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Portmanteau inequalities on the Poisson space:
mixed regimes and multidimensional clustering

by Solesne Bourguin* and Giovanni Peccatif
Université du Luxembourg

Abstract: Using Malliavin operators together with an interpolation technique inspired by Arratia,
Goldstein and Gordon (1989), we prove a new inequality on the Poisson space, allowing one to measure
the distance between the laws of a general random vector, and of a target random element composed of
Gaussian and Poisson random variables. Several consequences are deduced from this result, in particu-
lar: (1) new abstract criteria for multidimensional stable convergence on the Poisson space, (2) a class
of mixed limit theorems, involving both Poisson and Gaussian limits, (3) criteria for the asymptotic in-
dependence of U-statistics obeying to Gaussian and Poisson asymptotic regimes. Our results generalize
and unify several previous findings in the field. We provide an application to joint sub-graph counting
in random geometric graphs.

Key words: Chen—Stein Method; Contractions; Malliavin Calculus; Poisson Limit Theorems; Poisson
Space; Random Graphs; Total Variation Distance; Wiener Chaos
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1 Introduction and framework

1.1 Overview

The well-known Portmanteau Theorem of measure theory (see e.g. [6, p. 15 fI.]) is a powerful statement,
providing several necessary and sufficient conditions in order for a sequence of probability measures on
a metric space to converge weakly towards some limit. The term ‘portmanteau’ indicates that these
conditions have a priori different natures, in such a way that they appear as artificially packed together
at first reading.

The aim of this paper is to prove and apply a new portmanteau inequality, involving vectors of random
variables that are functionals of a Poisson measure defined on a general space. This estimate — which
is formally stated in formula (2.9) below — is expressed in terms of Malliavin operators, and basically
allows one to measure the distance between the laws of a general random element and of a random vector
whose components are in part Gaussian and in part Poisson random variables. As we shall abundantly
illustrate in the sequel, the inequality (2.9) is a genuine ‘portmanteau statement’ — in the sense that it can
be used to directly deduce a number of new results about the convergence of random variables defined
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on a Poisson space, as well as to recover known ones. These results span a wide spectrum of asymptotic
behaviors that are dealt with for the first time in a completely unified way. Apart from Malliavin calculus
(that we apply in a form analogous to the one developed by Nualart and Vives in [32]), our techniques
involve the use of the Chen-Stein method (see e.g. [3]), and provide a substantial refinement of several
recent contributions concerning Central Limit Theorems (CLTs) and Poisson approximation results on
the Poisson space (see [25, 26, 33, 35, 42, 49, 55]). One of our main technical tool is an interpolation
technique used in [3] for proving multidimensional Poisson results. See e.g. [30, 31] for a discussion of
the use of Stein-Malliavin techniques on a Gaussian space.

As the title indicates, the two new main theoretical applications developed in the sequel are the following;:

— Mized limits: Our results allow to deduce quantitative limit theorems (that is, limit theorems
with explicit information on the rate of convergence), where the target distribution is a multi-
dimensional combination of independent Gaussian and Poisson components. This new class of
approximation results is described in Section 2.1. They will be applied both to characterize the
asymptotic independence of general U-statistics (see Section 2.3), and to subgraph counting in
stochastic geometry (see Section 2.4). By virtue of an approximation argument borrowed from
[15], part of the results discussed in Section 2.3 extends to de-poissonized U-statistics.

— Multi-dimensional Poisson convergence: A particular choice of parameters in our main estimates
allows one to deduce multidimensional Poisson approximation results, having moreover a stable
nature — in the classic sense of [2, 50]. This substantially generalizes the one-dimensional findings
of [33]. See Section 2.2.1 and Section 2.2.2, respectively, for general statements and for applications
to sequences of multiple Wiener-Ito integrals, as well as for several comparisons with the CLTs
established in [35, 42]. One should note that this type of Poisson approximation results has found
a number of applications in stochastic geometry, see [57].

The basic intuition underlying our approach is the following: in order to properly understand the
connections between Poisson approximations and CLTs in the context of random point measures, it
is very much instructive to study probabilistic models where Poisson and Gaussian random structures
emerge simultaneously in the limit. The present paper demonstrates how Portmanteau inequalities
provide the correct tool for accomplishing this task in a fully multidimensional setting.

We will illustrate our findings by completely developing an application to random geometric graphs, as
described in Section 2.4 and Section 4. In particular, two results will be achieved: (i) a new bound for
the multidimensional Poisson approximation of subgraph-counting statistics, and (ii) a proof of a new
mixed limit theorem involving the joint convergence of vectors of subgraph-counting statistics exhibiting
both a Poisson and a Gaussian behavior. Our results extend several findings in the field — see [5, 22, 43].

Remark 1.1 Due to the use of the Chen-Stein method, one of the main technical difficulties in develop-
ing our results has been the choice of a “good” version of a discrete multivariate Taylor-type expansion
for functions defined on the set Z‘fr =1{0,1,2,...}4, d > 2. The formula that best fits our approach ap-
pears in Lemma 3.1: it provides a representation of the remainder as a double sum, where diagonal and
non-diagonal terms play asymmetric roles. Our analysis implicitly shows that such a formula virtually
encodes all the combinatorial subtleties involved in the derivation of Poisson approximation results on
the Poisson space. See Barbour [4] for several applications of univariate discrete Taylor formulae to the
computation of factorial moments and cumulants.

The remainder of the paper is organized as follows. The next subsection contains a formal description
of our framework: it is mostly standard material, so that a reader already familiar with the notation of



[25, 26, 35, 42] can skip it at first. Section 2 contains a detailed discussion of the main theoretical results
of the paper, as well as of the applications. Section 3 is devoted to the proofs of our general theorems,
whereas Section 4 contains the proofs of our results about random graphs. An Appendix contains basic
notions about Malliavin operators and contractions.

1.2 Framework

In what follows, we shall denote by (Z, 2, u) a measure space such that Z is a Borel space, & is the
associated Borel o-field, and p is a o-finite Borel measure with no atoms. We write &, = {B € Z :
u(B) < oo}. The notation n = {n(B) : B € %,} is used to indicate a Poisson measure on (Z, Z)
with control (or intensity) p. This means that 7 is a collection of random variables defined on some
probability space (£2,.#,P), indexed by the elements of 2}, and such that: (i) for every B,C € Z,, such
that BN C = @, the random variables n(B) and 7(C) are independent; (ii) for every B € %, n(B) has
a Poisson distribution with mean p(B). We shall also write

N(B) =n(B) —u(B), BeZ,

and 7 = {7(B) : B € Z,}. A random measure verifying property (i) is usually called “completely
random” or “independently scattered” (see e.g. [40, 53] for a general introduction to these concepts,
and for a discussion of any unexplained definition or result).

Remark 1.2 (The probability space) (i) In view of the assumptions on the space (Z, %, i), and
to simplify the discussion, we will assume throughout the paper that (Q,.%,P) and 7 are such
that

Q= w:Z(;Zj,nENU{oo},szZ ,
j=1

where 0, denotes the Dirac mass at z, and 7 is defined as the canonical mapping
(w,B) »n(B)(w) =w(B), Be%Z, wel

Also, the o-field .# will be always supposed to be the o-field generated by 7, and we will write
L?(P) = L?(Q, #,P). Note that the fact that u is non-atomic implies that, for every = € Z,
P{n{z} =0orl1}=1.

(ii) As usual, by a slight abuse of notation, we shall often write € 7 in order to indicate that the
point « € Z is charged by the random measure 7(-).

Throughout the paper, for p € [1,00), the symbol L?(u) is shorthand for LP(Z, %, 11). For an integer ¢ >
2, we shall write LP(u?) := LP(Z%, Z®1, u?), whereas LP(u?) stands for the subspace of L?(u4) composed
of functions that are p?-almost everywhere symmetric. Also, we adopt the convention LP(u) = LP(u) =
LP(u') = L2(p') and use the following standard notation: for every ¢ > 1 and every f,g € L?(u?),

<fag>L2(,uq) :/Z f(zl,...,zq)g(zl,...,zq),uq(dzl,...,dzq), ||f||L2(#q) = <f’f>2/22(uq)

For every f € L?(u9), we denote by fthe canonical symmetrization of f, that is,

1
f(wla' s ,(Eq) = Ez.f(xa'(l)a '7‘rd(q))a
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where o runs over the g! permutations of the set {1,...,q}. Note that ||f||L2(Mq) < | fllz2(uay (to see
this, use for instance the triangular inequality) .

Definition 1.1 For every deterministic function h € L?(u), we write

1(h) = (k) = / h(2)i(dz)

Z

to indicate the Wiener-Ito integral of h with respect to 7. For every ¢ > 2 and every f € L%(u9),
we denote by I,(f) the multiple Wiener-Ité integral, of order ¢, of f with respect to 7. We also set

I,(f) = 1,(f), for every f € L?(u?) (not necessarily symmetric), and Io(b) = b for every real constant b.

The reader is referred for instance to [40, Chapter 5] or [47] for a complete discussion of multiple

Wiener-It6 integrals and their properties (including the forthcoming Proposition 1.1 and Proposition
1.2).

Proposition 1.1 The following equalities hold for every q,m > 1, every f € L%(u9) and every g €
Li(u™):

1. E[I,(f)] =0,

2. E[I,(/)In(9)] = q'{f, g>L2(uq)]l{q:m} (isometric property).

The Hilbert space composed of the random variables of the form I,(f), where ¢ > 1 and f € L?(u%), is
called the gth Wiener chaos associated with the Poisson measure 7. The following well-known chaotic
representation property is an essential feature of Poisson random measures. Recall that .% is assumed
to be generated by 7.

Proposition 1.2 (Wiener-Itd chaotic decomposition) Every random variable F € L*(P) admits
a (unique) chaotic decomposition of the type

F:E[F]Jrzli(fi)a (1.1)

where the series converges in L*(P) and, for each i > 1, the kernel f; is an element of L?(u®).

Remark 1.3 (About Malliavin calculus) For the rest of the paper, we shall use definitions and
results related to Malliavin-type operators defined on the space of functionals of the Poisson measure 7.
Our formalism is the same as in Nualart and Vives in [32]. In particular, we shall denote by

D,é, L and L1,

respectively, the Malliavin derivative, the divergence operator, the Ornstein-Uhlenbeck generator and
its pseudo-inverse. The domains of D, § and L are denoted by domD, domé and domL. The domain
of L=t is given by the subclass of L?(IP) composed of centered random variables. For the convenience
of the reader we have collected some crucial definitions and results in Section A.1 of the Appendix.
Here, we just recall that, since the underlying probability space {2 is assumed to be the collection
of discrete measures described in Remark 1.2, then one can meaningfully define the random variable
wr F(w) = Flw+0d,), w € Q, for every given random variable F' and every z € Z, where §, is the



Dirac mass at z. One can therefore prove the following neat representation of D as a difference operator
is in order: for each F' € domD,

D,F =F,—F, ae-u(dz). (1.2)
Observe that the notation F,(w) = F(w + §,) extends canonically to multivariate random elements. A

complete proof of this point can be found in [32].

The next statement contains an important product formula for Poisson multiple integrals (see e.g. [40] for
a proof). Note that the statement involves contraction operators of the type x.: the reader is referred to
Appendix A.2 for the definition of these operators, as well as for a discussion of some relevant properties.

Proposition 1.3 (Product formula) Let f € L?(pP) and g € L?(u9), p,q > 1, and suppose moreover
that f+l. g € L2(uP*ta="=Y) for everyr =1,...,pAq and 1 = 1,...,7 such that | # r. Then,

o) =3 (2)() ; (7 ) treaert (7953) (1.3

r=0

with the tilde ~ indicating a symmetrization, that is,

1
frlg(@y, .. xprgra) = mz f *’lr 9(950(1)’ “ee 7xa(p+q7r7l))a

where o runs over all (p + q — r —1)! permutations of the set {1,....p+q—1 —1}.

Assumption 1.1 (Technical assumptions on kernels) In the sequel, whenever we consider a ran-
dom vector of the type

(Igy (f1)s s Iq(fa)), Where d > 1, ¢; > 1, fi € L3(u%),
we will implicitly assume that the following properties (1)-(3) are verified.
(1) For every i = 1,...,d and every r = 1, ..., g;, the kernel f; *ir fi is an element of L2(u").
(2) For every i such that g; > 2, every contraction of the type (21, ..., z2g,—r—1) = | fil %L fil (21, -+ 2245 —r—1)
is well-defined and finite for every r = 1,...,¢;, every [ = 1,...,r and every (z1,..., 22q;—r—1) €

Zqu—T—l

(3) For every i,j = 1,...,d such that max(g;,q;) > 1, for every k = |¢; — ¢;| V1,....,q; + ¢; — 2 and
every (r,l) verifying k =¢; +¢; —2 —r — 1,

/

where, for every fixed z € Z, the symbol f;(z, -) denotes the mapping (#1, ..., z2g—1) > fi(2, 21, ..., 2g—1)-

\/ | (G st pi o dit | i) < .

Remark 1.4 According to [42, Lemma 2.9 and Remark 2.10], Point (1) in Assumption 1.1 implies that
the following properties (a)-(c) are verified:

(a) for every 1 <i < j <k, for every r = 1,...,¢; Agj and every | = 1,...,7, the contraction f; . f; is
a well-defined element of L?(pdi+%—=1);



(b) for every 1 <i < j <k andevery r=1,...,q;, f; x f; is an element of L?(u%¥%~");

(c) for every i =1,...,k, for every r = 1,...,q;, and every = 1,....;7 A (¢; — 1), the kernel f; «. f; is a
well-defined element of L2(p2%~"=1).

In particular, every random vector verifying Assumption 1.1 is such that I, (f;)? € L?(P) for every
i =1,...,k,. Note that Assumption 1.1 is verified whenever the kernels f; are bounded functions with
support in a rectangle of the type B X --- X B, u(B) < o0.

2 Discussion of the main results

2.1 General bounds and mixed regimes

Fix two integers d, m. Observe that, in the discussion to follow, one can take either d or m to be zero,
and in this case every expression involving such an index is set equal to zero by convention. Our main
results involve the following objects:

— A vector \j = (A, ..., A\g) of strictly positive real numbers, as well as a random vector
Xd = (X(l)a ey X(d)) ~ Pod(Alv ey )\d)v
that is, the elements of X4 are independent and such that X® has a Poisson distribution with

parameter \;, for every i = 1, ...,d.

— A m x m covariance matrix C = {C(i,5) : i,j = 1,...,m}, and a vector N,,, = (N, ..., N(™)) ~
Nm(0,C), that is, N, is a m-dimensional centered Gaussian vector with covariance C'. We will
write H to indicate the (d + m)-dimensional random element

H = (X4, N,u). (2.1)
We shall also assume that X4 L N,,, where the symbol “1” indicates stochastic independence,
and also that H L 7, where n is the underlying Poisson measure.

— A vector Fg = (F ... F(9) of random variables with values in Z, such that, for every i =
1,...,d, F9 € domD and E(F;) = \;.

A vector G,,, = (G, ..., GU™) of centered elements of domD. We use the notation

V = (Fu,Go). (2.2
Note that, by definition, V' is o(n)-measurable.

Remark 2.1 Every asymptotic result stated in the present paper continues to hold if one allows the
Poisson measure 7, as well as the underlying Borel measure space (Z, %, 11), to depend on the parameter
n diverging to infinity.

Our principal statement consists in an inequality allowing one to measure the distance between the laws
of H and V. To do this, we shall need the following quantities, that are defined in terms of the Malliavin
operators introduced above:



d
Fq) = E\ — (DF® —pL=tFt) 2.
al()‘da d) ; )‘Z < ) >L2(H) ( 3)
as(Fy) = ZE/ ‘DZF@) (DZF(”fl) D.L7YFD| p(dz) (2.4)
i=1 7Z
as(Fg) == Y ]E‘<DF(1'),DL1F(J')> ] (2.5)
1<i#j<d )
+ 3 /‘DF (D-F9 —1) DL~ PO u(dz)
1<i#j5<d
+ ) ZE/‘D FOD,F® D, LIFO] 1(dz)
1<j#k<d i=1
d m
Fy,G,) = DL 'GY)|,|DF® 2.6
B(F4,G,) g: E(] LDEO) (2.6)
Gn) = D —-DL~ g™ 2.
nOGw) = 3B i) - (D6Y ¢y (2.7
2
12(G) = IE/Z Z‘DZGU')‘ Z‘DZL*G@’ p(dz). (2.8)
j=1 j=1

As we will illustrate in great detail below, the coefficients introduced in (2.3)—(2.8) should be interpreted
as follows: (i) the sum a3 (A\g, Fq) + a2(F4) has the form Zle a;, where each a; measures the distance
between the laws of F() and X, (i) ag(F4) measures the independence between the elements of F,
(iii) the sum v (C, Gp,) + 72(Gy,) measures the distance between the laws of Gy, and N,,, and (iv)
B(Fq4, G,,) provides an estimate of how independent F; and G, are. Observe that Ay and C appear,
respectively, only in a3 and 7. Also, one should note the asymmetric roles played by G,, and Fy in
the definition of S(F4, Gp).

Remark 2.2 A further connection between the quantity (2.6) and the ‘degree of independence’ of Fy
and G, can be obtained by combining the integration by parts formula of Lemma A.1 with the standard
relation L = =D, yielding that, for every j =1,...mand i =1,...,d

3

E [<DG<J‘>,—DL—1F<i>>L ( J —E [<—DL‘1G(j),DF(i)> = Cov(GW, FO).
2(p

LZ(M):|

A similar remark applies to the terms in a3(Fy). The fact that the dependence structure of the elements
of the vector V' can be assessed by means of a small number of parameters is a remarkable consequence of
the use of the Stein and Chen-Stein methods, as well as of the integration by parts formulae of Malliavin
calculus. In general, characterizing independence on the Poisson space is a very delicate (and mostly
open) issue — see e.g. [46, 48, 51].

We are now ready to state the main result of the paper, namely Theorem 2.1. The remarkable fact
pointed out in its statement is that the above introduced coefficients can be linearly combined in order



to measure the overall proximity of the laws of H and V. Observe that the estimate (2.9) involves an
“adequate” distance d,(H,V) between the laws of the R¥*™-valued random elements H and V. The
exact definition of such a distance (which will be always a distance providing a stronger topology than
the one of convergence in distribution on R?*™) depends on the values of the integers d, m, as well as
on the nature of the covariance matrix C, and will be formally provided in Section 3 (see, in particular,

Definition 3.2 and Definition 3.3). For the rest of the paper, we will use the symbol ¢ 9 ¢ indicate
convergence in distribution.

Theorem 2.1 (Portmanteau inequality and mixed limits) Let the above assumptions and nota-
tion prevail.

1. For every d,m there exists an adequate distance d,(-,-), as well as a universal constant K (solely
depending on \g and C), such that

do(H,V) < K{a1(Ma,Fa) + a2(Fg) + a3(Fq) + 8(Fa, G) +71(C, Gp) +72(G)} . (2.9)

2. Assume Hp = (Fgn,Gmn), n > 1, is a sequence of (d + m)-dimensional random vectors such
that: (a) for every n, Fg, = (Fél), ey F,(ld)) is a vector of Z, -valued elements of domD verifying
Ai(n) = E[F,gz)] — i, (b) for every n, G, = (G%l),...,G%m)) is a sequence of centered

n—oo

elements of domD werifying Cy(i,7) = E[G?Gg)] — C(i,7) for i,j = 1,....m, and (c) as
n—oo
n — 0o,

al()\d,n; Fd,n) + a2 (Fd,n) + (0% (Fd,n) + ﬁ(Fd,na Gm,n) + ’yl(Cn; Gm,n) + WQ(Gm,n) — 0;

where Agn, = (A1 (n), ..., Aa(n)), and C,, = {Cy(i,5) 4,5 = 1,...,n}. Then, H, lay V', where the
convergence takes place in the sense of the distance dy(-,-).

The proof of Theorem 2.1, together with a detailed statement, is provided in Section 3.2: some direct
applications of the mixed limit theorem appearing in Part 2 of its statement are described in Sections
2.4 and 4, providing applications to random geometric graphs. Observe that the rest of our paper
consists indeed in a series of applications of the estimate (2.9), obtained by properly selecting A4, C, Fg4
and G,,: we will use this inequality to settle a number of open questions concerning probabilistic
approximations on the Poisson space. The principal theoretical applications of Theorem 2.1 developed
in the present work — namely to multidimensional Poisson approximations and asymptotic independence
— are described in the next Sections 2.2-2.3.

Remark 2.3 Specializing (2.9) to the case m = 1,d = 0, one obtains the main estimate in [35],
concerning normal approximations of Poisson functionals in dimension one. In the case m > 2, d = 0,
(2.9) coincides with the main inequality proved in [42], where the authors studied multidimensional
normal approximations on the Poisson space. Finally, the case d = 0, m = 1 corresponds to the one-
dimensional Poisson approximation result proved in [33].

Remark 2.4 (About constants) By inspection of the forthcoming proof of Theorem 2.1, the constant
K appearing in formula (2.9) can be taken to be have the following structure:
— If m=1and d>1 (in this case, C is a strictly positive constant),

1+2\/27rJr 1—e A +1—ef)‘i
C il i A2 ’

K =6+

where maxy = 0 by convention.



— Ifd>1,m > 2, then

1—e N 1—e N
K11+i_nll,2.l.).(,d{ N + 2 }

K2

— If d > 1 and m = 0, then

IL—e ™  1—eM
K:6x1d>1+i_r111’§.)id{ N + )\12 }

(the case d =1 follows from [33]).

The values of the constants in the remaining cases (that is, when d is equal to zero) can be deduced
form the main results of [35, 42].

We conclude this subsection with a refinement of Theorem 2.1-2, providing useful sufficient conditions
in order to have that the mixed term B(Fg n, Gm,n) converges to zero.

Proposition 2.1 Assume Hp, = (Fan,Gmn), n > 1, is a sequence of (d + m)-dimensional random
vectors such that Fq, = (Frgl),...,Féd)) is a vector of Zi-valued elements of domD and Gy, , =

(G%l), ...,G%m)) is a sequence of centered elements of domD. Then, the following two conditions are
sufficient in order to have that lim B(F4n, Gum.n) = 0:
n—oo

)

N2
— For every i =1,...,d, the sequence n — E {fz (DZFS)) ,u(dz)} 18 bounded;
() 1+4e¢
— There exists € > 1 such that, for every j =1,...,m, lim E {fz ‘DZL_lan ‘ u(dz)] =0;
n—oo

Proof. For every i, j, one can apply the Holder inequality to deduce that

€ 1

Lie T+e L 11+e Tte
u(dz)] x]EUZ\DZL—le u(dz)} . (2.10)

B(ipr 60 ipr0) <k [ |p.rp
L2(p) Z

1t

. N N2
and use the fact that, since D,F® takes values in Z, then ‘DZF#) < ‘DZFé ' for every € > 1.

2.2 Stable multidimensional Poisson approximations

We will now discuss a class of multidimensional Poisson approximation results that are a direct conse-
quence of Theorem 2.1. Section 2.2.1 contains a general statement, whereas Section 2.2.2 will focus on
sequences of vectors of perturbed multiple integrals. We will also establish several explicit connections
with the multidimensional CLTs proved in [42].

2.2.1 General statements

As indicated in the section title, with an additional small effort we will be able to establish limit theorems
in the more general framework of stable convergence. The (classic) definition of stable convergence, in a
form equivalent to the one originally given by Renyi in [50] (see also [2]), is provided below.



Definition 2.1 (Stable convergence) Fix k& > 1. Let {X,,} be a sequence of random variables with
values in R¥ all defined on the probability space (2, .#, P) specified in Remark 1.2. Let X be a R¥-valued
random variable defined on some extended probability space (', .#',P’). We say that X,, converges

stably to X, written X, = X, if

lim E {Zeiw’X"')K"} =F [ZeiW’X)lR’“} (S)

n—oo

for every v € R¥ and every bounded .# -measurable random variable Z.

Remark 2.5 In this paper, we will be exclusively interested in stable convergence results where the
limiting random variable X is independent of the o-field .%. This situation corresponds to the case where
Z is defined on some auxiliary probability space (A, «7,Q), and (', Z',P)=(Qx A, .Z @ &/, PR Q).

Choosing Z = 1 in (S), one sees immediately that stable convergence implies convergence in distribution.
For future reference, we now present a statement gathering together some useful results: in particular,
it shows that stable convergence is an intermediate concept bridging convergence in distribution and
convergence in probability. The reader is referred to [20, Chapter 4] for proofs and for an exhaustive

theoretical characterization of stable convergence. From now on, we will use the symbol % to indicate
convergence in probability with respect to P.

Lemma 2.1 Let {X,} be a sequence of random variables with values in R¥.

law

1. X, A x if and only if (Xn,Z) = (X, Z), for every F-measurable random variable Z.
2. If X, X and X is F -measurable, then necessarily X, L x.

3. If X, 2% X and {Y,,} is another sequence of random elements, defined on (0, F,P) and such that
Y, B Y, then (X,,Y,) 35 (X,Y).

4. Xn Hx if and only if (S) takes place for every Z belonging to a linear space H of bounded random
variables such that H- 7P — L?(Q, 7 ,P).

Remark 2.6 Properties such as Point 3 of Lemma 2.1 allow one to combine stably converging sequences
with sequences converging in probability, and are one of the key tools in order to deduce limit theo-
rems towards miztures of probability distributions — e.g. mixtures of Gaussian random vectors. This
last feature makes indeed stable convergence extremely useful for applications, for instance within the
framework of limit theorems for non-linear functionals of semimartingales, such as power variations,
empirical covariances and other objects of statistical relevance. See the classic references [16] and [20,
Chapter 4], as well as the recent survey [44]. Outside a semimartingale framework, stable convergence
on the Wiener space has been recently studied (among others) by Peccati and Tudor in [41], Peccati
and Taqqu [39], Nourdin and Nualart [29] and Harnett and Nualart [17]. Some earlier general results
about the stable convergence of non-linear functionals of random measures were obtained in [36, 37, 38],
by using a decoupling technique known as the ‘principle of conditioning’ — see [21, 61].

The next statement is a general stable multidimensional Poisson approximation result based on Theorem
2.1. Recall that the total variation distance between the laws of two Z‘fr-valued random elements A, B
is given by
dry(A,B)= sup [P(A€E)—-P(Be€E),. (2.11)
ECZ%

A proof of Theorem 2.2 is detailed in Section 3.3.
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Theorem 2.2 (Multidimensional stable Poisson approximations) Fiz d > 1, let (A1,...,A\q) €
R4, and let Xq = (X(1ys s X(@)) ~ Po(A1, ..., Aq) be independent of n. Let Fg, = (F,(ll), . ,Féd)),

n>1, be a sequence of Zi—valued elements of dom D such that E {F,Sl)} = A\(n) — \. Write

n—00
Adn = (A1(n), ..., Aa(n)), n > 1, and assume moreover that:

al()\dm, Fd,n) + ag(Fd,n) + a3(Fd,n) n—> 0. (2.12)

—00

Then, as n — oo, the law of F g, converges to the law of X4 in the sense of the total variation distance,
and relation (2.9) in the case m = 0 provides an explicit estimate of the speed of convergence. If
moreover,

Vi=1,...,d, VA€ %,, lim E /DZF,@M(dz) = lim IE/ ‘DZF,(f)(DZF,(f) —1)| u(dz)
= lim E / D.L7YE{ pu(dz)| =0, (2.13)
n—oo A
and
Vi<i#j<d VAec %, lim E/ ’DZF,si)DZF,sj)’u(dz) (2.14)
n—o0 A

= limE/ ’DZF,@DZL*F,@ u(dz) =0,
A

n—oo

then, Fq p = Xy.

Remark 2.7 1. Theorem 2.2 is the first multidimensional Poisson approximation result proved by
means of Malliavin operators. In the case d = 1 (note that this implies a3 = 0), the fact that
condition (2.12) implies that dry (F1,,, X1) — 0 is a consequence of the main inequality proved
in [33]. Applications of this one-dimensional result in random geometry appear in [33, 57]. A new
multidimensional Poisson approximation result in the context of random geometric graphs, based
on the techniques developed in the present paper, appears in Theorem 2.6-(c).

2. A sufficient condition (that we will verify systematically in applications) in order to have that
az(Fgn) +a3(Fqn) — 0, is that the sequences
n—oo

nis E VZ (DZF,W)2 u(dz)] . neE [/Z (DZL*E@)2 u(dz)} :

are bounded for every i and that, for every i # j,
2 2
} p(dz) = 0.

n—oo n—oo

lim IE/ ‘DZFy)(DZFy ~ )| uldz2) = limE/ ‘DZFy)DZF,@
Z Z

These conditions also imply that the middle term in (2.13) and the first term in (2.14) are equal
to zero.

3. By a direct use of Point 4 of Lemma 2.1 (together with some adequate approximation argument),
one can prove that another set of sufficient conditions in order to have stable convergence is that,
for every A € Z,,, every p > 0 and every i =1, ...,d,

EUIp(llfp)‘ x/ ‘DZF,@
A

)| o,
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where 157 (1, ...,xp) = La(x1)---1a(x,), and Iy = 1 by convention. Albeit more easily stated
than (2.13)—(2.14), these conditions are not simpler to verify in the applications developed in the
present paper.

2.2.2 The case of multiple integrals

Now fix d > 1. Our aim is to apply Theorem 2.2 in order to deduce a multidimensional Poisson
approximation result for sequences of perturbed multiple integrals of the type:

Pap = (B, FO) = (o) 4 B 4 [, (0, a4 BO 1, (10)), w21, (215)
where : (i) each F{V is a random variable with values in Zy, (ii) {x, : m > 1} is a sequence of positive
real numbers, (iii) g1, . ..,qq > 2 are integers independent of n, (iv) Iy, ..., I,, indicate multiple Wiener-
Itd integrals of respective orders q¢i,...,qq4, with respect to the compensated measure 7, (v) for each
1<k<d, fﬁk) € L2(pa%), and (vi) for each 1 < k < d, {Bflk) :n > 1} is a smooth vanishing perturbation,
in the sense of the following definition.

Definition 2.2 (Smooth vanishing perturbations) A sequence {B,, : n > 1} C L?(P) is called a
smooth vanishing perturbation if B, L~'B,, € dom D for every n > 1, and the following properties hold:

lim E[B2] =0 (2.16)
n—oo

lim E [||DBn||%2(#)] = lim E [||DLlen||%2(#)} =0, (2.17)
lim E [ DB,y = lim B [|DL7 Bylld,| = 0. (2.18)

Note that, if (2.17)—(2.18) are verified, an application of the Cauchy—Schwarz inequality yields that
lim E [||DBn||3LB(H)} = Jim E [||DLlen||3LB(H)} ~0

Remark 2.8 Applying a Mehler-type representation of the Ornstein-Uhlenbeck semigroup (such as the
one stated in [47, Lemma 6.8.1]), one sees that the following inequalities are always verified:

E[IDBull}sy] 2 E [IDL Bulliegy| s E [IDBallbagy| 2 E[IDL™ Balita)| -

The following result is the announced multidimensional Poisson approximation result for perturbed
multiple integrals.

Theorem 2.3 (Poisson limit theorems on perturbed chaoses) Fiz d > 1, \1,..., g > 0 and let
Xa ~ Pod(A1,...,Ad) be stochastically independent of n. Define the sequence Fqp, n > 1, according to

(2.15), and assume that for each 1 <i<d, 2 — A and E {Iqi( 7(11'))2} — A;. Suppose also that:
n—oo n—roo

lim E[FYF7] = lim (f, f9) 120y =0,  1<i#j<d (2.19)
n—oo

n—oo
Assume moreover that the following Conditions 1— 8 hold:

1. For everyk=1,...d, everyr=1,...,qx and everyl =1,...,7 A(qr — 1), one has that

158 5 59 N gaguane—rty =, 0
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2. For every k=1, ...,d, the sequence n ||f7(lk)||L4(qu) is bounded and, as n — oo,

L)+ a (50) 2t (09 a0

3. For every i # j such that ¢; = q;,

lim ((f0)(F9)2) , =0

n— oo L2(p9i)

Then, Fq i1 X4, and the convergence of Fq., to Xy takes place in the sense of the total variation

distance.
A proof of Theorem 2.3 is provided in Section 3.3. The following features of such a statement are
noteworthy:

— When specialized to the case d = 1, the assumptions of Theorem 2.3 coincide with those in [33,
Theorem 4.1].

— In the case when ¢; # ¢, for every ¢ # j, and apart from assumption (2.19), the statement of The-
orem 2.3 does not involve any requirement on the joint distribution of the elements of the vectors
Fg . This phenomenon mirrors some analogous findings concerning the normal approximation of
vectors of multiple Wiener-1t6 integrals on the Poisson space, as first proved in [42].

— In the case where ¢; = ¢; for ¢ # j, Condition 3 in the statement follows automatically from
(2.19), whenever £9 and £ have the form of a multiple of an indicator function.

For the sake of completeness, in the next statement we present a slight refinement of the chaotic CLT's
proved in [42] (the refinement resides in the stable convergence claim). Recall that the Wasserstein
distance between the laws of two R™-valued random variables X, Y is given by

dw(X,Y) = sup [E[g(X)] - E[g(Y)]], (2.20)

g€Lip(1)

where Lip(1) is the class of Lipschitz functions on R™ with Lipschitz constant < 1.

Theorem 2.4 (Stable CLTs for multiple integrals) Fiz m > 1, let N, = (N(l), .. .,N(m)) ~
A(0,C), with
C={Ci,j):i,j=1,...,m}

a m X m nonnegative definite matriz, and fix integers qi,...,qm > 1. For anyn >1 and i =1,...,m,
let g\ € L2(p9%). Define the sequence Gy, = (G%l), ce G%m)), n>1, as

G =1I,g), n>1i=1..m.
Suppose that Assumption 1.1 is verified for every n, and also that
Tim E[GPGP] = 1g,=g x lim (9, )2y = Clij),  1<ij<m.  (2.21)

Assume moreover that the following Conditions 1-2 hold for every k =1,...,m:
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1. Foreveryr=1,...,q and everyl =1,...,r A (q — 1), one has that

1 g0

g HLZ(,ﬂqul) n:; 0;

4
k
2. Asn — oo, fzqk (gr(l )) dpd e 0.

Then, y1(Chn, Gmon) +72(Gmn) = 0, Gmn i N, and the convergence of Gy, n to Ny, takes place in
the sense of the Wasserstein distance.

Remark 2.9 Apart from the covariance condition (2.21), the assumptions appearing in the previous
statement do not involve any requirement on the joint distribution of the components of the vector
G,,m-. Moreover, these assumptions are the same as those in [35, Theorem 5.1] (for the case m = 1) and
[42, Theorem 5.8] (for the case m > 2). The somewhat remarkable (albeit easily checked) fact stated in
Theorem 2.4 is that the same assumptions implying a CLT for multiple integrals systematically yield a
stable convergence result. Note that this phenomenon represents the exact Poisson space counterpart of a
finding by Peccati and Tudor [41], concerning the stable convergence of vectors of multiple integrals with
respect to a general Gaussian field. See [31, Chapter 6] for an exhaustive discussion of this phenomenon.
CLTs on the Poisson space based on contraction operators have already been applied to a variety of
frameworks — such as CLTs for linear and non-linear functionals of Lévy driven moving averages [35, 38],
characterization of hazard rates in Bayesian survival models [12, 34] and limit theorems in stochastic
geometry [25, 26].

We conclude this section by stating an application of Proposition 2.1, implying that vectors of (per-
turbed) multiple integrals satisfying the assumptions of Theorem 2.3 and Theorem 2.4 are automatically
independent in the limit.

1}, respectively, satisfy the

Proposition 2.2 Let the sequences {Fqn, : n > 1} and {Gpn : 1 >
) = 0, as n — oo, and the two

assumptions of Theorem 2.3 and Theorem 2.4. Then, B(Fqn,Gmn
sequences are asymptotically independent.

Several connected results involving U-statistics are discussed in the next section.

2.3 Asymptotic independence of U-statistics

We shall now apply the main findings of the paper in order to characterize the asymptotic independence
of sequences of random variables having the form of U-statistics converging either to a Gaussian or a
Poisson limit. Our basic message is that, under fairly general conditions, U-statistics verifying a CLT
are necessarily asymptotically independent of any U-statistic converging to Poisson. The criteria for
Gaussian and Poisson convergence used below are taken from references [25, 26, 49] and [57]: to our
knowledge, these references contain the most general conditions in order for a sequence of U-statistics
based on a Poisson measure to converge, respectively, to a Gaussian or a Poisson limit.

By virtue of a de-poissonization argument borrowed from [15], we will be able to deal both with pois-
sonized and non-poissonized U-statistics based on a i.i.d. sequence — see Proposition 2.3. The reader
is referred to [24] for a survey of the classic theory of U-statistics. See [5, 18, 22, 58], as well as the
monograph [43] and the references therein, for several examples of the use of U-statistics in stochastic
geometry. See [13, 25, 26, 33, 49, 54, 55, 57] for new geometric applications based on Stein-Malliavin
techniques. Albeit unified studies of Gaussian and Poisson limits for U-statistics are available (see e.g.
[22]), we could not find in the literature any systematic characterization of the asymptotic independence
of U-statistics in the spirit of the present section.
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Remark 2.10 Section 2.4 contains another characterization of asymptotic independence of U-statistics
associated with random geometric graphs. Rather than using the general results discussed below, and
due to the explicit nature of the kernels involved, we will establish such results by some direct analytical
computations — allowing to obtain better rates of convergence, as well as results in higher dimensions.

Since it is relevant for applications, we will explicitly work with a sequence of Poisson measures {n,, : n >
1}, each defined on the Borel space (Z, %) and controlled by a o-finite measure p,, possibly depending
on n. Following [49, Section 3.1], we now introduce the concept of a U-statistic associated with the
Poisson measure 7,.

Definition 2.3 (U-statistics) Fix k > 1. A random variable F' is called a U-statistic of order k, based
on the Poisson measure 7,, with control i, if there exists a kernel h € L!(u¥) such that

F= Y hx), (2.22)

x€nfb,¢

where the symbol 77712, ~ indicates the class of all k-dimensional vectors x = (1, ..., 2x) such that z; € n,
and x; # z; for every 1 <i # j < k. As formally explained in [49, Definition 3.1], the possibly infinite
sum appearing in (2.22) must be regarded as the L!(P) limit of objects of the type D oxent N4, f(x),

q > 1, where the sets A, € Z* are such that uf(A4,) < oo and A, T Z*, as ¢ — oc.

Example 2.1 (Poissonized U-statistics) Assume {Y; : ¢ > 1} is a sequence of i.i.d. random variables
with values in Z and common non-atomic distribution p, and consider an independent Poisson random
variable N(n) with parameter n > 1. Then, n,(:) = Zij\i(ln) dy, () is a Poisson random measure with
control y1,, = np. In this framework, for every k > 1 and any symmetric kernel h € L1 (ur) = L1 ((np)*¥),

the corresponding U-statistic has the form

F= Y h(x)= > (Y, ., Yi,). (2.23)

x€nk 1<y, .., i SN (n); 4 #4;

The random variable obtained by replacing N(n) with the integer n in (2.23) is customarily called the
de-poissonized version of F.

The following crucial fact is proved by Reitzner & Schulte in [49, Lemma 3.5 and Theorem 3.6]:

Proposition 2.3 Consider a kernel h € LL(uk) such that the corresponding U-statistic F in (2.22) is
square-integrable. Then, h is necessarily square-integrable, and F admits a chaotic decomposition of the
form (1.1), with

fi(xi) = hz(xz) = (k) /Zk—i h(Xi,Xk_i) d,U/Z_i, X; S Zi, (224)

7

for 1 <i <k, and f; =0 for i > k. In particular, h = fi and the projection f; is in L1?(ul) for each
1<i<k.

Remark 2.11 In [49] it is proved that the condition h € L'(u*) N L2(1*) does not ensure, in general,
that the associated U-statistic F' in (2.22) is a square-integrable random variable.
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The forthcoming Theorem 2.5 is the main result of the section. It is divided in three parts. Part 1
collects some of the main results from [25, 26] concerning the normal approximation of U-statistics.
Part 2 contains conditions for Poisson approximations of U-statistics taken from [57, Proposition 4.1].
Part 3 is new and states that, under the conditions appearing in the first two parts, any two U-statistics
converging, respectively, to a Gaussian and a Poisson limit are necessarily asymptotically independent.

Remark 2.12 The bounds from [25, 26] stated below are easier to handle than the ones deduced in the
seminal work [49] — albeit they are basically equivalent in several applications. The resulting conditions
for asymptotic normality have been proved in [25] to be necessary and sufficient in many important
instances. The conditions for Poisson approximations taken from [57] should be compared with the
classic findings of [22, 58].

Our framework is the following:

— The sequence

Gn = Z gn(x), n>1,

Xl

is composed of square-integrable U-statistics of order k > 2 such that g,, € L*(u*) N L2(uk). We
write g; n, ¢ = 1, ..., k, for the ¢th kernel in the chaotic decomposition of g,, as given in (2.24). We
write 02 = Var(G,,) and write G,, = [G,, — E(G,)]/on-

— For G,, as above, we set

1
B(Gnyon) = — {H(lfgx 19i.n % Gl 2= +i_1111§_>_§kllgi,n|%4<%)}, (2.25)

where nr(la)x ranges over all quadruples (i,7,r,1) such that 1 <1 <r <i<j (i,j <k)andl # j

(in particular, quadruples such that [ = r =4 = j = 1 do not appear in the argument of n(lagx).

— For an integer k' > 2, {A,, : n > 1} is a sequence of symmetric elements of % ¥ such that
1k (A,) < oo for every n. For every n, we define F,, to be the U-statistic obtained from (2.22)
by taking h(x) = hy(x) = k'1711 4, (x). To simplify the discussion, we may assume that each A,
is contained in a k’-fold Cartesian product of the type K, X --- x K,, with u,(K,) < oo, thus
ensuring that each F), is square-integrable. Accordingly, we denote by h;., i = 1,...,k’, the ith
kernel in the chaotic decomposition of F,,, and we also write A, = k1= 1% (A,)) = E[F,].

— Define: ‘ ‘
Pn = Sup:u‘gz{(yla ay]) ez (yla - Y5, A1, ...,ak/,j) € An}
where the supremum runs over all j = 1,...,k’ — 1 and all vectors (a1, ...,ap—;) € VA
Theorem 2.5 We denote by N and X, respectively, a A4 (0,1) and a Po(\) random variable, where
A > 0. We assume that N 1L X.

1. There exists a constant Cy > 0, independent of n such that,

dw(Gn, N) S CkB(Gn; O’n).

In particular, if B(Gn;0n) — 0, then G, converges in distribution to N, in the sense of the
Wasserstein distance.
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2. There exists a constant Dy > 0, independent of n, such that

1—e?n 1
dTV(FnaXA) < |)\n - )\| + Dk’% (1 + )\_) V )\n(p% + pn) = An

In particular, if A, — 0, then F,, converges in distribution to Xy, in the sense of the total variation
distance.

3. Write V,, = (Fn,én), and H = (X, N). For an adequate distance, d,, there exists a constant
M = M(k; k"), independent of n such that

d,(Viy, H) < M x {An 4 B(Gpion) + B(Gn;an)l/Q}

In particular, if lim A, = lim B(G,;0,) = 0, then V,, converges in distribution to H, and F,
n—oo n—oo

and G, are asymptotically independent.
The next statement is the announced de-Poissonization result.

Proposition 2.4 (De-poissonization) Let the notation of Theorem 2.5 prevail, and assume that, for

every n, the Poisson measure 1y is defined as in Example 2.1. Write F? and G° to indicate the de-

poissonized versions of Fy,, and G,. If lim A, = lim B(G,;0,) = 0, then (F?, G%) converges in
n—oo n—oo

distribution to H.

2.4 Applications to random graphs

We now demonstrate how to apply our main results to study multidimensional limit theorems for
subgraph-counting statistics in the disk-graph model on R™. Our main contribution, stated in The-
orem 2.6 below, is a new estimate providing both mixed limit theorems and multidimensional Poisson
approximation results. The present section contains statements, examples and discussions; proofs are
detailed in Section 4. Our notation has been chosen in order to loosely match the one adopted in [43,
Chapter 3], as well as in [26, Section 3].

We fix m > 1, as well as a bounded and continuous probability density f on R™. We denote by
Y ={Y; :i > 1} a sequence of R™-valued i.i.d. random variables, distributed according to the density
f. For every n = 1,2, ..., we write N (n) to indicate a Poisson random variable with mean n, independent
of Y. It is a standard result that the random measure 7, = Zf\]:(l" ) dvy;, where ¢, indicates a Dirac mass
at x, is a Poisson measure on R™ with control measure given by u,(dz) = nf(z)dz (with dz indicating
the Lebesgue measure on R™). We shall also write #,, = 1, — tin, » > 1. Given positive sequences a,, by,
we write b, ~ a, to indicate that the ratio a, /b, converges to 1, as n — oo.

Let {t, : n > 1} be a sequence of strictly decreasing positive numbers such that lim ¢, = 0. For every
n—oo

n, the symbol G'(Y';¢,,) indicates the undirected random disk graph obtained as follows: the vertices of
G'(Y;t,) are given by the random set V,, = {Y1, ..., Yn()} and two vertices Y;, Y} are connected by an
edge if and only if ||Y; — Yj|lrm € (0,t,). By convention, we set G'(Y;t,) = ) whenever N(n) = 0. Now
fix k > 2, and let T be a connected graph of order k. For every n > 1, we shall denote by G/,(T") the
number of induced subgraphs of G'(Y;t,) that are isomorphic to I', that is: G} (I') counts the number
of subsets {i1,...,9x} C {1, ..., N(n)} such that the restriction of G'(Y;t,) to {Y;,,...,Y;, } is isomorphic
to I'. Every graph I'' considered in the sequel is assumed to be feasible for every n: this means that
the probability that the restriction of G'(Y';t,) to {Y1,..., Y%} is isomorphic to T is strictly positive for
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every n. The study of the asymptotic behavior of the random variables G/, (T"), as n goes to infinity, is
one of the staples of the modern theory of geometric random graphs, and many results are known. The
reader is referred to Penrose [43, Chapter 3] for a general discussion and for detailed proofs, and to [26,
Section 3] and [49, Section 6] for some recent refinements.

In what follows we will focus on the following setup: (i) ko, k are integers such that 2 < kg < k, (ii)
the sequence {t,} introduced above is such that ¢ ~ niﬁ, (iii) Ty is a feasible connected graph of
order ko, (iv) for some d > 1, (I'1,...,T'g) is a collection of non—isomorphic feasible connected graphs

with order k. We also write , ,

o) = (@ o))

The specificity of this framework is that, for such a sequence {t¢,}, the random variables é;(FO) and
G, (T;) (7 = 1,...,d) verify, respectively, a CLT and a Poisson limit theorem. Our principal aim is
to provide an exhaustive description of their joint asymptotic distribution. The following statement
gathers together many results from the literature, mostly taken from [43, Chapter 3] (for limit theorems,
expectations and covariances) and [26] (for the estimates on the Wasserstein distance).

Proposition 2.5 Let the above notation and assumptions prevail.

(a) There exist constants ag, by > 0 such that, as n — oo,
E[GY,(To)] ~ agn® (t7)ko =1 ~ qonik=ko)/(k=1) _ o

and Var(G!,(To)) ~ bonk=k)/(:-=1) s o6, Moreover, the random variable G',(To) converges in
distribution towards a A (0,1) random variable, with an upper bound of order n~(k=ko)/2(k=1) o
the Wasserstein distance.

(b) There exist constants ay,...,aq > 0 such that, for every j =1,....d
E[G),(Tj)] ~ Var(G},(T5) ~ ajn”* ()"~ — a;.

Moreover, (G, (T'1),...,G\(Ta)) converges in distribution to a d-dimensional vector (X1, ..., Xq)
composed of independent random variables such that X; has a Poisson distribution with parameter
aj.

(c) Asmn — oo, one has that, for every i,j = 1,...,d, Cov(G',(Ty), G (T;)) = O (n—(k—ko)/2(k_1));
and Cov(G,, (T),G7,(I'y)) = O (nil/(kfl)),

Remark 2.13 We could not find a proof of the multidimensional Poisson limit theorem stated at Point
(b) of the previous statement. However, such a conclusion can be easily deduced e.g. from [43, Theorem
3.5], together with a standard poissonization argument.

Plainly, Proposition 2.5 does not allow to deduce a characterization of the joint asymptotic distribution
of the components of the vector

V, = (G;(Fl), ...,G%(Fd),G%(Fo)), n > 1.

In particular, albeit Part (c) of such a statement implies that the random variables G, (I'g) and G’,(T';)
are asymptotically uncorrelated for every 7 = 1,....d, nothing can be a priori inferred about their
asymptotic independence. The following statement, which provides a highly non-trivial application of
Theorem 2.1, yields an exhaustive characterization of the joint asymptotic behavior of the components
of V,,.
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Theorem 2.6 (Mixed regimes in random graphs) For every n and every j = 1,....d, set \j, =
E[G),(T})]. Let N ~ A(0,1), Xgn = (X1, Xdn) ~ Poa( A ny s Adyn), assume that N and Xg,, are
stochastically independent, and write H,, = (X4, N).

(a) There exist two constants A and B, independent of n, such that, for some adequate distance d,

k—kq

k— 1
dy(Viu, Hy) < A/t + Bn 1 = 0 (n‘—wfl) + n_—4<k*1)) . (2.26)

(b) Let Xq ~ Pog(ai, ..., aq), where the constants a; have been defined in Part (b) of Proposition 2.5,
be independent of N, and set H = (X4, N). Then, as n — oo, V,, converges in distribution to H.

(¢) Write V! := (G,,(T1),...,G.(Tq)), n > 1. Then, there exists a constant C, independent of n, such
that

dry (V! Xan) < C\/ntm = O (n*Win) . (2.27)

Remark 2.14 (i) The estimates (2.26)—(2.27) and the content of Point (b) are new. We do not
know of any other available technique allowing one to deduce the limit theorem at Point (b).
Note that such a statement yields, in particular, the asymptotic independence of V! and é;(l"o).
The rate of convergence implied by formula (2.27) is probably suboptimal (the correct rate should
be of the order of nt" — compare with the statement of [43, Theorem 3.5] in the case of non-
Poissonized graph). It is plausible that one could obtain a better rate by avoiding the use of
the Cauchy-Schwarz inequality in the proof, and by estimating expectations by means of some
generalized Palm-type computations (see e.g. [43, Section 1.7]). This approach requires several
technical computations; to keep the length of the present paper within bounds, we plan to address
this issue elsewhere. Previous classic references on geometric random graphs are [5, 22, 58].

(ii) A quick computation shows that if & = ko + 1, the rate of convergence in (2.26) is O (n_ 4<k1*1))

and if k > ko + 2, the rate of convergence is O (n_ 20-T) )

Example 2.2 Let kg = 2, £k = 3, and consider the sequence of disk graphs with radius ¢,, such that
t™ ~ n~3/2. Define the following graphs: (i) T'y is the connected graph with two-vertices, (i) T'; is the
triangle and, (iii) I'y is the 3-path, that is, the connected graph with three vertices and two edges. Plainly,
G! (Tp) equals the number of edges in the disk graph, whereas G, (I'1) and G/, (') count, respectively,
the number of induced triangles and of induced 3-paths. Since I'y and I's are non-isomorphic, Theorem
2.6 can be applied, and we deduce that G, ('), G/, (I'1) and G’,(I'y) are asymptotically independent,
and that they jointly converge towards a mixed Poisson/Gaussian vector, with an upper bound on the
speed of convergence of the order of n=1/8.

We conclude this section by pointing out that an application of the de-poissonization Lemma 3.2 yields
the following generalization of Theorem 2.6. The details of the proof are left to the reader. For every
n, we denote by G(Y;t,) the de-poissonized random graph obtained as follows: the vertices of G(Y;t,,)
are given by the random set V,, = {Y7,...,Y,} and two vertices Y;,Y; are connected by an edge if and
only if [[¥; = ¥; zn € (0,%,):

Proposition 2.6 The conclusion of Theorem 2.6-(b) continues to hold whenever the disk graph G'(Y;t,,)

is replaced with the de-poissonized random graph G(Y';t,), and each counting statistic G.,(T';) is replaced
by its de-poissonized counterpart.
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3 Proofs of the main theorems

3.1 Preliminaries

We will now introduce several classes of functions that will be used to define particular metrics used
throughout the paper. We write g € (C’g(Rm) if the function g : R™ — R is bounded and admits
continuous bounded partial derivatives up to the order k. Recall also the definition of the total variation
distance dry given in (2.11).

Definition 3.1 1. For every function g : R™ — R, let

gl = sup 9 =9
T#Y H:C - y||]Rm

where || - ||gm is the usual Euclidian norm on R™.

2. For a positive integer k and a function g € (C’g(Rm) , we set

ak
||9(k)|\oo = lgilg%kgm f&& mg(iﬂ) .
In particular, by specializing this definition to ¢ = ¢" and ¢©® = ¢""', we obtain
52
9" oo = (xS mg(x) .
83
9" lo = 19‘123%(1'33771 xga% mﬂ(x)‘ .

3. Lip(1) indicates the collection of all real-valued Lipschitz functions, from R to R, with Lipschitz
constant less or equal to one.

4. €5 indicates the collection of all functions g € C3(R™) such that ||gllLip < 1, [|¢"|lc < 1 and
19" oo < 1.

We now define the different metrics we will use.

Definition 3.2 The metric d g between the laws of two Zi x R— valued random vectors X and 'Y such
that EHXHZix]R: ]E”Y“ZiXR < oo, written dy (X,Y), is given by

do (X,Y) = Sup [E(h(X)) = E(h(Y))],

where JA indicates the collection of all functions 1) : Zi XxXRe—=R: (J1,...,4a;2) = ¥, .., Ja; @)
such that v is bounded by 1 and, for all j1,...,ja, the mapping x — ¥ (ji1,. .., ja;x) is in Lip(1).

Definition 3.3 The metric dyg between the laws of two Zi x R™— valued random vectors X and Y
such that E||X||Zd+me, E”Ynzime < oo, written dy(X,Y), is given by

do (X, Y) = S [E(h(X)) = E(h(Y))],

where 76 indicates the collection of all functions i : Zi X R™ — R : (J1,.-,Jd; @1y« Tm) >
Y1y ey Jd; Ty - -+, Tm) Such that || is bounded by 1 and for all ji,...,j4, the mapping (x1,...,Tm) —

w(jla"'ajd;xla---axm) € (53-
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Remark 3.1 The indices 1 and 3 label the classes 77, and 743, respectively, according to the degree
of smoothness of the corresponding test functions. The topology induced by any of the two distances
dyp , doe is strictly stronger than the topology of convergence in distribution.

We will sometimes need a useful multidimensional Taylor-type formula on Zi. Given a function f on
Zy, we write Af(k) = f(k+1) — f(k), k = 0,1, ..., and also A?2f = A(Af). More generally, given a
function f : fo_ — R, for every i,j = 1,...,d we write A; f(z(, .., z@) = f(aM .. 20 1, 2@D) -
W, 2@), and AZ = Ay(A;f). Of course, when d = 1 one has that A; = A and A3} = A2, The
proof of the forthcoming statement makes use of the following result, derived in [33, Proof of Theorem
3.1] (see also [4]). For every f:Z, — R, it holds that, for every k,a € Z,

f(k) = fa) = Af(a)(k —a) + R, (3.1)
where R is a residual quantity verifying
1A% fl o
Bl < ——[(k—a)(k—a-1)[. (3.2)
For the rest of the paper, we will use the following notation, which is meant to improve the readability
of the proofs. If z = (.T(l), . ,x(d)) is an d-dimensional vector, for k < p we will denote by z(¥P) the
sub-vector composed of the kth trough the pth component of z, i.e. z(#?) = (z®) .. 2(P)). Also, we

set by convention (7= = {) for every value of j.

Lemma 3.1 Let f: Z% — R. Then, for every x = (M, ..., 2®), 0= (aD,...,a¥) € Zi,

d
f(x) = f(a) + Z Aif(a)(@? —al) + R, (3.3)

where the residual quantity R verifies

d
1 2 @) _ ()]0 _ (D) @) _ @) (10) _ o)
Bl < 5, max |4 flleo Dol —a@[z® —a® =1+ T 2@ 0P — ]

i=1 1<i#j<d
Moreover, one has also the first order estimate:
d . .
F@) = fla)] < max [|Aif o x g 2 —a®]. (3.4)

Proof. Using (3.1), one has that
d
F@) = @) = 3L, a0) - a0
i=1

d
= Z Aif (@9, 201D (0 — Oy 4 Ry,

1=1
where
1 DO O ®
2 7 1 7 1
Rol < 5 max A% fl x 3 Jot? = a]la® — a9 —1]

i=1
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On the other hand,

d d d—1

0 Auf (@ L0) @O —a) =37 Aif (@)D —a?)+ Y [Aif (a2 D)= (@) (29 —al?),

i=1 i=1

N
Il
-

and formula (3.3) is immediately obtained from the representation

d-1
D [Aif (@B, 20T D) — A f()] (21 = al?)
i=1
d-1 d
(2 — o) Z [Aif(a(l’j_l),x(j’d)) _Aif(a(ld),w(jﬂ,d))]’
i=1 j=i+1

as well as from the elementary inequality
A f (@70, 20D) — A, falh?) 20T D) | < AF flloo x 219 — ).
Formula (3.4) follows from

d

d
@) = F@)] < 3o 1F@D,200) = £, D) < max (1A fllao D7 2O — ).

i=1 i=1

3.2 Complete statement and proof of the Portmanteau inequalities

We provide below a precise statement of Theorem 2.1, including a discussion of the different cases in
terms of dimensions and covariance matrices, each having its own associated metric. The technique of
the proof is reminiscent of the computations contained in the classic paper [3]. For an explicit description
of the constants K, K;, see Remark 2.4.

Remark 3.2 We do not deal with the cases d = 1, m = 0 and d = 0, m > 1 since they are already
covered, respectively, by [33, Theorem 3.1], [35, Theorem 3.1] and [42, Theorem 3.3 and Theorem 4.2].
We could have dealt separately with the case where m > 2 and C' > 0, by using a multidimensional
version of Stein’s method on the Poisson space, as done in [35, Section 3]: by doing so, we would have
been able to consider test functions that are only twice differentiable, as well as bounding constants
nicely depending on the operator norm of the matrices C' and C~!. There is no additional difficulty in
implementing this approach (albeit a considerable amount of additional notation should be introduced),
and we have refrained to do so merely to keep the length of the paper within bounds. Finally, the results
of [35, 42] imply that, in the case d = 0, m > 1, one can drop the boundedness assumption for the test
functions defining the distances d g , d, as well as the Lipschitz assumption for the functions compos-
ing the class %3. The forthcoming proof will reveal that these boundedness and Lipschitz properties are
needed in order to deal with cross terms, that is, expectations involving both elements of F; and G,

Theorem 3.1 (Portmanteau inequalities: full statement) Let d, m be integers such that dV m >

1. Let H = (X4,N;;,) and V = (Fg4, G,,) be the (d +m)—dimensional random elements defined by (2.1)
and (2.2) respectively. Then, the following two statements hold:
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Case 1: d,m > 1. Consider the distance dy and d e, respectively, according as m =1 orm > 2. For
1 = 1,3, there exists a universal positive constant K; (having the form described in Remark 2.4) such
that

dy (V,H) < K;{a1(A\g, Faq) + a2(Fq) + a3(Fq) + B(Fa, Gn) + 71 (C, Gr) +72(Gim)} - (3.5)

Case 2: d > 2, m = 0. In this case V. = Fg and H = X4, and one has that, for some universal
positive constant K (having the form described in Remark 2.4),

drv (Fq,Xgq) < K{ai1(\q,Fq) + a2(Fq) + a3(Fq)} .

Proof. First of all, we observe that the conclusion of Case 2 follows from the computations leading to
the proof of Case 1, by selecting a test function 1 € 7 uniquely depending on the first d variables. In
what follows, K will denote a positive universal constant that may vary from line to line; by a careful
bookkeeping of the forthcoming computations, one sees that such a constant K can be taken to have
the form provided in Remark 2.4.

Now let ¢ € 7. We want to deduce an upper bound for

|IE ("/) (Fd; Gm)) —-E ("/) (Xd7 Nm))| :

We can assess such a quantity in the following way:

[E (¥ (Fa, Gm)) — E (¢ (Xa, Now)) | (3.6)
< |E (1/] (Fda Gm)) —E (1/] (FdaNm)) | + |IE (1/] (FdaNm)) —E (1/] (XdaNm)) |

The proof will consist of two main steps. In the first one, we will deal with E (¢ (Fg, N,,))—E (¢ (X4, Ny,))
and in the second one with E (¢ (Fy4, G,,)) — E (¢ (Fgq,N,,)).

Step 1: Controlling the term E (¢ (Fq,N,,)) — E (¢ (X4, N;,)). Such a term can be decomposed in
the following way:

d
- = (Lk=1) p(k,d) - (LE) pk+1,d) .
E (4 (Fa,Nyn)) ~ E (4 (X4, Nom) ;E(zw(xl D FRO N, ) (X0, FELO N, ) )

We will now study separately each term appearing in the sum. In what follows, we write £y to indicate
the probability measure given by the law of a given random element U; integrals with respect to £y
are implicitly realized over the set where U takes values. For any fixed 1 < k < d, by exploiting
independence, we have

E |:w (X(l,kfl)’ F(k,d)’ Nm) _ E (1/1 (X(Lk), F(k+1,d),Nm)):| —
/fp(k,d) (d.%'(k’d))
E {w (X000 N,y ) [ L (da)s (X4, a, o041, Nm)} .
For a fixed (z(l’k_l),x(k+1’d),y) S Zﬂlfl x R™, we denote by

2® s f (Z(Lk—l)’x(k),w(k+17d)’y) = fu(a™)
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the unique solution to the Chen-Stein equation
Fa®) —E@X®) = Af@® +1) -2 f@®), o0 —0,1,...

verifying the boundary condition A2f(0) = 0, where 1 (z®) := 1 (z(LE=1) (k) p(k+1d) ) We recall
(see e.g. [14]) that f is given by f5(0) = fix(1) — Afi(2) and, for x = 1,2, ...,

filw) = @;;)'H 2 (3w - ml0e)) | 5.7)
- S [ () - mg )|

Using the fact that |¢)] < 1 together with [14, Theorem 2.3] and [11, Theorem 1.3], we deduce that
Ifel <3, [Af] < 2(1 — e ?*)/A; and |A2fy| < 4(1 — e~ *)/A2.5 Exploiting once again independence,
we can now write:

E (v (X050 FEO N, ) ~ B (v (XO0, FE0 N, ) ) ) = (3.8)
/ Lo (dz D)
E {/\kfk (Xu,kfl),z(k) 41, p(EH1A), Nm) OF (Xu,kfl),x(k),z(ml,d), Nm)}
_E ()\kfk (X(Lk—l)’ F®) 41 Flkt1d) Nm) _F® g, (X(Lk_l),F(k), Fh+1.d), Nm))
—E (/\kAfk (X(l’k‘l), Fd) Nm) ) (fDL_lF(k)) i (X(l’k_l),F(k’d), Nm))

—E ()\kAfk (X(l’k_l), Fkd), Nm) —<ka (X(Lk_l),F(k’d), Nm) ,—DL—1F<k>> ) .
L2()

Note that (since H is assumed to be independent of 1) in the previous expressions the Malliavin operators
act on random variables only through their dependence on the components of F;. We now need to
explicitly calculate D fi (X(1+=D F®4) N, ), and (by virtue of (1.2)), one has

D.fi (X(Lk—l),F(k,d), Nm)

- (X(l,kfl)vng,d)va) — fa (X(l,kq)’F(k,d)’Nm) _ (3.9)

In order to deal with this quantity, one should first observe that, for every k, the mapping fi(-,N,,) :
7% — R given by
x = fi (2, Ny,)

takes values in [—3,3], and therefore [|[A; fi(-, Ny )lloo < 6 and [|A7; fiu(-, N[00 < 12, for every i,j =
1,...,d. One can now use Lemma 3.1 to deduce that

D.fi (X(kal) Flad) N ) ZA fk( (Lk=1) fk.d) Nm) D, F® +ng)7

§The upper bound on | /x| can be reduced to 2 if one selects a solution of the Chen-Stein equation such that

f(0)=0
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where
d

IRP|<6x S ID.FOD.FD —1)+ Y [D.FO||D.FY)|
i=k k<i#£j<d

Using the fact that (by definition)
A fi (X(l,k—l)vF(k,d)va) N (X(l,k—l)vF(k,d)va) 7
gathering the previous estimates together, and applying them to (3.8) finally gives:

[E (¢ (Fa; Nim)) = E (¢ (Xa,Ni))| < K {ar1(Aa, Fa) + a2(Fa) + a3(Fa)} -

Step 2: Controlling the term E (¢ (Fa, Gn)) —E (¢ (Fg,N,,)). This part is slightly more delicate, since
one has to take into account the dependence between F; and G,,. We have to consider two cases,
namely m = 1 and m > 2. Note that, in the second case, it is not necessary to assume that the matrix
C is positive definite.

(m =1) In this case G,, and N,, are two real-valued random variables G € domD and N ~ .47(0,1).
We will only consider the case C' =1, and one can recover the general statement by elementary consid-
erations. For every z € Zi and y € R, we write

2 Y 2
fote) =2 [ {u(s.0) ~ El(e, N)e o
It is well-known (see e.g. [31, Chapter 3]) that f, verifies the (parametrized) Stein equation

Oy fu(@,y) — yfy(z,y) = ¥(z,y) — E[p(z,N)], yeR, zeZi,

where we have used the symbol 9, to indicate a partial derivative with respect to . Moreover, thanks to
the assumptions on ¢, one can prove that the following relations are in order for every z: || fy (2, )]|co <
Vem, |0y fy(z, )| <1, and |97, fy(z,-)]leo < 2 (note that the partial derivatives 97, fy(x,-) are only
defined up to a subset of R of measure 0). It follows that

E (¢ (Fa,G)) —E (¢ (Fa, N)) = E[0, fy(Fa, G) — G fy(Fa, G)]
= E[0,f(Fa,G)] = E[(~DL™'G, Dfy(Fa, G))r2(]- (3.10)

Clearly, D, fy(Fq,G) = A, + B,, where
Az = fp((Fa)z, G2) — [y(Fa,G2), B := fy(Fa,Gz) — fy(Fa,G)
Using a Taylor expansion as in [35, Proof of Theorem 3.1], one sees that
Bz = ayf’l/)(Fda G)DZG + Rza
where |R.| < (D,G)?. Now observe that the mapping fy (-, G,) : Z* - R : 2 + fy(z,G.) is bounded by
V27, in such a way that ||A;fy (-, G2)lleo < 2V2m, for every ¢ = 1,...,d. We can therefore use formula
(3.4) to infer that

d
|A.| <2v2r ) |D.FY).
1=1
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Plugging these relations into (3.10) yields that
E (¥ (Fa, G)) —E (¢ (Fa, N))| < K{B(Fa,G) + 11(C,G) +1(G)}.

(m > 2) We use an interpolation technique analogous to the one appearing in [42, Proof of Theorem
4.2]. For every t € [0,1], we define

®(t) := E{¢)(Fa, V1 — LGy, + VN, },

in such a way that |E{¢(Fg4, G;n)} — E{)(F4, N;,,) } < fol |@’(t)|dt. Deriving with respect to ¢ and then
integrating by parts shows that
'(t) = Ay — By,

where, with obvious notation,

d
Ay = % Z C(i,j)E [8;%,1/;(&1, V1—tG,, + \/ZNm):| ,

i,j=1
and
By = 11_ - ;E [<7DL’1G(j),D8yj1/)(Fd, V1 —tG,, + x/ZNm)>L2(M)]
1 i . . . _
= 2\/1——t; {E [<7DL*1G(J),b1*J>L2(M)} +E [<*DL*10(”,b2”>L2(H)H
)

.= B 4+ B

where the random functions b'7 and b%7 are given by
z bi’j = aij((Fd)Zv V1-— t(Gm)z + \/%Nm) - aij(de vV1-— t(Gm)z + \/sz)v
and _
2 b2 = 0y Y(Fa, V1= t(G): + VINg,) — 9y, 0(F g, V1 — tGyy + VIN,,).
Reasoning exactly as in the proof of [42, Theorem 4.1], one proves that
1
sup |4; = BY| < £{11(C. G) +72(Gun)}-
t€[0,1]

To conclude, we apply again Lemma 3.1. Start by observing that, since [9,,%| < 1 by assumption, one
has that, for every i = 1,....,d, [|A;0y, ¢ (-, VT = t(Gm): + VN[ oo < 2. We can now use (3.4) to infer
that

d
bl <2 |D.FY|.
i=1
These estimates yield eventually that

1 1
2

B<1>dt</ dt x B(Fq,Gm) = 48(Fq, Gum),

/0| t | — 0 \/1——t /B(d ) /B(d )

and the desired conclusion follows at once.
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3.3 Proof of Theorem 2.2

The first part of the statement is the same as Case 2 of Theorem 3.1. In order to deduce the conclusion
about stable convergence, one should fix an integer [ > 1, as well as pairwise disjoint sets A, ..., 4; € Z},,
and then build an ancillary (d + [)-dimensional vector

F/dJrl,n = (Fd,n, U(Al)v 777("41))

Applying again Case 2 of Theorem 3.1, one proves immediately that conditions (2.12)—(2.14) imply that
F.;,, converges in distribution to (Xa,7(A1),...,7(A;)). Since X4 is independent of n by definition,
we deduce that, for every (y1,...,74) € R%, every collection Ay,..., A; € Z, of disjoint sets and every
random variable Z = ¢(n(A1),...,n(4;)) with ¢ bounded,

lim E |eFanzd 7| — E[Z] x E [6i<x¢ﬂ>md} .

n—o0

An application of Point 4 of Lemma 2.1 yields the desired conclusion. |

3.4 Proof of Theorem 2.3

Step 1: convergence in distribution. We start by proving that Fg, converges in distribution to X4 .
Our plan is to apply Case 2 of Theorem 3.1. Exploiting the fact that each {B,(f)} is a smooth van-
ishing perturbation, and reasoning exactly as in the first part of the proof of [33, Theorem 4.12], one
sees that it is enough to prove that Conditions 1 and 2 imply that the five sums appearing in the
definitions of aq(-), az(-), as(:) (see (2.3)—(2.5)) all converge to zero, whenever one chooses the vector
(T4 ( ,(,1)) I, ( ,(,d))) as their argument. Again from the proof of [33, Theorem 4.12], we know that

s gy
the assumptions in the statement imply that, for every ¢ =1, ..., d

i {8 (|5 g DL G ] + | [ (D1 (59020104 - 1Pta)| | =
Using the fact that the sequence
w8 | [ (0.0,(6)" wtan)] = | [ (D271, ) wtae)| = aBiE
P z+q; n [3 P z qi n K3 n

is bounded for every ¢, and by a standard application of the Cauchy-Schwarz inequality, we see that it
is enough to prove that, for every i # j,

i {E | [ (D1 (F90)2(0.1, (F9)P(a)] + B (D1, (1), D1, G V3] | 0. G1)

n—oo

Using the computations contained in [35, p. 464], one sees that, for every i,

2q7;72
(DI, (Y =7 Y LGE£7(z,), (3.12)
p=0
where
_ q—1 r i — 1 2 r . )
Ggiilf'r(;) (Za ')(Zla ceey Zp) = Z Z 1{2qi—2—T—l_p}T!< ! r > (l) frr(zZ) (Z, ) *ﬁ‘ 7(11)(2’, ')(Zl, ceey Zp)7

r=0 [=0
(3.13)
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where the tilde indicates a symmetrization with respect to the variables represented by a dot (in such
a way that the symmetrization does not involve the variable z), and the stochastic integrals are set

equal to zero on the exceptional set composed of those z such that ffli)(z, SR ffli)(z, -) is not an element
of L2(p?4=2="=1) for some r,l. We can assume without loss of generality that ¢; < ¢;. Applying the
isometric properties of multiple integrals using the Fubini theorem and integrating over Z, we see that
the first summand in (3.11) is a linear combination of objects of the type

Cp = Cu(l, 75,8, p) = /Z<fff’< Yk £z, (2, ) %8 £ (2, )) 12 (il d2),

where the indices verify the following constraints: (i) p =0, ...,2¢;—1, (ii) r =0, ..., ¢; — 1, (iii) I = 0,.
(iv)t=0,...,¢; — 1, (v) = 0,...,¢, and (vi) 2¢; —2—r—1=2¢; —2—t —s = p. In the case where

¢i=¢qj=7r=t,1=s=0 (and therefore p = ¢; — 1), one has that C,, = <( 7(11'))2,( 7(3))2> e — 0.
L2(pi

In all other cases, one can prove that

|0|<\/ / L7 (2,) % £87 (2, ) 2 gury 1(dz) \/ / 7 o) 5 17 2 Myl d) = 0

(where the first inequality follows from the Cauchy-Schwarz inequality) by directly applying the com-

putations contained in [35, p. 467], as well as the fact that (by assumption) sup || f,(f)H LA(paiy < oo for

every i. We now focus on the second summand in (3.11). We can use directly [42, Proposition 5.5] to

deduce that, whenever ¢; = ¢; the quantity E {(DI ( ,(f)), DI, (f,(,j)))%z( )} is equal to a finite linear
l) (3)y2

combination of the squared inner product (fy”, fr’’)?2 12(pai) 88 well as of products of norms of the type
7S 878k F ey X D %0 7L ) P e scey (3.14)

where s(t, k) = 2¢; — k — t and the indices verify the constraints: k = 1,...,2¢; — 2, t = 1,...,¢; and
1 < s(t,k) < t. On the other hand, when ¢; # ¢; the same Proposition 5.5 in [42] implies that

E (DI, (f"), DI, J( ,(lj))>2LQ(M) is a finite linear combination of products of norms of the type (3.14),

where s(t,k) = ¢; + q; — k — t and the indices verify the constraints: k& = |¢; — ¢;l, ... ¢i + ¢; — 2,
t=1,...,¢; ANgj and 1 < s(t,k) < t. In both cases, the involved products of norms converge to zero
whenever Condition 1 in the statement is verified, and Case 2 of Theorem 3.1 implies that Fg ,, converges
in distribution to X, in the sense of total variation.

Step 2: stable convergence. We apply the second part of Theorem 2.2. In view of the previous compu-
tations, and by reasoning again as at the beginning of the previous step, it is enough to show that, for
every A € 2, and every i =1,...,d,

E [( /A D.I i(fff))u(dZ))T =0

This follows immediately from the relation
/ADzIm (fSNp(dz) = qilg, 1 (£ 1 g)

where g(z) = 14(2), as well as || £ ! g||%2(#qi,1) = (f\ *2;1 () g %0 9)L2(u2y (which follows from a

Fubini argument).
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3.5 Proofs of Theorem 2.4 and Proposition 2.2

Proof of Theorem 2.4. In view of [42, Theorem 5.8] we only need to prove stable convergence. To do this
we fix an integer d > 1, as well as disjoint sets Ay, ..., Ag € Z},. Using as before Point 4 of Lemma 2.1,
the desired conclusion is achieved if we show that the (d + m)-dimensional vectors (Fg, Gy n), 1 > 1
where Fq = (n(A1), ...,n(Aq)), converge in distribution to (F4, N;,,) (recall that N, is independent of 7
by definition). Define Ag = (11(A1), ..., 1(Aq)). One has that oy (Ag, Fg) +a2(Fq) +a3(Fq) = 0, and also
that, under the assumptions in the statement, v1(C, Gy.n) + 72(Gm.n) — 0 (as a consequence of [42,
Theorem 5.8]). To conclude, we have to show that 8(Fg, Gy,m) — 0. This follows immediately from
Proposition 2.1, since the computations contained in [35, Proof of Theorem 5.1] imply that, under the
assumptions in the statement,

E U (D1, (g9 u(dz)| =0, Vji=1,..,m. (3.15)
A
|
Proof of Proposition 2.2. In view of Proposition 2.1, the conclusion is an immediate consequence of
relation (3.15). |

3.6 Proofs of Theorem 2.5 and Proposition 2.4

Proof of Theorem 2.5. For every n, let X, be a one-dimensional Poisson random variable of parameter
An, and recall (see e.g. [1]) that dry (X, Xy, ) < |A — An|. The distance dy in the statement can be
chosen to be d s (see Definition 3.2). An application of the triangular inequality and of the independence
between X and N yield that

de(Vi, H) < dpy (X, X)) + de(Vir, (X, N)).

The conclusion follows from Theorem 3.1, since one has that:
— according to [57, Proof of Proposition 4.1], |A — A\, | + a1 (An, Fp) + aa(Fy) < Ay;
— according to [25], 11 (1, Gp) + 72(Gn) < Cx B(Gp, o)
— by virtue of the Holder inequality, and of the fact that F;, takes values in Z,

i 2 VT
ﬂ(Fn,Gn)gE[/ |DZFn|2un(dz)] x]EU ‘DZL*G” Mn(dz)} < R x B(Gn;on)Y?,
Z Z

for some constant R independent of n, where we have used the fact that, since F,, and G,
both live in a finite sum of Wiener chaoses (see Proposition 2.3), then (a) the mapping n

E [ I, |D2Fn|2un(dz)} is bounded, and (b)

E U ‘DZL*GH
zZ

4un(dz)] <E UZ ‘Dzén 4un(dz)] < CLB(Gs; o)

for every n.
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Proof of Proposition 2.4. In view of the standard theory of Hoeffding decompositions (see e.g. [60]), for
every n > 1, both F? and GY have the form of a U-statistic of the type

=E[U] + i Z Un-,l(le’ B sz)v (3.16)

=1 {i1,....1}C[n]

where [n] = {1,...,n}, m is the order of the U-statistic (so, m = k or m = k', according as U,, = G,
or U, = F,), and every kernel U,,; is a symmetric function in ! variables verifying the Hoeffding-type
degeneracy condition: E[U,, (Y1, ..., Y)|Y1,...,Y;_1] = 0. The mean and variance of F,, and G,, are both
converging, and this implies that, since the mapping

n

n > E[U2] 2+Z< > [Un (Y1, Y1)

converges to a finite limit, then the sequences n — (7)E[Unyl(Y1, Y2, 1 = 1,...,m, are necessarily
bounded. Now, it is easily seen that U, is the de-poissonized version of the poissonized U-statistic U},

obtained by replacing [n] with [N(n)] = {1,..., N(n)} in the second sum on the RHS of (3.16). The
desired conclusion follows from the forthcommg Lemma 3.2, whose proof uses computations from [15].
|

Lemma 3.2 (De-poissonization Lemma) Let the above notation and assumptions prevail. Then, as
n — oo,

E[(U, —U.)? — 0.

Proof. Conditioning on N(n), and using standard results on the moments of Poisson random variables,
yields (as n — o)

E[U? = 24 Z]E K ﬂ E[Un 1 (Y1,..,Y1)?] = c:= nan;oE[Uﬁ].

Conditioning again on N(n), we infer that

E[U,U}) Z( ) Uni(Y1, -, Y1) Jbn1,

where by, ; = Z;O:O e’p%f ("ZAP) (7)71. To conclude, it remains to apply the computations contained in

[15, p. 745], which imply that b, ; — 1 for every I. |
4 Random graphs: proof of Theorem 2.6

The distance d, appearing in the statement is the distance d g introduced in Definition 3.2. First of
all we observe that, for every a = 0,1, ...,d, the random variable G/, (T',) has the form of a U-statistic,

that is:
G (T,) = > hr, 4, (21, s Tk, ),

k
(@150 T ) ENL T
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where: (i) k, = k for a = 1,...,d, (ii) the notation indicates that the sum runs over all ordered vectors
(21, ...,zk,) such that each a; is in the support of n,, and z; # xp for I # I'; and (iv) the quantity
hr, ., (%1, ..., zk, ) is equal to 1/k,! if the restriction of G'(Y';t,,) to {21, ..., Tk, } is isomorphic to ', and
equals 0 otherwise. It is clear that, for every a, the mapping hr, ¢, : (R™)¥ — R is symmetric and
stationary, in the sense that it only depends on the norms ||x; — @, ||gm, | # m. We can now apply
Proposition 2.3 to deduce that G/, (T';) admits the following chaotic decomposition

ka

G, (o) =BG}, (Ta)] + ) Liha,i), (4.1)

i=1

where I; indicates a multiple Wiener-It6 integral of order ¢ with respect to the centered Poisson measure
iin, E[G,(Ty)] = f(Rm)ka hr, ¢, duke, and, for i = 1, ..., k,,

ko —i
h’aynqi('rh"'?xi) = ( . ) / . h’Fa,tn(zla-'-xivyla"'5yka7i):u’7]’€1a (dy17"'7dyka77;)' (42)
(RWL) a—1

7

Note that hgnk, = hr,t,. According to Theorem 2.1, our proof is concluded if we can show that
the six quantities appearing in formulae (2.3)—(2.8) all converge to zero, as n — oo, at a rate of

1 k—k
the order of O (n_ 21 n_4<k*?)), whenever one selects the following arguments: (1) Fy =V, =
(G!(T1), ..., G" (Ta)), (2) G = G1 = G (T0), (3) \i = A = E[G/(Ty)],i=1,....d, (4) C =1, and (5
t = ftn. We already know from [26, Section 3] (see also Proposition 2.5-(a)) that the terms 1 (1, G7,(T'o)
and v2(G.,(T'g)) both converge to zero at a rate r, such that

rn =0 1 .
( nko(two—1>

k—k
Since nko(tm)ko—1 ~ p =1, this implies that we only have to focus on the remaining four terms. We
start by analysing the term aq (A, V) and the first part of the term az(V))).

ny ¥'n

)
)

Select a,b = 1,...,d. An application of the multiplication formula (1.3), together with the definition
of the derivative operator and the representation (4.1), yields that

(DG}, (Ta), —=DL'G,, (Ts)) 12y

P & i1\ -1\ (r—1
= ; - - - L - )
- Z Z’LZ(T - 1)' (7’ - 1) (T - 1) IZ; (l 7 1)Iz+J—r—l(ha,n,z *p hb,n,g)

i=1j=1 r=1

= 1{a—n E[G}, (Ta)]

k k 17V . . T
. 1 —1 7j—1 r—1 !
+> > i) (r=1)! <T _ 1) (r _ 1> > <z _ 1) LGy (k bk} i j—r =t (Ra,ni %0 Ao j)-

i=1j=1 r=1 =1

Applying repeatedly the Cauchy-Schwarz inequality, one sees that, in order to prove that a;i(\,, V)
and a3 (V) both converge to zero at the correct rate, it is sufficient to show that, for every a,b=1,...,d
and for every quadruple (4, j,r,() involved in the previous sum,

1
[a,mi *r o jll p2(piri-r-ty = O (\/ ntnm) =0 (” 2“"1))

31



(the last equality is trivial). For any such (4, j,r,1) we define the function hfj’bj’;;l) : (R™)* — R, where
a=a(i,j,rl) =4k —i—j—r+1, as follows:

0 2 B (4 (5) L6 B3 (4

hfzi,g,’t:l)(xla---axa) = hrg e, (X520 X2, X, 2, X )hrbﬂfn(xkfj’Xjfr’xrfl’xl ) % (4.3)
Xhl—‘a,tn(X](:_)iaXZ('i)TaXf‘g_)l;Xl(g))hl—‘b,tn(xj(;?jaxgﬁ_)raXf‘g_)laxl(S))a (44)

where the bold letters represent multidimensional variables providing a lexicographic decomposition of

. 1 2 .
(21, ...,24). For instance, one has that x,izl = (T1, ey Thmi)s xz(-_)T = (Tk—it1, -, Tk—r), and so on, in

1) L@ B (@) (5 (6) (7)) (8 (9 (a)

such a way that (x; 7, %, 7, X, %) X7, X020 X 20 X)X g) = (21, .., Ta ), and we set xp equal
to the empty set whenever p = 0. Observe that each function hfj’bj’t:l) is bounded by 1/k!*, and that the

connectedness of the graphs I'y, ', yields that the mapping (za, ..., z4) — hfj’bj’f’l)((), X2,y ...y Ty ), Where
0 stands for the origin, has compact support. Writing explicitly the squared contractions inside the

integral, one sees that || i x. hb7n,j||2LQ(Hi+j,r,L) is a multiple (with coefficient independent of n) of

" /oR @ 2a)f(o0) - Faa)day - d
Applying the change of variables x; = x and z; = t,y; +x, for i = 2, ..., a, the above expression becomes
agm\a— i,5,7,0
" (tn ) 1 /m f(x) /(]Rm)al ht(l,bj,l )(Oa Y2, --ey ya)f(x + tny2) te f(.%' + tnya)dxdyQ o 'dya-

Since, by dominated convergence, the integral on the RHS in the previous equation converges to the
constant

fa(l')dl'/( ) ht(;;’g,’{’l) (05 Y2, .0y ya)dyQ T dyom
R™ mya—1

we deduce that ||hg i x. hbynﬁjHiz(#Hjﬁ,L = O (n*(tm)*~1). Since

)
n® ()t = nt ()" ()

and a — k > 1 for every possible choice of i, j,r, 1, we immediately deduce the desired conclusion for
a1 (An, V,!) and the first part of as(V)).

To deal with az(V,)) and the second part of ag(V})), we apply the Cauchy-Schwarz inequality to write,
for every a,b =1, ...,d,

E/Rm |D.G(T) (D2GL(Ta) — 1) DoL GL(Ty) | jn(d2) < /A m) % B(o,m),
where A(a,n) = E [, D.G,(L0)? (D.GL,(Ty) — 1)° 1, (dz) and

B(b,n) = IE/m [D.L7 G (T3)] pn (d2).

One can easily verify that the sequence n — B(b,n) is bounded (this is a consequence of the fact that
G! (Ty) lives in a finite sum of Wiener chaoses). It follows that, in order to obtain the desired rate of
convergence for this part, we just have to prove that, as n — oo, A(a,n) = O (nt™). To do this, one
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applies again the multiplication formula (1.3) (for every fixed z € R™) to deduce that, by virtue of the
fact that hr, ., has the special form of an indicator multiplied by the factor k!=1,

D.G,(Ta)(D-G,(Ta) — 1) (4.5)

k k iNj—1 i—1 ] _1 r r
= i j ! Leeiq _ 4.6
;j—lw ZT ( - >< ” > 2 (l) {(i,5,71)#(k,k,k—1,0)} X (4.6)

=0

XIivj—2-r—1(han,i(z,") *lr han,j(2,°))

k—1
- Z thi—1(hani(z,)) = Z & (2).

yeU

In the last equality, the set U represents the class of all indices (i, j, r,1) and ¢ involved in the representa-
tion of DG, (T'y)(D.G,,(T'y) — 1), whereas &, is the corresponding multiple integral process multiplied
by the appropriate coefficient. To conclude, we apply the triangle inequality to deduce that

VAGT < Y\ E[ [ @) (@7

~yeU

We will show how to deal with the quadruple (¢,j,7,1) = (k, k,k — 1,k — 1), which requires additional
arguments than the others (which can be addressed in a straightforward way). In the particular case
where (i,4,r,1) = (k,k,k — 1,k — 1), we are looking at the term

Ehoh—1,b-1(2) = K2 (k — Dlhan (2, ) %521 han(z, ).

Thus, we have

E { o fl%,k,k—l,k—l(z)ﬂn(dz)] = kk! /m [ha,n,k(za ) *’Z:} ha,n,k(za ')]QNn(dZ)

2
kk'/ </( )k hi,n,k(’z’yla-"ayk—l):u”]rvl_l(dyla--'7dyk—1)> /j/n(dZ)
m Rm)k—1

Using the fact that hg 1 = hr, :, along with the fact that hr, ¢, has the form of an indicator function
and finally recalling the definition of hy 5,1 given by (4.2), we can write

B[ @it al@n)] = =0 [ () = = D

The analysis of the contraction carried out in the previous steps of the proof allow us to conclude that
this quantity goes to zero at the correct rate when n goes to infinity (it corresponds to the (1,1,1,1)—
contraction). Representing each remaining expectations in (4.7) as a contraction, and applying a change
of variables analogous to the one described above gives the global and desired rate of convergence for

az(V,)) as well as for the second part of a3(V})).

We now deal with the third and last part of as(V,)). Applying the same strategy, we can write, for
every a,b,c =1, ...,d with a # b,

IE/ ]DZG;(FQ)DZG;(F;,)DZL*G;(FC)\un(dz) < +/C(a,b,n) x D(c,n),
]Rm
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where C(a,b,n) =E [, D.G},(Ta)?>D.G],(I')?un(dz) and
D(c,n) :IE/ [D. L G (T )2 n (d2).

Again, the sequence n — D(¢,n) is bounded and we can write, for a # b,

D.G! (T,)D.G, (Ty) (4.8)

= i iw%(?‘ - (; _ 11) (i_ D 2: (;_ 11) Titjr=t(hami(z,) %75 B g (2,7)) (4.9)

i=1j=1 r=1 1=

= ZGY(Z)

yel

In the last equality, the set I represents the class of all indices (4, j,r, 1) involved in the representation
of DG (Ty)D,G, (I'y), whereas (, is the corresponding multiple integral process multiplied by the
appropriate coefficient. This case is very similar to the previous one and the techniques used to prove
that each of these expectation converge to zero as the correct rate are the same. However, there is
one additional term that was not present in the case of a(V,)). This is the term corresponding to the
quadruple (4, 4,7, 1) = (k, k,k — 1,0). We will detail this particular case. We have

E [ / <£,k,k1,o<z>un(dz>} =B [ BT (o) S B s(:) )
= k4(k - 1)' / /(]R Yoo hlg‘a,tn (Z, Yty -y yk—l)h%‘b,tn (Za Y1, ooy yk—l)ufz_l(dyla ceey dyk—l)ﬂn(dz)

Using the fact that hr, ., and hr, ., have the form of indicator functions, we finally get

B | [ Graso@malds)]| =P e ) g

which is zero because I'y, and I’y are not isomorphic (hr, ¢, and hr,+, cannot be non—zero at the same
time or I'; and I'y, would both be isomorphic to the same graph rendering them isomorphic to one
another). This concludes the analysis of the term as(V})).

It remains to deal with B(V/, G’ (Io)). Using relation (2.10) with ¢ = 3, we can write

=i P e, <o poa] e o] |

1
4

3 _ 4
The term E [[DG; (I‘a)]ﬂ " is bounded and it remains to show that the term E HDLlG;l(FO)} ] goes

to zero as n goes to infinity. For this, we will refer to [26, Section 3] where the rate of convergence of the

~ N 4
term 2 (G,, (T'0)) is obtained by bounding it by a constant multiplied by \/E Jrm [DL_ng(FO)} pn(dz).
k—k
It is then showed that this last term goes to zero at a rate of O (Tf?(k*?) ) The difference here lies in

k—k
the fact that the square root is replaced by a power i, yielding a rate of convergence of O (nf G- )
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When putting together all the rates of convergence for the different terms in the general bound, one sees

that
dy(Vo, Hy) < Ay/nt™ + Bn™ T = 0 (n_ I 412’25[1))) )
where A and B are positive constants that do not depend on n. This concludes the proof. |
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A Appendix

Throughout the Appendix, (Z, %) denotes a Borel space endowed with a non-atomic o-finite Borel
measure . We write n to indicate a Poisson measure on Z with control u. As in the main text, 1 is
assumed to be defined on some probability space (2, #,P) such that Z is the P-completion of o(n). We
also write L?(P) = L*(Q, .Z,P).

A.1 Malliavin operators

We now define some Malliavin-type operators associated with the Poisson measure . We follow the
work by Nualart and Vives [32].
The derivative operator D.

For every F € L*(P), the derivative of F, DF is defined as an element of L?(IP; L?(u)), that is, of the
space of the jointly measurable random functions u : @ x Z — R such that E [ [, u2u(dz)] < cc.

Definition A.1 1. The domain of the derivative operator D, written domD, is the set of all random
variables F' € L?(P) admitting a chaotic decomposition (1) such that

Z kk!”fk”%Z(#k) < 00,

k>1

2. For any F' € domD, the random function z — D, F is defined by

D.F = i Ele—1(fr(z,-)).

k>1

The divergence operator 0.

Thanks to the chaotic representation property of 7, every random function u € L?(P, L?(u)) admits a
unique representation of the type

Uy = Zlk(fk(z, ), 2 € Z, (A1)

k>0

where the kernel f; is a function of k + 1 variables, and fi(z,-) is an element of L?(u*). The divergence
operator §(u) maps a random function u in its domain to an element of L?(P).
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Definition A.2 1. The domain of the divergence operator, denoted by domd, is the collection of all
u € L?(P, L?(p)) having the above chaotic expansion (A.1) satisfied the condition:

Z(k + 1)!||fk|‘%2(#(k+1)) < 00.
k>0

2. For u € domd, the random variable §(u) is given by

6(u) = kaﬂ(fk),

k>0
where fk is the canonical symmetrization of the k£ 4 1 variables function fg.
As made clear in the following statement, the operator 4 is indeed the adjoint operator of D.
Lemma A.1 (Integration by parts) For every G € domD and u € domd, one has that
E[Go(u)] = E(DG, u) 2 ()]

The proof of Lemma A.1 is detailed e.g. in [32].

The Ornstein-Uhlenbeck generator L.

Definition A.3 1. The domain of the Ornstein-Uhlenbeck generator, denoted by domlL, is the
collection of all F' € L?(P) whose chaotic representation verifies the condition:

Z ka!kaH%?(uk‘) <0

E>1
2. The Ornstein-Uhlenbeck generator L acts on random variable F' € domL as follows:

LF ==Y kI(fx).

k>1

The pseudo-inverse of L.

Definition A.4 1. The domain of the pseudo-inverse of the Ornstein-Uhlenbeck generator, denoted
by L1, is the space L(IP) of centered random variables in L?(P).

2. For F =Y Ix(fr) € L3(P) , we set

k>1
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A.2 Contractions

Contraction operators play a crucial role in multiplication formulae and in the computation of expec-
tations involving powers of functionals of the Poisson measure n. In what follows, we shall define these
operators and discuss some of their basic properties. The reader is referred e.g. to [40, Sections 6.2 and
6.3] for further details.

The kernel f %\ g on ZP+2=7=! associated with functions f € L2(uP) and g € L?(u?), where p,q > 1,
r=1,...,pAqand [ =1,...,r, is defined as follows:

f*lr GV1s V=l b1y ey by 8155 - oo 5 Sq—r) (A.2)
= /Zl ul(dzl,...,dzl)f(zl,,...,zl,'yl,...,'yr_l,tl,,...,tp_r)
XQ(’ZlH' cey R YLy ey V=15 815, - - .,Sq,T).

Roughly speaking, the star operator ‘.’ reduces the number of variables in the tensor product of f and

g from p+ q to p+ ¢ — r — [ this operation is realized by first identifying r variables in f and g, and
then by integrating out [ among them. To deal with the case [ =0 for r =0,...,p A g, we set

f*gg(’yl’"'7’7Tat1w'"atp—’raslaa"'7sq—’r)
= f(’yla"'a’YTatlH'"atp—’f)g(’)/la"'577‘381)7"'7811—7“))
and
T g(tiy sty 81y 8g) = F @G5y tpy S1yyeeesSq) = f(t1yyeevstp)g(S1,,-- -, 5q)-

The kernel f ! g is called the contraction of index (r,1) between f and g. The above introduced ‘star
notation’ is standard, and has been first used by Kabanov in [23] (see also Surgailis [59]). Plainly, for
some choice of f, g, r,[ the contraction f . g may not be well-defined. The contractions of the following
three types are well-defined (although possibly infinite) for every 1 < p < ¢ and every pair of kernels

9 € L(?), f € L (u):
(a) f*2g(21, .y Zpyqger), Where 7 =0, ..., p;
(b) f*f] f(21, ey 2g=1) = [0 F2 (21, 00y 2q—1, - )dp!, for every 1 =1, ..., q;
(¢) flg,forr=0,...,p.

In particular, a contraction of the type f *f] f, where [ = 1,...,q — 1 may equal +00 at some point
(21, ..., 2g—1). The following (elementary) statement ensures that any kernel of the type f ! g is square-
integrable.

Lemma A.2 Let p,q > 1, and let f € L?(u?) and g € L?(uP). Fizxr = 0,...,q Ap. Then, fx/ g €
L2 (o),
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