicitly shows that such a formula virtually
encodes all the combinatorial subtleties involved in the derivation of Poisson approximation results on
the Poisson space. See Barbour [4] for several applications of univariate discrete Taylor formulae to the
computation of factorial moments and cumulants.

The remainder of the paper is organized as follows. The next subsection contains a formal description
of our framework: it is mostly standard material, so that a reader already familiar with the notation of
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[25, 26, 35, 42] can skip it at first. Section 2 contains a detailed discussion of the main theoretical results
of the paper, as well as of the applications. Section 3 is devoted to the proofs of our general theorems,
whereas Section 4 contains the proofs of our results about random graphs. An Appendix contains basic
notions about Malliavin operators and contractions.

1.2 Framework

In what follows, we shall denote by (Z,Z , µ) a measure space such that Z is a Borel space, Z is the
associated Borel σ-field, and µ is a σ-finite Borel measure with no atoms. We write Zµ = {B ∈ Z :
µ(B) < ∞}. The notation η = {η(B) : B ∈ Zµ} is used to indicate a Poisson measure on (Z,Z)
with control (or intensity) µ. This means that η is a collection of random variables defined on some
probability space (Ω,F ,P), indexed by the elements of Zµ and such that: (i) for every B,C ∈ Zµ such
that B ∩C = ∅, the random variables η(B) and η(C) are independent; (ii) for every B ∈ Zµ, η(B) has
a Poisson distribution with mean µ(B). We shall also write

η̂(B) = η(B) − µ(B), B ∈ Zµ,

and η̂ = {η̂(B) : B ∈ Zµ}. A random measure verifying property (i) is usually called “completely
random” or “independently scattered” (see e.g. [40, 53] for a general introduction to these concepts,
and for a discussion of any unexplained definition or result).

Remark 1.2 (The probability space) (i) In view of the assumptions on the space (Z,Z , µ), and
to simplify the discussion, we will assume throughout the paper that (Ω,F ,P) and η are such
that

Ω =



ω =

n∑

j=1

δzj , n ∈ N ∪ {∞}, zj ∈ Z



 ,

where δz denotes the Dirac mass at z, and η is defined as the canonical mapping

(ω,B) 7→ η(B)(ω) = ω(B), B ∈ Zµ, ω ∈ Ω.

Also, the σ-field F will be always supposed to be the σ-field generated by η, and we will write
L2(P) = L2(Ω,F ,P). Note that the fact that µ is non-atomic implies that, for every x ∈ Z,
P{η{x} = 0 or 1} = 1 .

(ii) As usual, by a slight abuse of notation, we shall often write x ∈ η in order to indicate that the
point x ∈ Z is charged by the random measure η(·).

Throughout the paper, for p ∈ [1,∞), the symbol Lp(µ) is shorthand for Lp(Z,Z , µ). For an integer q ≥
2, we shall write Lp(µq) := Lp(Zq,Z ⊗q, µq), whereas Lps(µ

q) stands for the subspace of Lp(µq) composed
of functions that are µq-almost everywhere symmetric. Also, we adopt the convention Lp(µ) = Lps(µ) =
Lp(µ1) = Lps(µ

1) and use the following standard notation: for every q ≥ 1 and every f, g ∈ L2(µq),

〈f, g〉L2(µq) =

∫

Zq

f(z1, ..., zq)g(z1, ..., zq)µ
q(dz1, ..., dzq), ‖f‖L2(µq) = 〈f, f〉1/2L2(µq).

For every f ∈ L2(µq), we denote by f̃ the canonical symmetrization of f , that is,

f̃(x1, . . . , xq) =
1

q!

∑

σ

f(xσ(1), . . . , xσ(q)),
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where σ runs over the q! permutations of the set {1, . . . , q}. Note that ‖f̃‖L2(µq) ≤ ‖f‖L2(µq) (to see
this, use for instance the triangular inequality) .

Definition 1.1 For every deterministic function h ∈ L2(µ), we write

I1(h) = η̂(h) =

∫

Z

h(z)η̂(dz)

to indicate the Wiener-Itô integral of h with respect to η̂. For every q ≥ 2 and every f ∈ L2
s(µ

q),
we denote by Iq(f) the multiple Wiener-Itô integral, of order q, of f with respect to η̂. We also set

Iq(f) = Iq(f̃), for every f ∈ L2(µq) (not necessarily symmetric), and I0(b) = b for every real constant b.

The reader is referred for instance to [40, Chapter 5] or [47] for a complete discussion of multiple
Wiener-Itô integrals and their properties (including the forthcoming Proposition 1.1 and Proposition
1.2).

Proposition 1.1 The following equalities hold for every q,m ≥ 1, every f ∈ L2
s(µ

q) and every g ∈
L2
s(µ

m):

1. E[Iq(f)] = 0,

2. E[Iq(f)Im(g)] = q!〈f, g〉L2(µq)1{q=m} (isometric property).

The Hilbert space composed of the random variables of the form Iq(f), where q ≥ 1 and f ∈ L2
s(µ

q), is
called the qth Wiener chaos associated with the Poisson measure η. The following well-known chaotic
representation property is an essential feature of Poisson random measures. Recall that F is assumed
to be generated by η.

Proposition 1.2 (Wiener-Itô chaotic decomposition) Every random variable F ∈ L2(P) admits
a (unique) chaotic decomposition of the type

F = E[F ] +
∞∑

i=1

Ii(fi), (1.1)

where the series converges in L2(P) and, for each i ≥ 1, the kernel fi is an element of L2
s(µ

i).

Remark 1.3 (About Malliavin calculus) For the rest of the paper, we shall use definitions and
results related to Malliavin-type operators defined on the space of functionals of the Poisson measure η.
Our formalism is the same as in Nualart and Vives in [32]. In particular, we shall denote by

D, δ, L and L−1,

respectively, the Malliavin derivative, the divergence operator, the Ornstein-Uhlenbeck generator and
its pseudo-inverse. The domains of D, δ and L are denoted by domD, domδ and domL. The domain
of L−1 is given by the subclass of L2(P) composed of centered random variables. For the convenience
of the reader we have collected some crucial definitions and results in Section A.1 of the Appendix.
Here, we just recall that, since the underlying probability space Ω is assumed to be the collection
of discrete measures described in Remark 1.2, then one can meaningfully define the random variable
ω 7→ Fz(ω) = F (ω + δz), ω ∈ Ω, for every given random variable F and every z ∈ Z, where δz is the

4



Dirac mass at z. One can therefore prove the following neat representation of D as a difference operator
is in order: for each F ∈ domD,

DzF = Fz − F, a.e.-µ(dz). (1.2)

Observe that the notation Fz(ω) = F (ω + δz) extends canonically to multivariate random elements. A
complete proof of this point can be found in [32].

The next statement contains an important product formula for Poisson multiple integrals (see e.g. [40] for
a proof). Note that the statement involves contraction operators of the type ⋆lr: the reader is referred to
Appendix A.2 for the definition of these operators, as well as for a discussion of some relevant properties.

Proposition 1.3 (Product formula) Let f ∈ L2
s(µ

p) and g ∈ L2
s(µ

q), p, q ≥ 1, and suppose moreover
that f ⋆lr g ∈ L2(µp+q−r−l) for every r = 1, . . . , p ∧ q and l = 1, . . . , r such that l 6= r. Then,

Ip(f)Iq(g) =

p∧q∑

r=0

r!

(
p
r

)(
q
r

) r∑

l=0

(
r
l

)
Ip+q−r−l

(
f̃ ⋆lr g

)
, (1.3)

with the tilde ∼ indicating a symmetrization, that is,

f̃ ⋆lr g(x1, . . . , xp+q−r−l) =
1

(p+ q − r − l)!

∑

σ

f ⋆lr g(xσ(1), . . . , xσ(p+q−r−l)),

where σ runs over all (p+ q − r − l)! permutations of the set {1, . . . , p+ q − r − l}.

Assumption 1.1 (Technical assumptions on kernels) In the sequel, whenever we consider a ran-
dom vector of the type

(Iq1 (f1), ..., Iqd(fd)), where d ≥ 1, qi ≥ 1, fi ∈ L2
s(µ

qi),

we will implicitly assume that the following properties (1)-(3) are verified.

(1) For every i = 1, ..., d and every r = 1, ..., qi, the kernel fi ⋆
qi−r
qi fi is an element of L2(µr).

(2) For every i such that qi ≥ 2, every contraction of the type (z1, ..., z2qi−r−l) 7→ |fi|⋆lr|fi|(z1, ..., z2qi−r−l)
is well-defined and finite for every r = 1, ..., qi, every l = 1, ..., r and every (z1, ..., z2qi−r−l) ∈
Z2qi−r−l.

(3) For every i, j = 1, ..., d such that max(qi, qj) > 1, for every k = |qi − qj | ∨ 1, ..., qi + qj − 2 and
every (r, l) verifying k = qi + qj − 2− r − l,

∫

Z

[√∫

Zk

(fi(z, ·) ⋆lr fj(z, ·))2 dµk
]
µ(dz) <∞,

where, for every fixed z ∈ Z, the symbol fi(z, ·) denotes the mapping (z1, ..., zq−1) 7→ fi(z, z1, ..., zq−1).

Remark 1.4 According to [42, Lemma 2.9 and Remark 2.10], Point (1) in Assumption 1.1 implies that
the following properties (a)-(c) are verified:

(a) for every 1 ≤ i < j ≤ k, for every r = 1, ..., qi ∧ qj and every l = 1, ..., r, the contraction fi ⋆
l
r fj is

a well-defined element of L2(µqi+qj−r−l);
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(b) for every 1 ≤ i ≤ j ≤ k and every r = 1, ..., qi, fi ⋆
0
r fj is an element of L2(µqi+qj−r);

(c) for every i = 1, ..., k, for every r = 1, ..., qi, and every l = 1, ..., r ∧ (qi − 1), the kernel fi ⋆
l
r fi is a

well-defined element of L2(µ2qi−r−l).

In particular, every random vector verifying Assumption 1.1 is such that Iqi(fi)
2 ∈ L2(P ) for every

i = 1, ..., k,. Note that Assumption 1.1 is verified whenever the kernels fi are bounded functions with
support in a rectangle of the type B × · · · ×B, µ(B) <∞.

2 Discussion of the main results

2.1 General bounds and mixed regimes

Fix two integers d,m. Observe that, in the discussion to follow, one can take either d or m to be zero,
and in this case every expression involving such an index is set equal to zero by convention. Our main
results involve the following objects:

– A vector λd = (λ1, ..., λd) of strictly positive real numbers, as well as a random vector

Xd = (X(1), ..., X(d)) ∼ Pod(λ1, ..., λd),

that is, the elements of Xd are independent and such that X(i) has a Poisson distribution with
parameter λi, for every i = 1, ..., d.

– A m×m covariance matrix C = {C(i, j) : i, j = 1, ...,m}, and a vector Nm = (N (1), ..., N (m)) ∼
Nm(0, C), that is, Nm is a m-dimensional centered Gaussian vector with covariance C. We will
write H to indicate the (d+m)-dimensional random element

H = (Xd,Nm). (2.1)

We shall also assume that Xd ⊥⊥ Nm, where the symbol “⊥⊥” indicates stochastic independence,
and also that H ⊥⊥ η, where η is the underlying Poisson measure.

– A vector Fd = (F (1), ...., F (d)) of random variables with values in Z+ such that, for every i =
1, ..., d, F (i) ∈ domD and E(Fi) = λi.

– A vector Gm = (G(1), ..., G(m)) of centered elements of domD. We use the notation

V = (Fd,Gm). (2.2)

Note that, by definition, V is σ(η)-measurable.

Remark 2.1 Every asymptotic result stated in the present paper continues to hold if one allows the
Poisson measure η, as well as the underlying Borel measure space (Z,Z , µ), to depend on the parameter
n diverging to infinity.

Our principal statement consists in an inequality allowing one to measure the distance between the laws
of H and V . To do this, we shall need the following quantities, that are defined in terms of the Malliavin
operators introduced above:
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α1(λd,Fd) :=

d∑

i=1

E

∣∣∣∣λi −
〈
DF (i),−DL−1F (i)

〉

L2(µ)

∣∣∣∣ (2.3)

α2(Fd) :=
d∑

i=1

E

∫

Z

∣∣∣DzF
(i)
(
DzF

(i) − 1
)
DzL

−1F (i)
∣∣∣µ(dz) (2.4)

α3(Fd) :=
∑

1≤i6=j≤d

E

∣∣∣∣
〈
DF (i),−DL−1F (j)

〉

L2(µ)

∣∣∣∣ (2.5)

+
∑

1≤i6=j≤d

E

∫

Z

∣∣∣DzF
(j)
(
DzF

(j) − 1
)
DzL

−1F (i)
∣∣∣µ(dz)

+
∑

1≤j 6=k≤d

d∑

i=1

E

∫

Z

∣∣∣DzF
(j)DzF

(k)DzL
−1F (i)

∣∣∣µ(dz)

β(Fd,Gm) :=

d∑

i=1

m∑

j=1

E
〈
|DL−1G(j)|, |DF (i)|

〉

L2(µ)
(2.6)

γ1(C,Gm) :=

m∑

k,j=1

E

∣∣∣∣C(j, k)−
〈
DG(j),−DL−1G(k)

〉

L2(µ)

∣∣∣∣ (2.7)

γ2(Gm) := E

∫

Z




m∑

j=1

∣∣∣DzG
(j)
∣∣∣




2


m∑

j=1

∣∣∣DzL
−1G(j)

∣∣∣


µ(dz). (2.8)

As we will illustrate in great detail below, the coefficients introduced in (2.3)–(2.8) should be interpreted

as follows: (i) the sum α1(λd,Fd) + α2(Fd) has the form
∑d

i=1 ai, where each ai measures the distance
between the laws of F (i) and X(i), (ii) α3(Fd) measures the independence between the elements of Fd,
(iii) the sum γ1(C,Gm) + γ2(Gm) measures the distance between the laws of Gm and Nm, and (iv)
β(Fd,Gm) provides an estimate of how independent Fd and Gm are. Observe that λd and C appear,
respectively, only in α1 and γ1. Also, one should note the asymmetric roles played by Gm and Fd in
the definition of β(Fd,Gm).

Remark 2.2 A further connection between the quantity (2.6) and the ‘degree of independence’ of Fd
and Gm can be obtained by combining the integration by parts formula of Lemma A.1 with the standard
relation L = −δD, yielding that, for every j = 1, ...,m and i = 1, ..., d,

E

[〈
DG(j),−DL−1F (i)

〉

L2(µ)

]
= E

[〈
−DL−1G(j), DF (i)

〉

L2(µ)

]
= Cov(G(j), F (i)).

A similar remark applies to the terms in α3(Fd). The fact that the dependence structure of the elements
of the vector V can be assessed by means of a small number of parameters is a remarkable consequence of
the use of the Stein and Chen-Stein methods, as well as of the integration by parts formulae of Malliavin
calculus. In general, characterizing independence on the Poisson space is a very delicate (and mostly
open) issue – see e.g. [46, 48, 51].

We are now ready to state the main result of the paper, namely Theorem 2.1. The remarkable fact
pointed out in its statement is that the above introduced coefficients can be linearly combined in order
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to measure the overall proximity of the laws of H and V . Observe that the estimate (2.9) involves an
“adequate” distance d⋆(H,V ) between the laws of the Rd+m-valued random elements H and V . The
exact definition of such a distance (which will be always a distance providing a stronger topology than
the one of convergence in distribution on Rd+m) depends on the values of the integers d,m, as well as
on the nature of the covariance matrix C, and will be formally provided in Section 3 (see, in particular,

Definition 3.2 and Definition 3.3). For the rest of the paper, we will use the symbol “
law→ ” to indicate

convergence in distribution.

Theorem 2.1 (Portmanteau inequality and mixed limits) Let the above assumptions and nota-
tion prevail.

1. For every d,m there exists an adequate distance d⋆(·, ·), as well as a universal constant K (solely
depending on λd and C), such that

d⋆(H,V ) ≤ K {α1(λd,Fd) + α2(Fd) + α3(Fd) + β(Fd,Gm) + γ1(C,Gm) + γ2(Gm)} . (2.9)

2. Assume Hn = (Fd,n,Gm,n), n ≥ 1, is a sequence of (d + m)-dimensional random vectors such

that: (a) for every n, Fd,n = (F
(1)
n , ..., F

(d)
n ) is a vector of Z+-valued elements of domD verifying

λi(n) := E[F (i)
n ] −→

n→∞
λi, (b) for every n, Gm,n = (G

(1)
n , ..., G

(m)
n ) is a sequence of centered

elements of domD verifying Cn(i, j) := E[G(i)
n G

(j)
n ] −→

n→∞
C(i, j) for i, j = 1, ...,m, and (c) as

n→ ∞,

α1(λd,n,Fd,n) + α2(Fd,n) + α3(Fd,n) + β(Fd,n,Gm,n) + γ1(Cn,Gm,n) + γ2(Gm,n) → 0,

where λd,n = (λ1(n), ..., λd(n)), and Cn = {Cn(i, j) : i, j = 1, ..., n}. Then, Hn
law→ V , where the

convergence takes place in the sense of the distance d⋆(·, ·).

The proof of Theorem 2.1, together with a detailed statement, is provided in Section 3.2: some direct
applications of the mixed limit theorem appearing in Part 2 of its statement are described in Sections
2.4 and 4, providing applications to random geometric graphs. Observe that the rest of our paper
consists indeed in a series of applications of the estimate (2.9), obtained by properly selecting λd, C, Fd
and Gm: we will use this inequality to settle a number of open questions concerning probabilistic
approximations on the Poisson space. The principal theoretical applications of Theorem 2.1 developed
in the present work – namely to multidimensional Poisson approximations and asymptotic independence
– are described in the next Sections 2.2-2.3.

Remark 2.3 Specializing (2.9) to the case m = 1, d = 0, one obtains the main estimate in [35],
concerning normal approximations of Poisson functionals in dimension one. In the case m ≥ 2, d = 0,
(2.9) coincides with the main inequality proved in [42], where the authors studied multidimensional
normal approximations on the Poisson space. Finally, the case d = 0, m = 1 corresponds to the one-
dimensional Poisson approximation result proved in [33].

Remark 2.4 (About constants) By inspection of the forthcoming proof of Theorem 2.1, the constant
K appearing in formula (2.9) can be taken to be have the following structure:

– If m = 1 and d ≥ 1 (in this case, C is a strictly positive constant),

K = 6 +
1 + 2

√
2π

C
+ max
i=1,...,d

{
1− e−λi

λi
+

1− e−λi

λ2i

}
,

where max∅ = 0 by convention.
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– If d ≥ 1, m ≥ 2, then

K = 11 + max
i=1,...,d

{
1− e−λi

λi
+

1− e−λi

λ2i

}
.

– If d ≥ 1 and m = 0, then

K = 6× 1d>1 + max
i=1,...,d

{
1− e−λi

λi
+

1− e−λi

λ2i

}

(the case d = 1 follows from [33]).

The values of the constants in the remaining cases (that is, when d is equal to zero) can be deduced
form the main results of [35, 42].

We conclude this subsection with a refinement of Theorem 2.1-2, providing useful sufficient conditions
in order to have that the mixed term β(Fd,n,Gm,n) converges to zero.

Proposition 2.1 Assume Hn = (Fd,n,Gm,n), n ≥ 1, is a sequence of (d + m)-dimensional random

vectors such that Fd,n = (F
(1)
n , ..., F

(d)
n ) is a vector of Z+-valued elements of domD and Gm,n =

(G
(1)
n , ..., G

(m)
n ) is a sequence of centered elements of domD. Then, the following two conditions are

sufficient in order to have that lim
n→∞

β(Fd,n,Gm,n) = 0:

– For every i = 1, ..., d, the sequence n 7→ E

[∫
Z

(
DzF

(i)
n

)2
µ(dz)

]
is bounded;

– There exists ǫ > 1 such that, for every j = 1, ...,m, lim
n→∞

E

[∫
Z

∣∣∣DzL
−1G

(j)
n

∣∣∣
1+ǫ

µ(dz)

]
= 0;

Proof. For every i, j, one can apply the Hölder inequality to deduce that

E
〈
|DL−1G(j)|, |DF (i)|

〉

L2(µ)
≤E

[∫

Z

∣∣∣DzF
(i)
n

∣∣∣
1+ǫ
ǫ

µ(dz)

] ǫ
1+ǫ

× E

[∫

Z

∣∣∣DzL
−1G(j)

n

∣∣∣
1+ǫ

µ(dz)

] 1
1+ǫ

, (2.10)

and use the fact that, since DzF
(i) takes values in Z, then

∣∣∣DzF
(i)
n

∣∣∣
1+ǫ
ǫ ≤

∣∣∣DzF
(i)
n

∣∣∣
2

for every ǫ > 1.

2.2 Stable multidimensional Poisson approximations

We will now discuss a class of multidimensional Poisson approximation results that are a direct conse-
quence of Theorem 2.1. Section 2.2.1 contains a general statement, whereas Section 2.2.2 will focus on
sequences of vectors of perturbed multiple integrals. We will also establish several explicit connections
with the multidimensional CLTs proved in [42].

2.2.1 General statements

As indicated in the section title, with an additional small effort we will be able to establish limit theorems
in the more general framework of stable convergence. The (classic) definition of stable convergence, in a
form equivalent to the one originally given by Renyi in [50] (see also [2]), is provided below.
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Definition 2.1 (Stable convergence) Fix k ≥ 1. Let {Xn} be a sequence of random variables with
values in Rk, all defined on the probability space (Ω,F ,P) specified in Remark 1.2. LetX be a Rk-valued
random variable defined on some extended probability space (Ω′,F ′,P′). We say that Xn converges

stably to X , written Xn
st→ X , if

lim
n→∞

E
[
Zei〈γ,Xn〉Rk

]
= E′

[
Zei〈γ,X〉

Rk

]
(S)

for every γ ∈ Rk and every bounded F–measurable random variable Z.

Remark 2.5 In this paper, we will be exclusively interested in stable convergence results where the
limiting random variableX is independent of the σ-field F . This situation corresponds to the case where
Z is defined on some auxiliary probability space (A,A ,Q), and (Ω′,F ′,P′) = (Ω×A,F ⊗ A ,P⊗Q).

Choosing Z = 1 in (S), one sees immediately that stable convergence implies convergence in distribution.
For future reference, we now present a statement gathering together some useful results: in particular,
it shows that stable convergence is an intermediate concept bridging convergence in distribution and
convergence in probability. The reader is referred to [20, Chapter 4] for proofs and for an exhaustive

theoretical characterization of stable convergence. From now on, we will use the symbol
P→ to indicate

convergence in probability with respect to P.

Lemma 2.1 Let {Xn} be a sequence of random variables with values in Rk.

1. Xn
st→ X if and only if (Xn, Z)

law→ (X,Z), for every F -measurable random variable Z.

2. If Xn
st→ X and X is F -measurable, then necessarily Xn

P→ X.

3. If Xn
st→ X and {Yn} is another sequence of random elements, defined on (Ω,F ,P) and such that

Yn
P→ Y , then (Xn, Yn)

st→ (X,Y ).

4. Xn
st→ X if and only if (S) takes place for every Z belonging to a linear space H of bounded random

variables such that HL2(Ω,F ,P)
= L2(Ω,F ,P).

Remark 2.6 Properties such as Point 3 of Lemma 2.1 allow one to combine stably converging sequences
with sequences converging in probability, and are one of the key tools in order to deduce limit theo-
rems towards mixtures of probability distributions – e.g. mixtures of Gaussian random vectors. This
last feature makes indeed stable convergence extremely useful for applications, for instance within the
framework of limit theorems for non-linear functionals of semimartingales, such as power variations,
empirical covariances and other objects of statistical relevance. See the classic references [16] and [20,
Chapter 4], as well as the recent survey [44]. Outside a semimartingale framework, stable convergence
on the Wiener space has been recently studied (among others) by Peccati and Tudor in [41], Peccati
and Taqqu [39], Nourdin and Nualart [29] and Harnett and Nualart [17]. Some earlier general results
about the stable convergence of non-linear functionals of random measures were obtained in [36, 37, 38],
by using a decoupling technique known as the ‘principle of conditioning’ – see [21, 61].

The next statement is a general stable multidimensional Poisson approximation result based on Theorem
2.1. Recall that the total variation distance between the laws of two Zd+-valued random elements A,B
is given by

dTV (A,B) = sup
E⊆Z

d
+

|P(A ∈ E)− P(B ∈ E)|. (2.11)

A proof of Theorem 2.2 is detailed in Section 3.3.
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Theorem 2.2 (Multidimensional stable Poisson approximations) Fix d ≥ 1, let (λ1, ..., λd) ∈
Rd+, and let Xd = (X(1), ..., X(d)) ∼ Po(λ1, ..., λd) be independent of η. Let Fd,n =

(
F

(1)
n , . . . , F

(d)
n

)
,

n ≥ 1, be a sequence of Z+–valued elements of domD such that E
[
F

(i)
n

]
= λi(n) →

n→∞
λi. Write

λd,n = (λ1(n), ..., λd(n)), n ≥ 1, and assume moreover that:

α1(λd,n,Fd,n) + α2(Fd,n) + α3(Fd,n) →
n→∞

0. (2.12)

Then, as n→ ∞, the law of Fd,n converges to the law of Xd in the sense of the total variation distance,
and relation (2.9) in the case m = 0 provides an explicit estimate of the speed of convergence. If
moreover,

∀i = 1, . . . , d, ∀A ∈ Zµ, lim
n→∞

E

∣∣∣∣
∫

A

DzF
(i)
n µ(dz)

∣∣∣∣ = lim
n→∞

E

∫

A

∣∣∣DzF
(i)
n (DzF

(i)
n − 1)

∣∣∣µ(dz)

= lim
n→∞

E

∣∣∣∣
∫

A

DzL
−1F (i)

n µ(dz)

∣∣∣∣ = 0, (2.13)

and

∀1 ≤ i 6= j ≤ d, ∀A ∈ Zµ, lim
n→∞

E

∫

A

∣∣∣DzF
(i)
n DzF

(j)
n

∣∣∣µ(dz) (2.14)

= lim
n→∞

E

∫

A

∣∣∣DzF
(i)
n DzL

−1F (i)
n

∣∣∣µ(dz) = 0,

then, Fd,n
st→ Xd.

Remark 2.7 1. Theorem 2.2 is the first multidimensional Poisson approximation result proved by
means of Malliavin operators. In the case d = 1 (note that this implies α3 = 0), the fact that
condition (2.12) implies that dTV (F1,n, X1) → 0 is a consequence of the main inequality proved
in [33]. Applications of this one-dimensional result in random geometry appear in [33, 57]. A new
multidimensional Poisson approximation result in the context of random geometric graphs, based
on the techniques developed in the present paper, appears in Theorem 2.6-(c).

2. A sufficient condition (that we will verify systematically in applications) in order to have that
α2(Fd,n) + α3(Fd,n) →

n→∞
0, is that the sequences

n 7→ E

[∫

Z

(
DzF

(i)
n

)2
µ(dz)

]
, n 7→ E

[∫

Z

(
DzL

−1F (i)
n

)2
µ(dz)

]
,

are bounded for every i and that, for every i 6= j,

lim
n→∞

E

∫

Z

∣∣∣DzF
(i)
n (DzF

(i)
n − 1)

∣∣∣
2

µ(dz) = lim
n→∞

E

∫

Z

∣∣∣DzF
(i)
n DzF

(j)
n

∣∣∣
2

µ(dz) = 0.

These conditions also imply that the middle term in (2.13) and the first term in (2.14) are equal
to zero.

3. By a direct use of Point 4 of Lemma 2.1 (together with some adequate approximation argument),
one can prove that another set of sufficient conditions in order to have stable convergence is that,
for every A ∈ Zµ, every p ≥ 0 and every i = 1, ..., d,

E

[∣∣∣Ip(1⊗p
A )
∣∣∣ ×
∫

A

∣∣∣DzF
(i)
n

∣∣∣µ(dz)
]
→ 0,
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where 1⊗p
A (x1, ..., xp) = 1A(x1) · · ·1A(xp), and I0 = 1 by convention. Albeit more easily stated

than (2.13)–(2.14), these conditions are not simpler to verify in the applications developed in the
present paper.

2.2.2 The case of multiple integrals

Now fix d ≥ 1. Our aim is to apply Theorem 2.2 in order to deduce a multidimensional Poisson
approximation result for sequences of perturbed multiple integrals of the type:

Fd,n = (F (1)
n , ..., F (d)

n ) =
(
x(1)n +B(1)

n + Iq1(f
(1)
n ), . . . , x(d)n +B(d)

n + Iqd(f
(d)
n )
)
, n ≥ 1, (2.15)

where : (i) each F
(i)
n is a random variable with values in Z+, (ii) {xn : n ≥ 1} is a sequence of positive

real numbers, (iii) q1, . . . , qd ≥ 2 are integers independent of n, (iv) Iq1 , . . . , Iqd indicate multiple Wiener-
Itô integrals of respective orders q1, . . . , qd, with respect to the compensated measure η̂, (v) for each

1 ≤ k ≤ d, f
(k)
n ∈ L2

s(µ
qk ), and (vi) for each 1 ≤ k ≤ d, {B(k)

n : n ≥ 1} is a smooth vanishing perturbation,
in the sense of the following definition.

Definition 2.2 (Smooth vanishing perturbations) A sequence {Bn : n ≥ 1} ⊂ L2(P) is called a
smooth vanishing perturbation if Bn, L

−1Bn ∈ domD for every n ≥ 1, and the following properties hold:

lim
n→∞

E[B2
n] = 0 (2.16)

lim
n→∞

E
[
‖DBn‖2L2(µ)

]
= lim

n→∞
E
[
‖DL−1Bn‖2L2(µ)

]
= 0, (2.17)

lim
n→∞

E
[
‖DBn‖4L4(µ)

]
= lim

n→∞
E
[
‖DL−1Bn‖4L4(µ)

]
= 0. (2.18)

Note that, if (2.17)–(2.18) are verified, an application of the Cauchy–Schwarz inequality yields that

lim
n→∞

E
[
‖DBn‖3L3(µ)

]
= lim

n→∞
E
[
‖DL−1Bn‖3L3(µ)

]
= 0

Remark 2.8 Applying a Mehler-type representation of the Ornstein-Uhlenbeck semigroup (such as the
one stated in [47, Lemma 6.8.1]), one sees that the following inequalities are always verified:

E
[
‖DBn‖2L2(µ)

]
≥ E

[
‖DL−1Bn‖2L2(µ)

]
, E

[
‖DBn‖4L4(µ)

]
≥ E

[
‖DL−1Bn‖4L4(µ)

]
.

The following result is the announced multidimensional Poisson approximation result for perturbed
multiple integrals.

Theorem 2.3 (Poisson limit theorems on perturbed chaoses) Fix d ≥ 1, λ1, . . . , λd > 0 and let
Xd ∼ Pod(λ1, . . . , λd) be stochastically independent of η. Define the sequence Fd,n, n ≥ 1, according to

(2.15), and assume that for each 1 ≤ i ≤ d, x
(i)
n −→

n→∞
λi and E

[
Iqi (f

(i)
n )2

]
−→
n→∞

λi. Suppose also that:

lim
n→∞

E[F (i)
n F (j)

n ] = lim
n→∞

〈f (i)
n , f (j)

n 〉L2(µqi ) = 0, 1 ≤ i 6= j ≤ d. (2.19)

Assume moreover that the following Conditions 1– 3 hold:

1. For every k = 1, ..., d, every r = 1, . . . , qk and every l = 1, . . . , r ∧ (qk − 1), one has that

‖f (k)
n ⋆lr f

(k)
n ‖L2(µ2qk−r−l) −→

n→∞
0;
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2. For every k = 1, ..., d, the sequence n 7→ ‖f (k)
n ‖L4(µqk ) is bounded and, as n→ ∞,

∫

Zqk

((
f (k)
n

)2
+ qk!

2
(
f (k)
n

)4
− 2qk!

(
f (k)
n

)3)
dµqk −→

n→∞
0.

3. For every i 6= j such that qi = qj,

lim
n→∞

〈
(f (i)
n )2, (f (j)

n )2
〉

L2(µqi )
= 0.

Then, Fd,n
st→ Xd, and the convergence of Fd,n to Xd takes place in the sense of the total variation

distance.

A proof of Theorem 2.3 is provided in Section 3.3. The following features of such a statement are
noteworthy:

– When specialized to the case d = 1, the assumptions of Theorem 2.3 coincide with those in [33,
Theorem 4.1].

– In the case when qi 6= qj for every i 6= j, and apart from assumption (2.19), the statement of The-
orem 2.3 does not involve any requirement on the joint distribution of the elements of the vectors
Fd,n. This phenomenon mirrors some analogous findings concerning the normal approximation of
vectors of multiple Wiener-Itô integrals on the Poisson space, as first proved in [42].

– In the case where qi = qj for i 6= j, Condition 3 in the statement follows automatically from

(2.19), whenever f
(i)
n and f

(j)
n have the form of a multiple of an indicator function.

For the sake of completeness, in the next statement we present a slight refinement of the chaotic CLTs
proved in [42] (the refinement resides in the stable convergence claim). Recall that the Wasserstein
distance between the laws of two Rm-valued random variables X,Y is given by

dW (X,Y ) = sup
g∈Lip(1)

|E[g(X)]− E[g(Y )]| , (2.20)

where Lip(1) is the class of Lipschitz functions on Rm with Lipschitz constant ≤ 1.

Theorem 2.4 (Stable CLTs for multiple integrals) Fix m ≥ 1, let Nm =
(
N (1), . . . , N (m)

)
∼

N (0, C), with
C = {C(i, j) : i, j = 1, . . . ,m}

a m×m nonnegative definite matrix, and fix integers q1, . . . , qm ≥ 1. For any n ≥ 1 and i = 1, . . . ,m,

let g
(i)
n ∈ L2

s(µ
qi). Define the sequence Gm,n = (G

(1)
n , . . . , G

(m)
n ), n ≥ 1, as

G(i)
n = Iqi (g

(i)
n ), n ≥ 1, i = 1, ...,m.

Suppose that Assumption 1.1 is verified for every n, and also that

lim
n→∞

E[G(i)
n G(j)

n ] = 1(qj=qi) × lim
n→∞

〈g(i)n , g(j)n 〉L2(µqi ) = C(i, j), 1 ≤ i, j ≤ m. (2.21)

Assume moreover that the following Conditions 1–2 hold for every k = 1, ...,m:
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1. For every r = 1, . . . , qk and every l = 1, . . . , r ∧ (qk − 1), one has that

‖g(k)n ⋆lr g
(k)
n ‖L2(µ2qk−r−l) −→

n→∞
0;

2. As n→ ∞,
∫
Zqk

(
g
(k)
n

)4
dµqk −→

n→∞
0.

Then, γ1(Cn,Gm,n) + γ2(Gm,n) → 0, Gm,n
st→ Nm and the convergence of Gm,n to Nm takes place in

the sense of the Wasserstein distance.

Remark 2.9 Apart from the covariance condition (2.21), the assumptions appearing in the previous
statement do not involve any requirement on the joint distribution of the components of the vector
Gn,m. Moreover, these assumptions are the same as those in [35, Theorem 5.1] (for the case m = 1) and
[42, Theorem 5.8] (for the case m ≥ 2). The somewhat remarkable (albeit easily checked) fact stated in
Theorem 2.4 is that the same assumptions implying a CLT for multiple integrals systematically yield a
stable convergence result. Note that this phenomenon represents the exact Poisson space counterpart of a
finding by Peccati and Tudor [41], concerning the stable convergence of vectors of multiple integrals with
respect to a general Gaussian field. See [31, Chapter 6] for an exhaustive discussion of this phenomenon.
CLTs on the Poisson space based on contraction operators have already been applied to a variety of
frameworks – such as CLTs for linear and non-linear functionals of Lévy driven moving averages [35, 38],
characterization of hazard rates in Bayesian survival models [12, 34] and limit theorems in stochastic
geometry [25, 26].

We conclude this section by stating an application of Proposition 2.1, implying that vectors of (per-
turbed) multiple integrals satisfying the assumptions of Theorem 2.3 and Theorem 2.4 are automatically
independent in the limit.

Proposition 2.2 Let the sequences {Fd,n : n ≥ 1} and {Gm,n : n ≥ 1}, respectively, satisfy the
assumptions of Theorem 2.3 and Theorem 2.4. Then, β(Fd,n,Gm,n) → 0, as n → ∞, and the two
sequences are asymptotically independent.

Several connected results involving U -statistics are discussed in the next section.

2.3 Asymptotic independence of U-statistics

We shall now apply the main findings of the paper in order to characterize the asymptotic independence
of sequences of random variables having the form of U -statistics converging either to a Gaussian or a
Poisson limit. Our basic message is that, under fairly general conditions, U -statistics verifying a CLT
are necessarily asymptotically independent of any U -statistic converging to Poisson. The criteria for
Gaussian and Poisson convergence used below are taken from references [25, 26, 49] and [57]: to our
knowledge, these references contain the most general conditions in order for a sequence of U -statistics
based on a Poisson measure to converge, respectively, to a Gaussian or a Poisson limit.

By virtue of a de-poissonization argument borrowed from [15], we will be able to deal both with pois-
sonized and non-poissonized U -statistics based on a i.i.d. sequence – see Proposition 2.3. The reader
is referred to [24] for a survey of the classic theory of U -statistics. See [5, 18, 22, 58], as well as the
monograph [43] and the references therein, for several examples of the use of U -statistics in stochastic
geometry. See [13, 25, 26, 33, 49, 54, 55, 57] for new geometric applications based on Stein-Malliavin
techniques. Albeit unified studies of Gaussian and Poisson limits for U -statistics are available (see e.g.
[22]), we could not find in the literature any systematic characterization of the asymptotic independence
of U -statistics in the spirit of the present section.
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Remark 2.10 Section 2.4 contains another characterization of asymptotic independence of U -statistics
associated with random geometric graphs. Rather than using the general results discussed below, and
due to the explicit nature of the kernels involved, we will establish such results by some direct analytical
computations – allowing to obtain better rates of convergence, as well as results in higher dimensions.

Since it is relevant for applications, we will explicitly work with a sequence of Poisson measures {ηn : n ≥
1}, each defined on the Borel space (Z,Z ) and controlled by a σ-finite measure µn possibly depending
on n. Following [49, Section 3.1], we now introduce the concept of a U -statistic associated with the
Poisson measure ηn.

Definition 2.3 (U-statistics) Fix k ≥ 1. A random variable F is called a U -statistic of order k, based
on the Poisson measure ηn with control µn, if there exists a kernel h ∈ L1

s(µ
k
n) such that

F =
∑

x∈ηk
n,6=

h(x), (2.22)

where the symbol ηkn, 6= indicates the class of all k-dimensional vectors x = (x1, . . . , xk) such that xi ∈ ηn
and xi 6= xj for every 1 ≤ i 6= j ≤ k. As formally explained in [49, Definition 3.1], the possibly infinite
sum appearing in (2.22) must be regarded as the L1(P) limit of objects of the type

∑
x∈ηk

n,6=∩Aq
f(x),

q ≥ 1, where the sets Aq ∈ Zk are such that µkn(Aq) <∞ and Aq ↑ Zk, as q → ∞.

Example 2.1 (Poissonized U-statistics) Assume {Yi : i ≥ 1} is a sequence of i.i.d. random variables
with values in Z and common non-atomic distribution p, and consider an independent Poisson random

variable N(n) with parameter n ≥ 1. Then, ηn(·) =
∑N(n)

i=1 δYi
(·) is a Poisson random measure with

control µn = np. In this framework, for every k ≥ 1 and any symmetric kernel h ∈ L1
s(µ

k
n) = L1

s((np)
k),

the corresponding U -statistic has the form

F =
∑

x∈ηk
n,6=

h(x) =
∑

1≤i1,...,ik≤N(n); ii 6=ij

h(Yi1 , ..., Yik). (2.23)

The random variable obtained by replacing N(n) with the integer n in (2.23) is customarily called the
de-poissonized version of F .

The following crucial fact is proved by Reitzner & Schulte in [49, Lemma 3.5 and Theorem 3.6]:

Proposition 2.3 Consider a kernel h ∈ L1
s(µ

k
n) such that the corresponding U -statistic F in (2.22) is

square-integrable. Then, h is necessarily square-integrable, and F admits a chaotic decomposition of the
form (1.1), with

fi(xi) := hi(xi) =

(
k

i

)∫

Zk−i
n

h(xi,xk−i) dµ
k−i
n , xi ∈ Zi, (2.24)

for 1 ≤ i ≤ k, and fi = 0 for i > k. In particular, h = fk and the projection fi is in L1,2
s (µin) for each

1 ≤ i ≤ k.

Remark 2.11 In [49] it is proved that the condition h ∈ L1(µkn) ∩ L2(µkn) does not ensure, in general,
that the associated U -statistic F in (2.22) is a square-integrable random variable.
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The forthcoming Theorem 2.5 is the main result of the section. It is divided in three parts. Part 1
collects some of the main results from [25, 26] concerning the normal approximation of U -statistics.
Part 2 contains conditions for Poisson approximations of U -statistics taken from [57, Proposition 4.1].
Part 3 is new and states that, under the conditions appearing in the first two parts, any two U -statistics
converging, respectively, to a Gaussian and a Poisson limit are necessarily asymptotically independent.

Remark 2.12 The bounds from [25, 26] stated below are easier to handle than the ones deduced in the
seminal work [49] – albeit they are basically equivalent in several applications. The resulting conditions
for asymptotic normality have been proved in [25] to be necessary and sufficient in many important
instances. The conditions for Poisson approximations taken from [57] should be compared with the
classic findings of [22, 58].

Our framework is the following:

– The sequence

Gn =
∑

x∈ηk
n,6=

gn(x), n ≥ 1,

is composed of square-integrable U -statistics of order k ≥ 2 such that gn ∈ L1(µkn) ∩ L2(µkn). We
write gi,n, i = 1, ..., k, for the ith kernel in the chaotic decomposition of gn, as given in (2.24). We

write σ2
n = Var(Gn) and write G̃n = [Gn − E(Gn)]/σn.

– For Gn as above, we set

B(Gn;σn) =
1

σ2
n

{
max
(∗)

‖gi,n ⋆lr gj,n‖L2(µi+j−r−l
n ) + max

i=1,...,k
‖gi,n‖2L4(µi

n)

}
, (2.25)

where max
(∗)

ranges over all quadruples (i, j, r, l) such that 1 ≤ l ≤ r ≤ i ≤ j (i, j ≤ k) and l 6= j

(in particular, quadruples such that l = r = i = j = 1 do not appear in the argument of max
(∗)

).

– For an integer k′ ≥ 2, {An : n ≥ 1} is a sequence of symmetric elements of Z k′ such that
µk

′

n (An) < ∞ for every n. For every n, we define Fn to be the U -statistic obtained from (2.22)
by taking h(x) = hn(x) = k′!−1

1An
(x). To simplify the discussion, we may assume that each An

is contained in a k′-fold Cartesian product of the type Kn × · · · × Kn, with µn(Kn) < ∞, thus
ensuring that each Fn is square-integrable. Accordingly, we denote by hi,n, i = 1, ..., k′, the ith

kernel in the chaotic decomposition of Fn, and we also write λn = k′!−1µk
′

n (An) = E[Fn].

– Define:
ρn = supµjn

{
(y1, ..., yj) ∈ Zj : (y1, ..., yj, a1, ..., ak′−j) ∈ An

}
.

where the supremum runs over all j = 1, ..., k′ − 1 and all vectors (a1, ..., ak′−j) ∈ Zk
′−j ..

Theorem 2.5 We denote by N and Xλ, respectively, a N (0, 1) and a Po(λ) random variable, where
λ > 0. We assume that N ⊥⊥ Xλ.

1. There exists a constant Ck > 0, independent of n such that,

dW (G̃n, N) ≤ CkB(Gn;σn).

In particular, if B(Gn;σn) → 0, then G̃n converges in distribution to N , in the sense of the
Wasserstein distance.
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2. There exists a constant Dk′ > 0, independent of n, such that

dTV (Fn, Xλ) ≤ |λn − λ|+Dk′
1− e−λn

λn

(
1 +

1

λn

)√
λn(ρ3n + ρn) := An.

In particular, if An → 0, then Fn converges in distribution to Xλ, in the sense of the total variation
distance.

3. Write Vn = (Fn, G̃n), and H = (Xλ, N). For an adequate distance, d⋆, there exists a constant
M =M(k; k′), independent of n such that

d⋆(Vn, H) ≤M ×
{
An +B(Gn;σn) +B(Gn;σn)

1/2
}

In particular, if lim
n→∞

An = lim
n→∞

B(Gn;σn) = 0, then Vn converges in distribution to H, and Fn

and G̃n are asymptotically independent.

The next statement is the announced de-Poissonization result.

Proposition 2.4 (De-poissonization) Let the notation of Theorem 2.5 prevail, and assume that, for
every n, the Poisson measure ηn is defined as in Example 2.1. Write F 0

n and G̃0
n to indicate the de-

poissonized versions of Fn and G̃n. If lim
n→∞

An = lim
n→∞

B(Gn;σn) = 0, then (F 0
n , G̃

0
n) converges in

distribution to H.

2.4 Applications to random graphs

We now demonstrate how to apply our main results to study multidimensional limit theorems for
subgraph-counting statistics in the disk-graph model on Rm. Our main contribution, stated in The-
orem 2.6 below, is a new estimate providing both mixed limit theorems and multidimensional Poisson
approximation results. The present section contains statements, examples and discussions; proofs are
detailed in Section 4. Our notation has been chosen in order to loosely match the one adopted in [43,
Chapter 3], as well as in [26, Section 3].

We fix m ≥ 1, as well as a bounded and continuous probability density f on Rm. We denote by
Y = {Yi : i ≥ 1} a sequence of Rm-valued i.i.d. random variables, distributed according to the density
f . For every n = 1, 2, ..., we write N(n) to indicate a Poisson random variable with mean n, independent

of Y . It is a standard result that the random measure ηn =
∑N(n)

i=1 δYi
, where δx indicates a Dirac mass

at x, is a Poisson measure on Rm with control measure given by µn(dx) = nf(x)dx (with dx indicating
the Lebesgue measure on Rm). We shall also write η̂n = ηn−µn, n ≥ 1. Given positive sequences an, bn,
we write bn ∼ an to indicate that the ratio an/bn converges to 1, as n→ ∞.

Let {tn : n ≥ 1} be a sequence of strictly decreasing positive numbers such that lim
n→∞

tn = 0. For every

n, the symbol G′(Y ; tn) indicates the undirected random disk graph obtained as follows: the vertices of
G′(Y ; tn) are given by the random set Vn = {Y1, ..., YN(n)} and two vertices Yi, Yj are connected by an
edge if and only if ‖Yi− Yj‖Rm ∈ (0, tn). By convention, we set G′(Y ; tn) = ∅ whenever N(n) = 0. Now
fix k ≥ 2, and let Γ be a connected graph of order k. For every n ≥ 1, we shall denote by G′

n(Γ) the
number of induced subgraphs of G′(Y ; tn) that are isomorphic to Γ, that is: G′

n(Γ) counts the number
of subsets {i1, ..., ik} ⊂ {1, ..., N(n)} such that the restriction of G′(Y ; tn) to {Yi1 , ..., Yik} is isomorphic
to Γ. Every graph Γ considered in the sequel is assumed to be feasible for every n: this means that
the probability that the restriction of G′(Y ; tn) to {Y1, ..., Yk} is isomorphic to Γ is strictly positive for
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every n. The study of the asymptotic behavior of the random variables G′
n(Γ), as n goes to infinity, is

one of the staples of the modern theory of geometric random graphs, and many results are known. The
reader is referred to Penrose [43, Chapter 3] for a general discussion and for detailed proofs, and to [26,
Section 3] and [49, Section 6] for some recent refinements.

In what follows we will focus on the following setup: (i) k0, k are integers such that 2 ≤ k0 < k, (ii)

the sequence {tn} introduced above is such that tmn ∼ n− k
k−1 , (iii) Γ0 is a feasible connected graph of

order k0, (iv) for some d ≥ 1, (Γ1, ...,Γd) is a collection of non–isomorphic feasible connected graphs
with order k. We also write

G̃′
n(Γ0) =

G′
n(Γ0)− E[G′

n(Γ0)]

Var(G′
n(Γ0))1/2

.

The specificity of this framework is that, for such a sequence {tn}, the random variables G̃′
n(Γ0) and

G′
n(Γj) (j = 1, ..., d) verify, respectively, a CLT and a Poisson limit theorem. Our principal aim is

to provide an exhaustive description of their joint asymptotic distribution. The following statement
gathers together many results from the literature, mostly taken from [43, Chapter 3] (for limit theorems,
expectations and covariances) and [26] (for the estimates on the Wasserstein distance).

Proposition 2.5 Let the above notation and assumptions prevail.

(a) There exist constants a0, b0 > 0 such that, as n→ ∞,

E[G′
n(Γ0)] ∼ a0n

k0(tmn )k0−1 ∼ a0n
(k−k0)/(k−1) → ∞,

and Var(G′
n(Γ0)) ∼ b0n

(k−k0)/(k−1) → ∞. Moreover, the random variable G̃′
n(Γ0) converges in

distribution towards a N (0, 1) random variable, with an upper bound of order n−(k−k0)/2(k−1) on
the Wasserstein distance.

(b) There exist constants a1, ..., ad > 0 such that, for every j = 1, ..., d

E[G′
n(Γj)] ∼ Var(G′

n(Γj) ∼ ajn
k(tmn )k−1 → aj .

Moreover, (G′
n(Γ1), ..., G

′
n(Γd)) converges in distribution to a d-dimensional vector (X1, ..., Xd)

composed of independent random variables such that Xj has a Poisson distribution with parameter
aj.

(c) As n → ∞, one has that, for every i, j = 1, ..., d, Cov(G̃′
n(Γ0), G

′
n(Γj)) = O

(
n−(k−k0)/2(k−1)

)
,

and Cov(G′
n(Γi), G

′
n(Γj)) = O

(
n−1/(k−1)

)
.

Remark 2.13 We could not find a proof of the multidimensional Poisson limit theorem stated at Point
(b) of the previous statement. However, such a conclusion can be easily deduced e.g. from [43, Theorem
3.5], together with a standard poissonization argument.

Plainly, Proposition 2.5 does not allow to deduce a characterization of the joint asymptotic distribution
of the components of the vector

Vn := (G′
n(Γ1), ..., G

′
n(Γd), G̃

′
n(Γ0)), n ≥ 1.

In particular, albeit Part (c) of such a statement implies that the random variables G̃′
n(Γ0) and G

′
n(Γj)

are asymptotically uncorrelated for every j = 1, ..., d, nothing can be a priori inferred about their
asymptotic independence. The following statement, which provides a highly non-trivial application of
Theorem 2.1, yields an exhaustive characterization of the joint asymptotic behavior of the components
of Vn.
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Theorem 2.6 (Mixed regimes in random graphs) For every n and every j = 1, ..., d, set λj,n =
E[G′

n(Γj)]. Let N ∼ N (0, 1), Xd,n = (X1,n, ..., Xd,n) ∼ Pod(λ1,n, ..., λd,n), assume that N and Xd,n are
stochastically independent, and write Hn = (Xd,n, N).

(a) There exist two constants A and B, independent of n, such that, for some adequate distance d⋆,

d⋆(Vn, Hn) ≤ A
√
ntmn +Bn−

k−k0
4(k−1) = O

(
n− 1

2(k−1) + n−
k−k0
4(k−1)

)
. (2.26)

(b) Let Xd ∼ Pod(a1, ..., ad), where the constants aj have been defined in Part (b) of Proposition 2.5,
be independent of N , and set H = (Xd, N). Then, as n→ ∞, Vn converges in distribution to H.

(c) Write V ′
n := (G′

n(Γ1), ..., G
′
n(Γd)), n ≥ 1. Then, there exists a constant C, independent of n, such

that
dTV (V

′
n,Xd,n) ≤ C

√
ntmn = O

(
n− 1

2(k−1)

)
. (2.27)

Remark 2.14 (i) The estimates (2.26)–(2.27) and the content of Point (b) are new. We do not
know of any other available technique allowing one to deduce the limit theorem at Point (b).
Note that such a statement yields, in particular, the asymptotic independence of V ′

n and G̃′
n(Γ0).

The rate of convergence implied by formula (2.27) is probably suboptimal (the correct rate should
be of the order of ntmn – compare with the statement of [43, Theorem 3.5] in the case of non-
Poissonized graph). It is plausible that one could obtain a better rate by avoiding the use of
the Cauchy-Schwarz inequality in the proof, and by estimating expectations by means of some
generalized Palm-type computations (see e.g. [43, Section 1.7]). This approach requires several
technical computations; to keep the length of the present paper within bounds, we plan to address
this issue elsewhere. Previous classic references on geometric random graphs are [5, 22, 58].

(ii) A quick computation shows that if k = k0 + 1, the rate of convergence in (2.26) is O
(
n− 1

4(k−1)

)

and if k ≥ k0 + 2, the rate of convergence is O
(
n− 1

2(k−1)

)
.

Example 2.2 Let k0 = 2, k = 3, and consider the sequence of disk graphs with radius tn such that
tmn ∼ n−3/2. Define the following graphs: (i) Γ0 is the connected graph with two-vertices, (ii) Γ1 is the
triangle and, (iii) Γ2 is the 3-path, that is, the connected graph with three vertices and two edges. Plainly,
G′
n(Γ0) equals the number of edges in the disk graph, whereas G′

n(Γ1) and G
′
n(Γ2) count, respectively,

the number of induced triangles and of induced 3-paths. Since Γ1 and Γ2 are non-isomorphic, Theorem
2.6 can be applied, and we deduce that G̃′

n(Γ0), G
′
n(Γ1) and G′

n(Γ2) are asymptotically independent,
and that they jointly converge towards a mixed Poisson/Gaussian vector, with an upper bound on the
speed of convergence of the order of n−1/8.

We conclude this section by pointing out that an application of the de-poissonization Lemma 3.2 yields
the following generalization of Theorem 2.6. The details of the proof are left to the reader. For every
n, we denote by G(Y ; tn) the de-poissonized random graph obtained as follows: the vertices of G(Y ; tn)
are given by the random set Vn = {Y1, ..., Yn} and two vertices Yi, Yj are connected by an edge if and
only if ‖Yi − Yj‖Rm ∈ (0, tn).

Proposition 2.6 The conclusion of Theorem 2.6-(b) continues to hold whenever the disk graph G′(Y ; tn)
is replaced with the de-poissonized random graph G(Y ; tn), and each counting statistic G′

n(Γi) is replaced
by its de-poissonized counterpart.
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3 Proofs of the main theorems

3.1 Preliminaries

We will now introduce several classes of functions that will be used to define particular metrics used
throughout the paper. We write g ∈ Ckb (R

m) if the function g : Rm → R is bounded and admits
continuous bounded partial derivatives up to the order k. Recall also the definition of the total variation
distance dTV given in (2.11).

Definition 3.1 1. For every function g : Rm → R, let

‖g‖Lip := sup
x 6=y

|g(x)− g(y)|
‖x− y‖Rm

,

where ‖ · ‖Rm is the usual Euclidian norm on Rm.

2. For a positive integer k and a function g ∈ Ckb (R
m) , we set

‖g(k)‖∞ = max
1≤i1≤...≤ik≤m

sup
x∈Rm

∣∣∣∣∣
∂k

∂xi1 . . . ∂xik
g(x)

∣∣∣∣∣ .

In particular, by specializing this definition to g(2) = g′′ and g(3) = g′′′, we obtain

‖g′′‖∞ = max
1≤i1≤i2≤m

sup
x∈Rm

∣∣∣∣∣
∂2

∂xi1∂xi2
g(x)

∣∣∣∣∣ .

‖g′′′‖∞ = max
1≤i1≤i2≤i3≤m

sup
x∈Rm

∣∣∣∣∣
∂3

∂xi1∂xi2∂xi3
g(x)

∣∣∣∣∣ .

3. Lip(1) indicates the collection of all real-valued Lipschitz functions, from R to R, with Lipschitz
constant less or equal to one.

4. C3 indicates the collection of all functions g ∈ C3
b(R

m) such that ‖g‖Lip ≤ 1, ‖g′′‖∞ ≤ 1 and
‖g′′′‖∞ ≤ 1.

We now define the different metrics we will use.

Definition 3.2 The metric dH1 between the laws of two Zd+×R– valued random vectors X and Y such
that E‖X‖

Z
d
+×R

, E‖Y ‖
Z
d
+×R

<∞, written dH1(X,Y ), is given by

dH1(X,Y ) = sup
h∈H1

|E(h(X))− E(h(Y ))|,

where H1 indicates the collection of all functions ψ : Zd+ × R 7→ R : (j1, . . . , jd;x) 7→ ψ(j1, . . . , jd;x)
such that ψ is bounded by 1 and, for all j1, . . . , jd, the mapping x 7→ ψ(j1, . . . , jd;x) is in Lip(1).

Definition 3.3 The metric dH3 between the laws of two Zd+ × Rm– valued random vectors X and Y
such that E‖X‖

Z
d
+×Rm , E‖Y ‖

Z
d
+×Rm <∞, written dH3(X,Y ), is given by

dH3(X,Y ) = sup
h∈H3

|E(h(X))− E(h(Y ))|,

where H3 indicates the collection of all functions ψ : Zd+ × Rm 7→ R : (j1, . . . , jd;x1, . . . , xm) 7→
ψ(j1, . . . , jd;x1, . . . , xm) such that |ψ| is bounded by 1 and for all j1, . . . , jd, the mapping (x1, . . . , xm) 7→
ψ(j1, . . . , jd;x1, . . . , xm) ∈ C3.

20



Remark 3.1 The indices 1 and 3 label the classes H1 and H3, respectively, according to the degree
of smoothness of the corresponding test functions. The topology induced by any of the two distances
dH1 , dH3 is strictly stronger than the topology of convergence in distribution.

We will sometimes need a useful multidimensional Taylor-type formula on Zd+. Given a function f on
Z+, we write ∆f(k) = f(k + 1) − f(k), k = 0, 1, ..., and also ∆2f = ∆(∆f). More generally, given a
function f : Zd+ → R, for every i, j = 1, ..., d we write ∆if(x

(1), ..., x(d)) = f(x(1), ..., x(i) + 1, ..., x(d)) −
f(x(1), ..., x(d)), and ∆2

ij = ∆i(∆jf). Of course, when d = 1 one has that ∆1 = ∆ and ∆2
11 = ∆2. The

proof of the forthcoming statement makes use of the following result, derived in [33, Proof of Theorem
3.1] (see also [4]). For every f : Z+ → R, it holds that, for every k, a ∈ Z+,

f(k)− f(a) = ∆f(a)(k − a) +R, (3.1)

where R is a residual quantity verifying

|R| ≤ ‖∆2f‖∞
2

|(k − a) (k − a− 1)| . (3.2)

For the rest of the paper, we will use the following notation, which is meant to improve the readability
of the proofs. If x =

(
x(1), . . . , x(d)

)
is an d–dimensional vector, for k ≤ p we will denote by x(k,p) the

sub-vector composed of the kth trough the pth component of x, i.e. x(k,p) =
(
x(k), . . . , x(p)

)
. Also, we

set by convention x(j,j−1) = ∅ for every value of j.

Lemma 3.1 Let f : Zd+ → R. Then, for every x = (x(1), ..., x(d)), a = (a(1), ..., a(d)) ∈ Zd+,

f(x) = f(a) +
d∑

i=1

∆if(a)(x
(i) − a(i)) +R, (3.3)

where the residual quantity R verifies

|R| ≤ 1

2
max

i,j=1,...,d
‖∆2

ijf‖∞ ×





d∑

i=1

|x(i) − a(i)||x(i) − a(i) − 1|+
∑

1≤i6=j≤d

|x(i) − a(i)||x(j) − a(j)|



 .

Moreover, one has also the first order estimate:

|f(x)− f(a)| ≤ max
i=1,...,d

‖∆if‖∞ ×
d∑

i=1

|x(i) − a(i)|. (3.4)

Proof. Using (3.1), one has that

f(x)− f(a) =

d∑

i=1

{f(a(1,i−1), x(i,d))− f(a(1,i), x(i+1,d))}

=

d∑

i=1

∆if(a
(1,i), x(i+1,d))(x(i) − a(i)) +R0,

where

|R0| ≤
1

2
max
i=1,...,d

‖∆2
iif‖∞ ×

d∑

i=1

|x(i) − a(i)||x(i) − a(i) − 1|.
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On the other hand,

d∑

i=1

∆if(a
(1,i), x(i+1,d))(x(i)−a(i))=

d∑

i=1

∆if(a)(x
(i)−a(i))+

d−1∑

i=1

[
∆if(a

(1,i), x(i+1,d))−∆if(a)
]
(x(i)−a(i)),

and formula (3.3) is immediately obtained from the representation

d−1∑

i=1

[
∆if(a

(1,i), x(i+1,d))−∆if(a)
]
(x(i) − a(i))

=

d−1∑

i=1

(x(i) − a(i))

d∑

j=i+1

[
∆if(a

(1,j−1), x(j,d))−∆if(a
(1,j), x(j+1,d))

]
,

as well as from the elementary inequality

∣∣∆if(a
(1,j−1), x(j,d))−∆if(a

(1,j), x(j+1,d))
∣∣ ≤ ‖∆2

ijf‖∞ × |x(j) − a(j)|.

Formula (3.4) follows from

|f(x)− f(a)| ≤
d∑

i=1

|f(a(1,i−1), x(i,d))− f(a(1,i), x(i+1,d))| ≤ max
i=1,...,d

‖∆if‖∞
d∑

i=1

|x(i) − a(i)|.

3.2 Complete statement and proof of the Portmanteau inequalities

We provide below a precise statement of Theorem 2.1, including a discussion of the different cases in
terms of dimensions and covariance matrices, each having its own associated metric. The technique of
the proof is reminiscent of the computations contained in the classic paper [3]. For an explicit description
of the constants K,Ki, see Remark 2.4.

Remark 3.2 We do not deal with the cases d = 1, m = 0 and d = 0, m ≥ 1 since they are already
covered, respectively, by [33, Theorem 3.1], [35, Theorem 3.1] and [42, Theorem 3.3 and Theorem 4.2].
We could have dealt separately with the case where m ≥ 2 and C > 0, by using a multidimensional
version of Stein’s method on the Poisson space, as done in [35, Section 3]: by doing so, we would have
been able to consider test functions that are only twice differentiable, as well as bounding constants
nicely depending on the operator norm of the matrices C and C−1. There is no additional difficulty in
implementing this approach (albeit a considerable amount of additional notation should be introduced),
and we have refrained to do so merely to keep the length of the paper within bounds. Finally, the results
of [35, 42] imply that, in the case d = 0, m ≥ 1, one can drop the boundedness assumption for the test
functions defining the distances dH1 , dH3 , as well as the Lipschitz assumption for the functions compos-
ing the class C3. The forthcoming proof will reveal that these boundedness and Lipschitz properties are
needed in order to deal with cross terms, that is, expectations involving both elements of Fd and Gm.

Theorem 3.1 (Portmanteau inequalities: full statement) Let d,m be integers such that d∨m ≥
1. Let H = (Xd,Nm) and V = (Fd,Gm) be the (d+m)–dimensional random elements defined by (2.1)
and (2.2) respectively. Then, the following two statements hold:
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Case 1: d,m ≥ 1. Consider the distance dH1 and dH3 , respectively, according as m = 1 or m ≥ 2. For
i = 1, 3, there exists a universal positive constant Ki (having the form described in Remark 2.4) such
that

dHi
(V,H) ≤ Ki {α1(λd,Fd) + α2(Fd) + α3(Fd) + β(Fd,Gm) + γ1(C,Gm) + γ2(Gm)} . (3.5)

Case 2: d ≥ 2, m = 0. In this case V = Fd and H = Xd, and one has that, for some universal
positive constant K (having the form described in Remark 2.4),

dTV (Fd,Xd) ≤ K {α1(λd,Fd) + α2(Fd) + α3(Fd)} .

Proof . First of all, we observe that the conclusion of Case 2 follows from the computations leading to
the proof of Case 1, by selecting a test function ψ ∈ Hi uniquely depending on the first d variables. In
what follows, K will denote a positive universal constant that may vary from line to line; by a careful
bookkeeping of the forthcoming computations, one sees that such a constant K can be taken to have
the form provided in Remark 2.4.
Now let ψ ∈ Hi. We want to deduce an upper bound for

|E (ψ (Fd,Gm))− E (ψ (Xd,Nm))| .

We can assess such a quantity in the following way:

|E (ψ (Fd,Gm))− E (ψ (Xd,Nm)) | (3.6)

≤ |E (ψ (Fd,Gm))− E (ψ (Fd,Nm)) |+ |E (ψ (Fd,Nm))− E (ψ (Xd,Nm)) |.

The proof will consist of two main steps. In the first one, we will deal with E (ψ (Fd,Nm))−E (ψ (Xd,Nm))
and in the second one with E (ψ (Fd,Gm))− E (ψ (Fd,Nm)).

Step 1: Controlling the term E (ψ (Fd,Nm)) − E (ψ (Xd,Nm)). Such a term can be decomposed in
the following way:

E (ψ (Fd,Nm))− E (ψ (Xd,Nm)) =
d∑

k=1

E
(
ψ
(
X(1,k−1),F(k,d),Nm

)
− ψ

(
X(1,k),F(k+1,d),Nm

))
.

We will now study separately each term appearing in the sum. In what follows, we write LU to indicate
the probability measure given by the law of a given random element U ; integrals with respect to LU

are implicitly realized over the set where U takes values. For any fixed 1 ≤ k ≤ d, by exploiting
independence, we have

E
[
ψ
(
X(1,k−1),F(k,d),Nm

)
− E

(
ψ
(
X(1,k),F(k+1,d),Nm

))]
=

∫
LF(k,d)(dx(k,d))

E

{
ψ
(
X(1,k−1), x(k,d),Nm

)
−
∫

LX(k)(da)ψ
(
X(1,k−1), a, x(k+1,d),Nm

)}
.

For a fixed
(
z(1,k−1), x(k+1,d), y

)
∈ Zd−1

+ × Rm, we denote by

x(k) 7→ fk

(
z(1,k−1), x(k), x(k+1,d), y

)
:= fk(x

(k))
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the unique solution to the Chen-Stein equation

ψ̃(x(k))− E(ψ̃(X(k))) = λkf(x
(k) + 1)− x(k)f(x(k)), x(k) = 0, 1, ...,

verifying the boundary condition ∆2f(0) = 0, where ψ̃(x(k)) := ψ
(
z(1,k−1), x(k), x(k+1,d), y

)
. We recall

(see e.g. [14]) that fk is given by fk(0) = fk(1)−∆fk(2) and, for x = 1, 2, ...,

fk(x) =
(x− 1)!

λxk

x−1∑

w=0

[
λwk
w!

(
ψ̃(w) − E[ψ̃(X(k))]

)]
(3.7)

= − (x− 1)!

λxk

∞∑

w=x

[
λwk
w!

(
ψ̃(w) − E[ψ̃(X(k))]

)]
.

Using the fact that |ψ̃| ≤ 1 together with [14, Theorem 2.3] and [11, Theorem 1.3], we deduce that
|fk| ≤ 3, |∆fk| ≤ 2(1 − e−λk)/λk and |∆2fk| ≤ 4(1 − e−λk)/λ2k.

§ Exploiting once again independence,
we can now write:

E
(
ψ
(
X(1,k−1),F(k,d),Nm

)
− E

(
ψ
(
X(1,k),F(k+1,d),Nm

)))
= (3.8)

∫
LF(k,d)(dx(k,d))

E
{
λkfk

(
X(1,k−1), x(k) + 1, x(k+1,d),Nm

)
− x(k)fk

(
X(1,k−1), x(k), x(k+1,d),Nm

)}

= E
(
λkfk

(
X(1,k−1), F (k) + 1,F(k+1,d),Nm

)
− F (k)fk

(
X(1,k−1), F (k),F(k+1,d),Nm

))

= E
(
λk∆fk

(
X(1,k−1),F(k,d),Nm

)
− δ

(
−DL−1F (k)

)
fk

(
X(1,k−1),F(k,d),Nm

))

= E

(
λk∆fk

(
X(1,k−1),F(k,d),Nm

)
−
〈
Dfk

(
X(1,k−1),F(k,d),Nm

)
,−DL−1F (k)

〉

L2(µ)

)
.

Note that (sinceH is assumed to be independent of η) in the previous expressions the Malliavin operators
act on random variables only through their dependence on the components of Fd. We now need to
explicitly calculate Dfk

(
X(1,k−1),F(k,d),Nm

)
, and (by virtue of (1.2)), one has

Dzfk

(
X(1,k−1),F(k,d),Nm

)

= fk

(
X(1,k−1),F(k,d)

z ,Nm

)
− fk

(
X(1,k−1),F(k,d),Nm

)
. (3.9)

In order to deal with this quantity, one should first observe that, for every k, the mapping fk(·,Nm) :
Zd → R given by

x 7→ fk (x,Nm)

takes values in [−3, 3], and therefore ‖∆ifk(·,Nm)‖∞ ≤ 6 and ‖∆2
i,jfk(·,Nm)‖∞ ≤ 12, for every i, j =

1, ..., d. One can now use Lemma 3.1 to deduce that

Dzfk

(
X(1,k−1),F(k,d),Nm

)
=

d∑

i=k

∆ifk

(
X(1,k−1),F(k,d),Nm

)
DzF

(i) +R(k)
z ,

§The upper bound on |fk| can be reduced to 2 if one selects a solution of the Chen-Stein equation such that
f(0) = 0
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where

|R(k)
z | ≤ 6×





d∑

i=k

|DzF
(i)||DzF

(i) − 1|+
∑

k≤i6=j≤d

|DzF
(i)||DzF

(j)|



 .

Using the fact that (by definition)

∆kfk

(
X(1,k−1),F(k,d),Nm

)
= ∆fk

(
X(1,k−1),F(k,d),Nm

)
,

gathering the previous estimates together, and applying them to (3.8) finally gives:

|E (ψ (Fd,Nm))− E (ψ (Xd,Nm))| ≤ K {α1(λd,Fd) + α2(Fd) + α3(Fd)} .

Step 2: Controlling the term E (ψ (Fd,Gm))−E (ψ (Fd,Nm)). This part is slightly more delicate, since
one has to take into account the dependence between Fd and Gm. We have to consider two cases,
namely m = 1 and m ≥ 2. Note that, in the second case, it is not necessary to assume that the matrix
C is positive definite.

(m = 1) In this case Gm and Nm are two real-valued random variables G ∈ domD and N ∼ N (0, 1).
We will only consider the case C = 1, and one can recover the general statement by elementary consid-
erations. For every x ∈ Zd+ and y ∈ R, we write

fψ(x, y) = ey
2/2

∫ y

−∞

{ψ(x, a)− E[ψ(x,N)]}e−a2/2da.

It is well-known (see e.g. [31, Chapter 3]) that fψ verifies the (parametrized) Stein equation

∂yfψ(x, y)− yfψ(x, y) = ψ(x, y)− E[ψ(x,N)], y ∈ R, x ∈ Zd+,

where we have used the symbol ∂y to indicate a partial derivative with respect to y. Moreover, thanks to
the assumptions on ψ, one can prove that the following relations are in order for every x: ‖fψ(x, ·)‖∞ ≤√
2π, ‖∂yfψ(x, ·)‖ ≤ 1, and ‖∂2yyfψ(x, ·)‖∞ ≤ 2 (note that the partial derivatives ∂2yyfψ(x, ·) are only

defined up to a subset of R of measure 0). It follows that

E (ψ (Fd, G))− E (ψ (Fd, N)) = E[∂yfψ(Fd, G)−Gfψ(Fd, G)]

= E[∂yfψ(Fd, G)]− E[〈−DL−1G,Dfψ(Fd, G)〉L2(µ)]. (3.10)

Clearly, Dzfψ(Fd, G) = Az +Bz , where

Az := fψ((Fd)z , Gz)− fψ(Fd, Gz), Bz := fψ(Fd, Gz)− fψ(Fd, G)

Using a Taylor expansion as in [35, Proof of Theorem 3.1], one sees that

Bz = ∂yfψ(Fd, G)DzG+Rz ,

where |Rz| ≤ (DzG)
2. Now observe that the mapping fψ(·, Gz) : Zd → R : x 7→ fψ(x,Gz) is bounded by√

2π, in such a way that ‖∆ifψ(·, Gz)‖∞ ≤ 2
√
2π, for every i = 1, ..., d. We can therefore use formula

(3.4) to infer that

|Az| ≤ 2
√
2π

d∑

i=1

|DzF
(i)|.
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Plugging these relations into (3.10) yields that

|E (ψ (Fd, G))− E (ψ (Fd, N))| ≤ K{β(Fd, G) + γ1(C,G) + γ2(G)}.

(m ≥ 2) We use an interpolation technique analogous to the one appearing in [42, Proof of Theorem
4.2]. For every t ∈ [0, 1], we define

Φ(t) := E{ψ(Fd,
√
1− tGm +

√
tNm)},

in such a way that |E{ψ(Fd,Gm)} − E{ψ(Fd,Nm)}| ≤
∫ 1

0
|Φ′(t)|dt. Deriving with respect to t and then

integrating by parts shows that
Φ′(t) = At −Bt,

where, with obvious notation,

At =
1

2

d∑

i,j=1

C(i, j)E
[
∂2yiyjψ(Fd,

√
1− tGm +

√
tNm)

]
,

and

Bt =
1

2
√
1− t

m∑

j=1

E
[
〈−DL−1G(j), D∂yjψ(Fd,

√
1− tGm +

√
tNm)〉L2(µ)

]

=
1

2
√
1− t

m∑

j=1

{
E
[
〈−DL−1G(j), b1,j〉L2(µ)

]
+ E

[
〈−DL−1G(j), b2,j〉L2(µ)

]}

:= B
(1)
t +B

(2)
t ,

where the random functions b1,j and b2,j are given by

z 7→ b1,jz := ∂yjψ((Fd)z,
√
1− t(Gm)z +

√
tNm)− ∂yjψ(Fd,

√
1− t(Gm)z +

√
tNm),

and
z 7→ b2,jz := ∂yjψ(Fd,

√
1− t(Gm)z +

√
tNm)− ∂yjψ(Fd,

√
1− tGm +

√
tNm).

Reasoning exactly as in the proof of [42, Theorem 4.1], one proves that

sup
t∈[0,1]

∣∣∣At −B
(2)
t

∣∣∣ ≤ 1

4
{γ1(C,Gm) + γ2(Gm)}.

To conclude, we apply again Lemma 3.1. Start by observing that, since |∂yjψ| ≤ 1 by assumption, one

has that, for every i = 1, ..., d, ‖∆i∂yjψ(·,
√
1− t(Gm)z +

√
tNm)‖∞ ≤ 2. We can now use (3.4) to infer

that

|b1,jz | ≤ 2

d∑

i=1

|DzF
(i)|.

These estimates yield eventually that
∫ 1

0

|B(1)
t |dt ≤

∫ 1

0

2√
1− t

dt× β(Fd,Gm) = 4β(Fd,Gm),

and the desired conclusion follows at once.
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3.3 Proof of Theorem 2.2

The first part of the statement is the same as Case 2 of Theorem 3.1. In order to deduce the conclusion
about stable convergence, one should fix an integer l ≥ 1, as well as pairwise disjoint sets A1, ..., Al ∈ Zµ,
and then build an ancillary (d+ l)-dimensional vector

F′
d+l,n := (Fd,n, η(A1), ..., η(Al)).

Applying again Case 2 of Theorem 3.1, one proves immediately that conditions (2.12)–(2.14) imply that
F′
d+l,n converges in distribution to (Xd, η̂(A1), ..., η̂(Al)). Since Xd is independent of η by definition,

we deduce that, for every (γ1, ..., γd) ∈ Rd, every collection A1, ..., Al ∈ Zµ of disjoint sets and every
random variable Z = ϕ(η(A1), ..., η(Al)) with ϕ bounded,

lim
n→∞

E
[
ei〈Fd,n,γ〉RdZ

]
= E[Z]× E

[
ei〈Xd,γ〉Rd

]
.

An application of Point 4 of Lemma 2.1 yields the desired conclusion.

3.4 Proof of Theorem 2.3

Step 1: convergence in distribution. We start by proving that Fd,n converges in distribution to Xd.

Our plan is to apply Case 2 of Theorem 3.1. Exploiting the fact that each {B(i)
n } is a smooth van-

ishing perturbation, and reasoning exactly as in the first part of the proof of [33, Theorem 4.12], one
sees that it is enough to prove that Conditions 1 and 2 imply that the five sums appearing in the
definitions of α1(·), α2(·), α3(·) (see (2.3)–(2.5)) all converge to zero, whenever one chooses the vector(
Iq1(f

(1)
n ), ..., Iqd(f

(d)
n )

)
as their argument. Again from the proof of [33, Theorem 4.12], we know that

the assumptions in the statement imply that, for every i = 1, ..., d

lim
n→∞

{
E
[∣∣∣λi − q−1

i ‖DIqi(f (i)
n )‖2L2(µ)

∣∣∣
]
+ E

[∫

Z

(DzIqi (f
(i)
n ))2(DzIqi(f

(i)
n )− 1)2µ(dz)

]}
= 0.

Using the fact that the sequence

n 7→ E

[∫

Z

(
DzIqi(f

(i)
n )
)2
µ(dz)

]
= q2i E

[∫

Z

(
DzL

−1Iqi (f
(i)
n )
)2
µ(dz)

]
= qiE[(F

(i)
n )2]

is bounded for every i, and by a standard application of the Cauchy-Schwarz inequality, we see that it
is enough to prove that, for every i 6= j,

lim
n→∞

{
E

[∫

Z

(DzIqi(f
(i)
n ))2(DzIqj (f

(j)
n ))2µ(dz)

]
+ E

[
〈DIqi (f (i)

n ), DIqj (f
(j)
n )〉2L2(µ)

]}
= 0. (3.11)

Using the computations contained in [35, p. 464], one sees that, for every i,

{DzIqi(f
(i)
n )}2 = q2i

2qi−2∑

p=0

Ip(G
qi−1
p f (i)

n (z, ·)), (3.12)

where

Gqi−1
p f (i)

n (z, ·)(z1, ..., zp) =
qi−1∑

r=0

r∑

l=0

1{2qi−2−r−l=p}r!

(
qi − 1

r

)2(
r

l

)
˜

f
(i)
n (z, ·) ⋆lr f (i)

n (z, ·)(z1, ..., zp),

(3.13)
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where the tilde indicates a symmetrization with respect to the variables represented by a dot (in such
a way that the symmetrization does not involve the variable z), and the stochastic integrals are set

equal to zero on the exceptional set composed of those z such that f
(i)
n (z, ·)⋆lr f (i)

n (z, ·) is not an element
of L2(µ2qi−2−r−l) for some r, l. We can assume without loss of generality that qi ≤ qj . Applying the
isometric properties of multiple integrals using the Fubini theorem and integrating over Z, we see that
the first summand in (3.11) is a linear combination of objects of the type

Cn = Cn(l, r, s, t, p) :=

∫

Z

〈 ˜
f
(i)
n (z, ·) ⋆lr f (i)

n (z, ·), ˜
f
(j)
n (z, ·) ⋆st f (j)

n (z, ·)〉L2(µp)µ(dz),

where the indices verify the following constraints: (i) p = 0, ..., 2qi−1, (ii) r = 0, ..., qi−1, (iii) l = 0, ..., r,
(iv)t = 0, ..., qj − 1, (v) = 0, ..., t, and (vi) 2qi − 2 − r − l = 2qj − 2 − t − s = p. In the case where

qi = qj = r = t, l = s = 0 (and therefore p = qi − 1), one has that Cn =
〈
(f

(i)
n )2, (f

(j)
n )2

〉

L2(µqi )
→ 0.

In all other cases, one can prove that

|Cn| ≤
√∫

Z

‖f (i)
n (z, ·) ⋆lr f (i)

n (z, ·)‖L2(µp)µ(dz)×
√∫

Z

‖f (j)
n (z, ·) ⋆ts f (j)

n (z, ·)‖L2(µp)µ(dz) → 0

(where the first inequality follows from the Cauchy-Schwarz inequality) by directly applying the com-

putations contained in [35, p. 467], as well as the fact that (by assumption) sup
n

‖f (i)
n ‖L4(µqi ) < ∞ for

every i. We now focus on the second summand in (3.11). We can use directly [42, Proposition 5.5] to

deduce that, whenever qi = qj the quantity E
[
〈DIqi (f (i)

n ), DIqj (f
(j)
n )〉2L2(µ)

]
is equal to a finite linear

combination of the squared inner product 〈f (i)
n , f

(j)
n 〉2L2(µqi ), as well as of products of norms of the type

‖f (i)
n ⋆qi−tqi−s(t,k)

f (i)
n ‖L2(µt+s(t,k)) × ‖f (j)

n ⋆
qj−t
qj−s(t,k)

f (j)
n ‖L2(µt+s(t,k)), (3.14)

where s(t, k) = 2qi − k − t and the indices verify the constraints: k = 1, ..., 2qi − 2, t = 1, ..., qi and
1 ≤ s(t, k) ≤ t. On the other hand, when qi 6= qj the same Proposition 5.5 in [42] implies that

E
[
〈DIqi (f (i)

n ), DIqj (f
(j)
n )〉2L2(µ)

]
is a finite linear combination of products of norms of the type (3.14),

where s(t, k) = qi + qj − k − t and the indices verify the constraints: k = |qi − qj |, ..., qi + qj − 2,
t = 1, ..., qi ∧ qj and 1 ≤ s(t, k) ≤ t. In both cases, the involved products of norms converge to zero
whenever Condition 1 in the statement is verified, and Case 2 of Theorem 3.1 implies that Fd,n converges
in distribution to Xd in the sense of total variation.

Step 2: stable convergence. We apply the second part of Theorem 2.2. In view of the previous compu-
tations, and by reasoning again as at the beginning of the previous step, it is enough to show that, for
every A ∈ Zµ and every i = 1, ..., d,

E

[(∫

A

DzIqi(f
(i)
n )µ(dz)

)2
]
→ 0.

This follows immediately from the relation
∫

A

DzIqi(f
(i)
n )µ(dz) = qiIqi−1(f

(i)
n ⋆11 g)

where g(z) = 1A(z), as well as ‖f (i)
n ⋆11 g‖2L2(µqi−1)

= 〈f (i)
n ⋆qi−1

qi−1 f
(i)
n , g ⋆00 g〉L2(µ2) (which follows from a

Fubini argument).
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3.5 Proofs of Theorem 2.4 and Proposition 2.2

Proof of Theorem 2.4. In view of [42, Theorem 5.8] we only need to prove stable convergence. To do this
we fix an integer d ≥ 1, as well as disjoint sets A1, ..., Ad ∈ Zµ. Using as before Point 4 of Lemma 2.1,
the desired conclusion is achieved if we show that the (d +m)-dimensional vectors (Fd,Gm,n), n ≥ 1
where Fd = (η(A1), ..., η(Ad)), converge in distribution to (Fd,Nm) (recall that Nm is independent of η
by definition). Define λd = (µ(A1), ..., µ(Ad)). One has that α1(λd,Fd)+α2(Fd)+α3(Fd) = 0, and also
that, under the assumptions in the statement, γ1(C,Gm,n) + γ2(Gm,n) → 0 (as a consequence of [42,
Theorem 5.8]). To conclude, we have to show that β(Fd,Gn,m) → 0. This follows immediately from
Proposition 2.1, since the computations contained in [35, Proof of Theorem 5.1] imply that, under the
assumptions in the statement,

E

[∫

A

[DzIqi(g
(j)
n )]4µ(dz)

]
→ 0, ∀j = 1, ...,m. (3.15)

Proof of Proposition 2.2. In view of Proposition 2.1, the conclusion is an immediate consequence of
relation (3.15).

3.6 Proofs of Theorem 2.5 and Proposition 2.4

Proof of Theorem 2.5. For every n, let Xλn
be a one-dimensional Poisson random variable of parameter

λn, and recall (see e.g. [1]) that dTV (Xλ, Xλn
) ≤ |λ − λn|. The distance d⋆ in the statement can be

chosen to be dH1 (see Definition 3.2). An application of the triangular inequality and of the independence
between Xλ and N yield that

d⋆(Vn, H) ≤ dTV (Xλ, Xλn
) + d⋆(Vn, (Xλn

, N)).

The conclusion follows from Theorem 3.1, since one has that:

– according to [57, Proof of Proposition 4.1], |λ− λn|+ α1(λn, Fn) + α2(Fn) ≤ An;

– according to [25], γ1(1, G̃n) + γ2(G̃n) ≤ CkB(Gn, σn);

– by virtue of the Hölder inequality, and of the fact that Fn takes values in Z+,

β(Fn, G̃n) ≤E

[∫

Z

|DzFn|2µn(dz)
] 3

4

× E

[∫

Z

∣∣∣DzL
−1G̃n

∣∣∣
4

µn(dz)

] 1
4

≤ R×B(Gn;σn)
1/2,

for some constant R independent of n, where we have used the fact that, since Fn and Gn
both live in a finite sum of Wiener chaoses (see Proposition 2.3), then (a) the mapping n 7→
E
[∫
Z
|DzFn|2µn(dz)

]
is bounded, and (b)

E

[∫

Z

∣∣∣DzL
−1G̃n

∣∣∣
4

µn(dz)

]
≤ E

[∫

Z

∣∣∣DzG̃n

∣∣∣
4

µn(dz)

]
≤ CkB(Gn;σn)

2

for every n.
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Proof of Proposition 2.4. In view of the standard theory of Hoeffding decompositions (see e.g. [60]), for
every n ≥ 1, both F 0

n and G̃0
n have the form of a U -statistic of the type

Un = E[Un] +
m∑

l=1

∑

{i1,...,jl}⊂[n]

Un,l(Yj1 , ..., Yjl), (3.16)

where [n] = {1, ..., n}, m is the order of the U -statistic (so, m = k or m = k′, according as Un = G̃n
or Un = Fn), and every kernel Un,l is a symmetric function in l variables verifying the Hoeffding-type

degeneracy condition: E[Un,l(Y1, ..., Yl)|Y1, ..., Yl−1] = 0. The mean and variance of Fn and G̃n are both
converging, and this implies that, since the mapping

n 7→ E[U2
n] = E[Un]

2 +

n∑

l=1

(
n

l

)
E[Un,l(Y1, ..., Yl)

2]

converges to a finite limit, then the sequences n 7→
(
n
l

)
E[Un,l(Y1, ..., Yl)2], l = 1, ...,m, are necessarily

bounded. Now, it is easily seen that Un is the de-poissonized version of the poissonized U -statistic U ′
n

obtained by replacing [n] with [N(n)] = {1, ..., N(n)} in the second sum on the RHS of (3.16). The
desired conclusion follows from the forthcoming Lemma 3.2, whose proof uses computations from [15].

Lemma 3.2 (De-poissonization Lemma) Let the above notation and assumptions prevail. Then, as
n→ ∞,

E[(Un − U ′
n)

2] → 0.

Proof. Conditioning on N(n), and using standard results on the moments of Poisson random variables,
yields (as n→ ∞)

E[U ′2
n ] = E[Un]

2 +

m∑

l=1

E

[(
N(n)

l

)]
E[Un,l(Y1, ..., Yl)

2] → c := lim
n→∞

E[U2
n].

Conditioning again on N(n), we infer that

E[UnU
′
n] =

m∑

l=1

(
n

l

)
E[Un,l(Y1, ..., Yl)

2]bn,l,

where bn,l =
∑∞
p=0 e

−p np

p!

(
n∧p
l

)(
n
l

)−1
. To conclude, it remains to apply the computations contained in

[15, p. 745], which imply that bn,l → 1 for every l.

4 Random graphs: proof of Theorem 2.6

The distance d⋆ appearing in the statement is the distance dH1 introduced in Definition 3.2. First of
all we observe that, for every a = 0, 1, ..., d, the random variable G′

n(Γa) has the form of a U -statistic,
that is:

G′
n(Γa) =

∑

(x1,...,xka)∈η
ka
n,6=

hΓa,tn(x1, ..., xka),
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where: (i) ka = k for a = 1, ..., d, (ii) the notation indicates that the sum runs over all ordered vectors
(x1, ..., xka) such that each xl is in the support of ηn and xl 6= xl′ for l 6= l′, and (iv) the quantity
hΓa,tn(x1, ..., xka) is equal to 1/ka! if the restriction of G′(Y ; tn) to {x1, ..., xka} is isomorphic to Γa and
equals 0 otherwise. It is clear that, for every a, the mapping hΓa,tn : (Rm)ka → R is symmetric and
stationary, in the sense that it only depends on the norms ‖xl − xm‖Rm , l 6= m. We can now apply
Proposition 2.3 to deduce that G′

n(Γa) admits the following chaotic decomposition

G′
n(Γa) = E[G′

n(Γa)] +

ka∑

i=1

Ii(ha,i), (4.1)

where Ii indicates a multiple Wiener-Itô integral of order i with respect to the centered Poisson measure
η̂n, E[G′

n(Γa)] =
∫
(Rm)ka hΓa,tndµ

ka
n , and, for i = 1, ..., ka,

ha,n,i(x1, ..., xi) =

(
ka
i

)∫

(Rm)ka−i

hΓa,tn(x1, ...xi, y1, ..., yka−i)µ
ka−i
n (dy1, ..., dyka−i). (4.2)

Note that ha,n,ka = hΓa,tn . According to Theorem 2.1, our proof is concluded if we can show that
the six quantities appearing in formulae (2.3)–(2.8) all converge to zero, as n → ∞, at a rate of

the order of O
(
n− 1

2(k−1) + n−
k−k0
4(k−1)

)
, whenever one selects the following arguments: (1) Fd = V ′

n =

(G′
n(Γ1), ..., G

′
n(Γd)), (2) Gm = G1 = G̃′

n(Γ0), (3) λi = λn,i = E[G′
n(Γi)], i = 1, ..., d, (4) C = 1, and (5)

µ = µn. We already know from [26, Section 3] (see also Proposition 2.5-(a)) that the terms γ1(1, G̃
′
n(Γ0))

and γ2(G̃
′
n(Γ0)) both converge to zero at a rate rn such that

rn = O

(
1√

nk0(tmn )k0−1

)
.

Since nk0(tmn )k0−1 ∼ n
k−k0
k−1 , this implies that we only have to focus on the remaining four terms. We

start by analysing the term α1(λn, V
′
n) and the first part of the term α3(V

′
n).

Select a, b = 1, ..., d. An application of the multiplication formula (1.3), together with the definition
of the derivative operator and the representation (4.1), yields that

〈DG′
n(Γa),−DL−1G′

n(Γb)〉L2(µn)

=

k∑

i=1

k∑

j=1

i

i∧j∑

r=1

(r − 1)!

(
i− 1

r − 1

)(
j − 1

r − 1

) r∑

l=1

(
r − 1

l − 1

)
Ii+j−r−l(ha,n,i ⋆

l
r hb,n,j)

= 1{a=b}E[G
′
n(Γa)]

+

k∑

i=1

k∑

j=1

i

i∧j∑

r=1

(r − 1)!

(
i− 1

r − 1

)(
j − 1

r − 1

) r∑

l=1

(
r − 1

l− 1

)
1{(i,j,r,l) 6=(k,k,k,k)}Ii+j−r−l(ha,n,i ⋆

l
r hb,n,j).

Applying repeatedly the Cauchy-Schwarz inequality, one sees that, in order to prove that α1(λn, V
′
n)

and α3(V
′
n) both converge to zero at the correct rate, it is sufficient to show that, for every a, b = 1, ..., d

and for every quadruple (i, j, r, l) involved in the previous sum,

‖ha,n,i ⋆lr hb,n,j‖L2(µi+j−r−l
n ) = O

(√
ntmn

)
= O

(
n− 1

2(k−1)

)
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(the last equality is trivial). For any such (i, j, r, l) we define the function h
(i,j,r,l)
a,b,tn

: (Rm)α → R, where
α = α(i, j, r, l) = 4k − i − j − r + l, as follows:

h
(i,j,r,l)
a,b,tn

(x1, ..., xα) = hΓa,tn(x
(1)
k−i,x

(2)
i−r,x

(3)
r−l,x

(4)
l )hΓb,tn(x

(5)
k−j ,x

(6)
j−r,x

(3)
r−l,x

(4)
l )× (4.3)

×hΓa,tn(x
(7)
k−i,x

(2)
i−r ,x

(3)
r−l,x

(8)
l )hΓb,tn(x

(9)
k−j ,x

(6)
j−r ,x

(3)
r−l,x

(8)
l ), (4.4)

where the bold letters represent multidimensional variables providing a lexicographic decomposition of

(x1, ..., xα). For instance, one has that x
(1)
k−i = (x1, ..., xk−i), x

(2)
i−r = (xk−i+1, ..., xk−r), and so on, in

such a way that (x
(1)
k−i,x

(2)
i−r,x

(3)
r−l,x

(4)
l ,x

(5)
k−j ,x

(6)
j−r,x

(7)
k−i,x

(8)
l ,x

(9)
k−j) = (x1, ..., xα), and we set x

(a)
p equal

to the empty set whenever p = 0. Observe that each function h
(i,j,r,l)
a,b,tn

is bounded by 1/k!4, and that the

connectedness of the graphs Γa,Γb yields that the mapping (x2, ..., xα) 7→ h
(i,j,r,l)
a,b,1 (0, x2, ..., xα), where

0 stands for the origin, has compact support. Writing explicitly the squared contractions inside the
integral, one sees that ‖ha,n,i ⋆lr hb,n,j‖2L2(µi+j−r−l

n )
is a multiple (with coefficient independent of n) of

nα
∫

(Rm)α
h
(i,j,r,l)
a,b,tn

(x1, ..., xα)f(x1) · · · f(xα)dx1 · · · dxα.

Applying the change of variables x1 = x and xi = tnyi+x, for i = 2, ..., α, the above expression becomes

nα(tmn )α−1

∫

Rm

f(x)

∫

(Rm)α−1

h
(i,j,r,l)
a,b,1 (0, y2, ..., yα)f(x + tny2) · · · f(x+ tnyα)dxdy2 · · · dyα.

Since, by dominated convergence, the integral on the RHS in the previous equation converges to the
constant ∫

Rm

fα(x)dx

∫

(Rm)α−1

h
(i,j,r,l)
a,b,1 (0, y2, ..., yα)dy2 · · · dyα,

we deduce that ‖ha,n,i ⋆lr hb,n,j‖2L2(µi+j−r−l
n )

= O
(
nα(tmn )α−1

)
. Since

nα(tmn )α−1 = nk(tmn )k−1(ntmn )α−k

and α − k ≥ 1 for every possible choice of i, j, r, l, we immediately deduce the desired conclusion for
α1(λn, V

′
n) and the first part of α3(V

′
n).

To deal with α2(V
′
n) and the second part of α3(V

′
n), we apply the Cauchy-Schwarz inequality to write,

for every a, b = 1, ..., d,

E

∫

Rm

∣∣DzG
′
n(Γa) (DzG

′
n(Γa)− 1)DzL

−1G′
n(Γb)

∣∣µn(dz) ≤
√
A(a, n)×B(b, n),

where A(a, n) = E
∫
Rm DzG

′
n(Γa)

2 (DzG
′
n(Γa)− 1)

2
µn(dz) and

B(b, n) = E

∫

Rm

[DzL
−1G′

n(Γb)]
2µn(dz).

One can easily verify that the sequence n 7→ B(b, n) is bounded (this is a consequence of the fact that
G′
n(Γb) lives in a finite sum of Wiener chaoses). It follows that, in order to obtain the desired rate of

convergence for this part, we just have to prove that, as n → ∞, A(a, n) = O (ntmn ). To do this, one
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applies again the multiplication formula (1.3) (for every fixed z ∈ Rm) to deduce that, by virtue of the
fact that hΓa,tn has the special form of an indicator multiplied by the factor k!−1,

DzG
′
n(Γa)(DzG

′
n(Γa)− 1) (4.5)

=

k∑

i=1

k∑

j=1

ij

i∧j−1∑

r=0

r!

(
i− 1

r

)(
j − 1

r

) r∑

l=0

(
r

l

)
1{(i,j,r,l) 6=(k,k,k−1,0)} × (4.6)

×Ii+j−2−r−l(ha,n,i(z, ·) ⋆lr ha,n,j(z, ·))

−
k−1∑

t=1

tIt−1(ha,n,t(z, ·)) :=
∑

γ∈U

ξγ(z).

In the last equality, the set U represents the class of all indices (i, j, r, l) and t involved in the representa-
tion of DzG

′
n(Γa)(DzG

′
n(Γa)− 1), whereas ξγ is the corresponding multiple integral process multiplied

by the appropriate coefficient. To conclude, we apply the triangle inequality to deduce that

√
A(a, n) ≤

∑

γ∈U

√

E

[∫

Rm

ξ2γ(z)µn(dz)

]
. (4.7)

We will show how to deal with the quadruple (i, j, r, l) = (k, k, k − 1, k − 1), which requires additional
arguments than the others (which can be addressed in a straightforward way). In the particular case
where (i, j, r, l) = (k, k, k − 1, k − 1), we are looking at the term

ξk,k,k−1,k−1(z) = k2(k − 1)!ha,n,k(z, ·) ⋆k−1
k−1 ha,n,k(z, ·).

Thus, we have

E

[∫

Rm

ξ2k,k,k−1,k−1(z)µn(dz)

]
= kk!

∫

Rm

[
ha,n,k(z, ·) ⋆k−1

k−1 ha,n,k(z, ·)
]2
µn(dz)

= kk!

∫

Rm

(∫

(Rm)k−1

h2a,n,k(z, y1, ..., yk−1)µ
k−1
n (dy1, ..., dyk−1)

)2

µn(dz).

Using the fact that ha,n,k = hΓa,tn along with the fact that hΓa,tn has the form of an indicator function
and finally recalling the definition of ha,n,1 given by (4.2), we can write

E

[∫

Rm

ξ2k,k,k−1,k−1(z)µn(dz)

]
= (k − 1)!

∫

Rm

h2a,n,1(z)µn(dz) = (k − 1)!‖ha,n,1‖2L2(µn).

The analysis of the contraction carried out in the previous steps of the proof allow us to conclude that
this quantity goes to zero at the correct rate when n goes to infinity (it corresponds to the (1, 1, 1, 1)–
contraction). Representing each remaining expectations in (4.7) as a contraction, and applying a change
of variables analogous to the one described above gives the global and desired rate of convergence for
α2(V

′
n) as well as for the second part of α3(V

′
n).

We now deal with the third and last part of α3(V
′
n). Applying the same strategy, we can write, for

every a, b, c = 1, ..., d with a 6= b,

E

∫

Rm

∣∣DzG
′
n(Γa)DzG

′
n(Γb)DzL

−1G′
n(Γc)

∣∣µn(dz) ≤
√
C(a, b, n)×D(c, n),
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where C(a, b, n) = E
∫
Rm DzG

′
n(Γa)

2DzG
′
n(Γb)

2µn(dz) and

D(c, n) = E

∫

Rm

[DzL
−1G′

n(Γc)]
2µn(dz).

Again, the sequence n 7→ D(c, n) is bounded and we can write, for a 6= b,

DzG
′
n(Γa)DzG

′
n(Γb) (4.8)

=

k∑

i=1

k∑

j=1

ij

i∧j∑

r=1

(r − 1)!

(
i− 1

r − 1

)(
j − 1

r − 1

) r∑

l=1

(
r − 1

l − 1

)
Ii+j−r−l(ha,n,i(z, ·) ⋆l−1

r−1 hb,n,j(z, ·)) (4.9)

:=
∑

γ∈I

ζγ(z).

In the last equality, the set I represents the class of all indices (i, j, r, l) involved in the representation
of DzG

′
n(Γa)DzG

′
n(Γb), whereas ζγ is the corresponding multiple integral process multiplied by the

appropriate coefficient. This case is very similar to the previous one and the techniques used to prove
that each of these expectation converge to zero as the correct rate are the same. However, there is
one additional term that was not present in the case of α2(V

′
n). This is the term corresponding to the

quadruple (i, j, r, l) = (k, k, k − 1, 0). We will detail this particular case. We have

E

[∫

Rm

ζ2k,k,k−1,0(z)µn(dz)

]
= E

∫

Rm

k4I2k−1

(
ha,n,k(z, ·) ⋆0k−1 hb,n,k(z, ·)

)
µn(dz)

= k4(k − 1)!

∫

Rm

∫

(Rm)k−1

h2Γa,tn(z, y1, ..., yk−1)h
2
Γb,tn(z, y1, ..., yk−1)µ

k−1
n (dy1, ..., dyk−1)µn(dz).

Using the fact that hΓa,tn and hΓb,tn have the form of indicator functions, we finally get

E

[∫

Rm

ζ2k,k,k−1,0(z)µn(dz)

]
= k3k! 〈hΓa,tn , hΓb,tn〉L2(µk

n)
,

which is zero because Γa and Γb are not isomorphic (hΓa,tn and hΓb,tn cannot be non–zero at the same
time or Γa and Γb would both be isomorphic to the same graph rendering them isomorphic to one
another). This concludes the analysis of the term α3(V

′
n).

It remains to deal with β(V ′
n, G̃

′
n(Γ0)). Using relation (2.10) with ǫ = 3, we can write

E
〈
|DG′

n(Γa)|, |DL−1G̃′
n(Γ0)|

〉

L2(µn)
≤ E

[
[DG′

n(Γa)]
2
] 3

4 × E

[[
DL−1G̃′

n(Γ0)
]4] 1

4

.

The term E
[
[DG′

n(Γa)]
2
] 3

4

is bounded and it remains to show that the term E

[[
DL−1G̃′

n(Γ0)
]4] 1

4

goes

to zero as n goes to infinity. For this, we will refer to [26, Section 3] where the rate of convergence of the

term γ2(G̃
′
n(Γ0)) is obtained by bounding it by a constant multiplied by

√
E
∫
Rm

[
DL−1G̃′

n(Γ0)
]4
µn(dz).

It is then showed that this last term goes to zero at a rate of O
(
n−

k−k0
2(k−1)

)
. The difference here lies in

the fact that the square root is replaced by a power 1
4 , yielding a rate of convergence of O

(
n−

k−k0
4(k−1)

)
.
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When putting together all the rates of convergence for the different terms in the general bound, one sees
that

d⋆(Vn, Hn) ≤ A
√
ntmn +Bn−

k−k0
4(k−1) = O

(
n− 1

2(k−1) + n−
k−k0
4(k−1)

)
,

where A and B are positive constants that do not depend on n. This concludes the proof.
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[51] J. Rosiński and G. Samorodnitsky (1999). Product formula, tails and independence of multiple
stable integrals. In: Progress in Probability 45, Biekaäuser, 249-259.
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A Appendix

Throughout the Appendix, (Z,Z ) denotes a Borel space endowed with a non-atomic σ-finite Borel
measure µ. We write η to indicate a Poisson measure on Z with control µ. As in the main text, η is
assumed to be defined on some probability space (Ω,F ,P) such that F is the P-completion of σ(η). We
also write L2(P) = L2(Ω,F ,P).

A.1 Malliavin operators

We now define some Malliavin-type operators associated with the Poisson measure η. We follow the
work by Nualart and Vives [32].

The derivative operator D.

For every F ∈ L2(P), the derivative of F , DF is defined as an element of L2(P;L2(µ)), that is, of the
space of the jointly measurable random functions u : Ω× Z → R such that E

[∫
Z u

2
zµ(dz)

]
<∞.

Definition A.1 1. The domain of the derivative operatorD, written domD, is the set of all random
variables F ∈ L2(P ) admitting a chaotic decomposition (1) such that

∑

k≥1

kk!‖fk‖2L2(µk) <∞,

2. For any F ∈ domD, the random function z 7→ DzF is defined by

DzF =
∞∑

k≥1

kIk−1(fk(z, ·)).

The divergence operator δ.

Thanks to the chaotic representation property of η, every random function u ∈ L2(P, L2(µ)) admits a
unique representation of the type

uz =

∞∑

k≥0

Ik(fk(z, ·)), z ∈ Z, (A.1)

where the kernel fk is a function of k+1 variables, and fk(z, ·) is an element of L2
s(µ

k). The divergence
operator δ(u) maps a random function u in its domain to an element of L2(P ).
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Definition A.2 1. The domain of the divergence operator, denoted by domδ, is the collection of all
u ∈ L2(P,L2(µ)) having the above chaotic expansion (A.1) satisfied the condition:

∑

k≥0

(k + 1)!‖fk‖2L2(µ(k+1)) <∞.

2. For u ∈ domδ, the random variable δ(u) is given by

δ(u) =
∑

k≥0

Ik+1(f̃k),

where f̃k is the canonical symmetrization of the k + 1 variables function fk.

As made clear in the following statement, the operator δ is indeed the adjoint operator of D.

Lemma A.1 (Integration by parts) For every G ∈ domD and u ∈ domδ, one has that

E[Gδ(u)] = E[〈DG, u〉L2(µ)].

The proof of Lemma A.1 is detailed e.g. in [32].

The Ornstein-Uhlenbeck generator L.

Definition A.3 1. The domain of the Ornstein-Uhlenbeck generator, denoted by domL, is the
collection of all F ∈ L2(P) whose chaotic representation verifies the condition:

∑

k≥1

k2k!‖fk‖2L2(µk) <∞

2. The Ornstein-Uhlenbeck generator L acts on random variable F ∈ domL as follows:

LF = −
∑

k≥1

kIk(fk).

The pseudo-inverse of L.

Definition A.4 1. The domain of the pseudo-inverse of the Ornstein-Uhlenbeck generator, denoted
by L−1, is the space L2

0(P) of centered random variables in L2(P).

2. For F =
∑
k≥1

Ik(fk) ∈ L2
0(P) , we set

L−1F = −
∑

k≥1

1

k
Ik(fk).
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A.2 Contractions

Contraction operators play a crucial role in multiplication formulae and in the computation of expec-
tations involving powers of functionals of the Poisson measure η. In what follows, we shall define these
operators and discuss some of their basic properties. The reader is referred e.g. to [40, Sections 6.2 and
6.3] for further details.

The kernel f ⋆lr g on Zp+q−r−l, associated with functions f ∈ L2
s(µ

p) and g ∈ L2
s(µ

q), where p, q ≥ 1,
r = 1, . . . , p ∧ q and l = 1, . . . , r, is defined as follows:

f ⋆lr g(γ1, . . . , γr−l, t1, , . . . , tp−r, s1, , . . . , sq−r) (A.2)

=

∫

Zl

µl(dz1, ..., dzl)f(z1, , . . . , zl, γ1, . . . , γr−l, t1, , . . . , tp−r)

×g(z1, , . . . , zl, γ1, . . . , γr−l, s1, , . . . , sq−r).

Roughly speaking, the star operator ‘ ⋆lr ’ reduces the number of variables in the tensor product of f and
g from p+ q to p+ q − r − l: this operation is realized by first identifying r variables in f and g, and
then by integrating out l among them. To deal with the case l = 0 for r = 0, . . . , p ∧ q, we set

f ⋆0r g(γ1, . . . , γr, t1, , . . . , tp−r, s1, , . . . , sq−r)

= f(γ1, . . . , γr, t1, , . . . , tp−r)g(γ1, . . . , γr, s1, , . . . , sq−r),

and

f ⋆00 g(t1, , . . . , tp, s1, , . . . , sq) = f ⊗ g(t1, , . . . , tp, s1, , . . . , sq) = f(t1, , . . . , tp)g(s1, , . . . , sq).

The kernel f ⋆lr g is called the contraction of index (r, l) between f and g. The above introduced ‘star
notation’ is standard, and has been first used by Kabanov in [23] (see also Surgailis [59]). Plainly, for
some choice of f, g, r, l the contraction f ⋆lr g may not be well-defined. The contractions of the following
three types are well-defined (although possibly infinite) for every 1 ≤ p ≤ q and every pair of kernels
g ∈ L2

s(µ
p), f ∈ L2

s(µ
q):

(a) f ⋆0r g(z1, ...., zp+q−r), where r = 0, ...., p;

(b) f ⋆lq f(z1, ..., zq−l) =
∫
Zl f

2(z1, ..., zq−l, ·)dµl, for every l = 1, ..., q;

(c) f ⋆rr g, for r = 0, ...., p.

In particular, a contraction of the type f ⋆lq f , where l = 1, ..., q − 1 may equal +∞ at some point
(z1, ..., zq−l). The following (elementary) statement ensures that any kernel of the type f ⋆rr g is square-
integrable.

Lemma A.2 Let p, q ≥ 1, and let f ∈ L2
s(µ

q) and g ∈ L2
s(µ

p). Fix r = 0, ..., q ∧ p. Then, f ⋆rr g ∈
L2(µp+q−2r).
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