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Abstract—In unstructured information retrieval P2P systems,
semantic heterogeneity comes from the use of different ontolo-
gies. Semantic interoperability refers to the ability of peers
to communicate with each others. We take into account these
notions separately, as raising two different problems. Hence
we propose two independent and complementary solutions. The
GoOD-TA protocol aims at reducing heterogeneity through
ontology-driven topology adaptation. DiQuESh is a top-k al-
gorithm for distributed information retrieval that is intended
to ensure interoperability. This distinction enables highlighting
their respective benefits on the IR performances and leads to a
modular architecture. For our experiments we obtained a set of
actively used real-world ontologies through the NCBO BioPortal.
We implemented GoOD-TA and DiQuESH in Java and used the
PeerSim simulator. We first show that GoOD-TA nicely reduces
the semantic heterogeneity related to the system topology, handles
the evolution of peers’ descriptors, and is suitable for dynamic
systems. Then, GoOD-TA and DiQuESh are run simultaneously,
with a significant increase of precision and recall. This enables
to identify the indirect contribution of heterogeneity reduction
obtained with GoOD-TA to improving interoperability.

I. INTRODUCTION

Peer-to-Peer (P2P) systems have proved useful for sharing

resources at large scale. In addition to their scalability and

dynamicity properties, they enable the peers’ autonomy and

decentralized control. We focus on unstructured P2P Informa-

tion Retrieval (IR) systems where each peer may be viewed

as both a query initiator and an autonomous provider that

manages its own documents. Without reference to a centralized

entity, it freely decides which documents it shares, with who

it does so, and how it characterizes its documents, via some

annotation or indexing process.

We target distributed information sharing applications for

scientific communities. The participants may include scientists

from different universities and different domains (biology,

medicine, chemistry, sports, ...) but also many other actors

from different companies or government institutions. Because

the participants may have different objectives, contexts, view-

points or expertise levels it is quite unlikely that they model the

application domain in the same way. In addition they are free

to choose whatever model that best fit their needs. This is why

we assume that each peer uses an ontology (either a reference

ontology or a specifically designed one). An ontology is a con-

trolled vocabulary that models a domain in terms of entities,

namely concepts, concept properties and relations between

concepts. The entities of an ontology may be used to annotate

a peers’ documents. This is a simple way to provide a uniform

characterization of pieces of information with very different

formats such as photos, texts or experimental datasets. For

example, in the biomedical domain, it is common practice

to annotate scientific articles with concepts of the Medical

Subject Headings (MeSH) or genetics-related datasets with

concepts from the Gene Ontology. The use of different ontolo-

gies leads to a context we denote as semantic heterogeneity.

This clearly results in a lack of interoperability due to the

disability of some peers to precisely understand other peers’

queries, thus providing marginally relevant documents.

The guideline of this paper is to clearly distinguish the

semantic heterogeneity of the system, that comes from the

use of different ontologies, and the semantic interoperability

that refers to the peers ability to communicate with each others

within the system. The former may be seen as a characteri-

zation of the difficulty to solve the interoperability problem.

Indeed, if heterogeneity is low, ensuring interoperability is

easier. Also, in IR, effectiveness of interoperability is evaluated

using metrics such as precision, recall or F-measure, while

heterogeneity better reflects a state of the system at some time

point, that might evolve during the system lifetime. Consider-

ing heterogeneity reduction and interoperability improvement

as independent and complementary problems leads us to

consider two classes of solutions: the algorithms that impact

the heterogeneity reduction, thus indirectly contributing to the

interoperability increase and those which directly improve in-

teroperability. Making this simple distinction enables to better

highlight the problem, the behavior of proposed algorithms,

and their respective contributions to the IR performances.

The objective of this paper is then threefold. First, we aim

at defining a method that reduces semantic heterogeneity.

Second, we want to define a simple IR process for distributed

heterogeneous context. Finally, we want to evaluate their

respective contribution in improving interoperability.

There are several ways to lower semantic heterogeneity

as for example facilitating the emergence of an ontology

shared by peers [21][17], or making peers learn or guess more

correspondences between ontology entities as in [1][9][17][6].

A good knowledge of correspondences by the peers is ob-

viously necessary. However, we believe that in very large

scale distributed systems, the most important is each peer’s



neighborhood because search algorithms often restrict search

around the peers. Hence, it is vital for peers to have neighbors

that understand them. We focus on dynamic overlays obtained

using gossiping algorithms. They enable to adapt the topology

of peers without explicit semantic description of the target

topology (e.g. [16]). Peers regularly exchange information

about peers’ descriptors and choose similar peers as neighbors

After several exchange cycles, the system topology evolves.

This idea has been for example used to create overlays where

close peers share the same interests [4]. This solution seems

well adapted to dynamic contexts, where peers join or leave the

system. However, to our knowledge, no work has studied the

use of gossiping to adapt the system topology according to the

ontologies used by peers and the correspondences they know,

in order to lower (topology-based) semantic heterogeneity.

In this paper, we bring the following contributions. First, we

define the GoOD-TA protocol (Gossip-based Ontology-Driven

Topology Adaptation) in section III. It aims at lowering se-

mantic heterogeneity by organizing unstructured P2P systems

according to a semantic proximity between peers descriptors.

A descriptor corresponds to the synthetic description of the

semantic knowledge of a peer. We propose two versions of

the protocol. In the first version, the descriptors and the

proximity only take into account the ontologies used by peers.

The second version in addition considers correspondences that

peers know. Hence the neighbors of a given peer are more

likely to understand the query it issues either because they

use the same ontology or because they are able to translate it.

We bring solutions to manage the system dynamicity and the

evolution of peers’ semantic descriptors.

Second, we propose DiQuESH (Distributed Query

Evaluation in Semantically Heterogeneous context) in

section IV. It is a distributed top-k query evaluation protocol

that aims at ensuring interoperability by enabling query

translation based on ontology alignments known by peers.

Contrary to many data integration solutions such as [12][1][5],

the original query is forwarded in order to let each peer

master the query translation on its own. The local document

relevance evaluation considers the deviation of the translated

query with respect to (w.r.t.) the original one. This enables to

lower the effects of an approximate translation.

Third, in section V, we provide several experiments with the

overall objective of studying the contribution of the GoOD-TA

protocol to the IR performances of the DiQuESH process.

We used the PeerSim simulator [20] to simulate the net-

work. We used the ontologies and services of the NCBO

BioPortal and research articles from the PubMed database.

The advantage is that the 149 ontologies of our evaluation are

actively used by the biomedical community and it is possible

the get the document indexing from the BioPortal. We first

provide extensive experiments showing the good behavior of

the GoOD-TA protocol: it significantly reduces the semantic

heterogeneity, nicely handles dynamicity and the evolution

of peers’ descriptors. Then, we run together the GoOD-TA

and DiQuESH protocols. We show that the former significantly

improves the precision and recall of the latter, thus indirectly

Fig. 1. Two ontologies o1 and o2 composed of concepts, concept properties
and relations.

contributing to semantic interoperability.

Comparison with related work is detailed in section VI.

In our view, this paper benefits from previous contributions

such as [14][2] to provide a new original approach to build

a totally decentralized, two layered solution for semantically

heterogeneous P2P systems for distributed information re-

trieval where peers annotate their documents with an ontology.

A main characteristic is the total independence of the two

software layers. Indeed, the way structural heterogeneity is

decreased is totally disconnected from the way documents are

retrieved. Together with the definition of gossip, this is a major

difference with the work described in [1].

II. MODEL AND DEFINITIONS

A. Ontologies and Alignments

An ontology provides a controlled vocabulary to model a

domain. Its expressiveness varies depending on the type of

ontology used. Here, we consider that an ontology is composed

of entities, namely, a set of concepts, a set of relations and a

set of properties assigned to concepts. We do not consider the

instances of the concepts. The left hand side of Fig. 1 shows

a part of an ontology about plants. In our experiments, we use

the standard language OWL for representing ontologies, de-

fined by the World Wide Web Consortium (W3C) [3] whereas

the algorithms are presented independently of any ontology

representation language. We assume that each ontology is

uniquely identified by an URI.

An alignment process aims at identifying correspondences

between the entities of two different ontologies [10].

Definition 1 (Correspondence): A correspondence between

two ontologies o and o′ is a 4-tuple 〈e, e′, r, n〉 such that e is

an entity from o, e′ is an entity from o′, r ∈ {⊑,≡,⊒,⊥} is a

relation between e and e′ and n ∈ [0, 1] is a confidence value

representing how much the correspondence is trustworthy.

The symbols ⊑, ≡, ⊒ and ⊥ respectively stand for less general

than, equivalent to, more general than, and disjoint from.

B. Unstructured P2P Systems

We model an unstructured peer-to-peer system S as a set

of peers P (or nodes) connected together through a relation

N ⊆ P × P . Each peer p has a unique identifier, denoted

by id(p), sufficient to contact it. For instance, p’s identifier

may be made of its IP address and a port number. To ensure

relationships with other peers, peer p maintains a partial view



of the system, also called local view or view. Each entry of

the view corresponds to a peer’s descriptor, denoted by λ. It is

at least composed of the identifier of the peer. As the number

of entries may be important, only n peers are selected to be

a peer’s neighbors: this set of peers is noted Np.

When a peer joins the system, it accesses a service that

enables finding neighbors. This service is always available

during its time-life in the system. The peer sampling service

provides this kind of service by returning a random sample

from the set of peers [15]. Once the peer has found some

neighbors, it initiates an exchange to obtain their descriptors:

its view is properly initialized with its neighbors’ descriptors.

C. Peers’ knowledge

We model the use of an ontology by a peer by a mapping

from the set of peers to a set of ontologies. The used ontology

might be some reference ontology, a personalized extract of

a reference ontology or a specifically designed ontology. Of

course, some peers may use the same ontology.

Definition 2 (Peer-to-ontology mapping): Given a set of

peers P and a set of ontologies O, a peer-to-ontology mapping

is a function µ : P → O, mapping each peer to one ontology.

Peers need to know correspondences to translate (at least

partially) the incoming queries and answer them. We model a

peer’s knowledge of correspondences by a mapping from the

set of peers to the power set of a set of correspondences.

Definition 3 (Peer-to-correspondences mapping): Given a

set of peers P and a set of correspondences C, a peer-to-

correspondences mapping is a function κ : P → 2C , mapping

each peer to a set of correspondences.

Each peer is responsible for the evolution of its ontology and

its set of known correspondences and chooses the way it man-

ages it. We refer to existing solutions such as [13][10][21][6].

D. Information Retrieval model

In Information Retrieval (IR), the most widely used

model is probably the vector space model [24]. Queries and

documents are represented by a vector of weighed terms,

where the terms are the space dimensions. Each term is

weighted according to its representativeness of the document

(resp. query). We use a variant of this model, considering

concepts instead of terms. For example, considering the

vector space defined by ontology o2 (cf. Fig. 1), a document

vector could be: [(Element, 0), (Petal, 0.8), (Corol, 0),
(Calix, 0), (V egetal, 0), (Flower, 1), (Orchidea, 0),
(Rose, 0), (Lys, 0.3)]. The semantic vector of a given

document or query may be obtained by automatic indexing

or manual annotation. We do not assume any specific type of

documents. They may be textual or multimedia documents,

web pages, medical diagnoses, etc. We denote by
−→
do the

semantic vector defined over ontology o and representing

document d. In a same space (same ontology), its relevance

score w.r.t. a query −→qo is given by the cosine similarity, which

is generally used in IR vector spaces:

cos(
−→
do,
−→qo) =

−→
do · −→qo

|
−→
do| × |−→qo |

III. TOPOLOGY ADAPTATION PROTOCOL

Basically, in an information retrieval process, peers send

queries in their neighborhood because flooding the whole

system is unrealistic. In this context it is crucial to ensure

that peers receiving queries issued by a peer understand this

peer. In order to do that, we propose the GoOD-TA protocol.

A. Principles of the GoOD-TA protocol

GoOD-TA is a gossip-based protocol [18] that makes peers

exchange descriptors of other peers, so that the topology of the

system evolves. Each peer consists of two threads: an active

and a passive one. The active thread is used to initiate commu-

nication with another peer: Each peer p regularly (each θ time

units) contacts another peer to exchange descriptors of other

peers. When peer p′ is contacted by p (through the passive

thread), p′ has to answer by returning a list of descriptors.

Then, both peers treat the received descriptors: they use them

to build their partial view of the system. Notice that each

peer has to define its own descriptor, changing it when its

knowledge changes. It is the only one entitled to do so (except

in one case, cf. section III-E). We assume that peers are not

malicious: each peer provides a correct descriptor of itself.

Peers have to process three crucial tasks: peer selection, data

selection and data processing. We describe them w.r.t. some

peer p.

Peer selection: The peer selection is done by randomly

selecting a peer p′ in the local view. Thus the peer p executing

the selection knows the descriptor of p′. If the view does not

contain descriptors enough to discover new neighbors, the peer

sampling service [15] can be invoked to refresh/reset the view.

Data selection: When peer p has to send data to p′, it

decreasingly ranks the descriptors of its own view according

to their proximity with p′. Then p sends the best (closest)

descriptors to p′. Ranking the view w.r.t. p′ allows to reduce

the convergence speed of the protocol. Only mmax descriptors

are considered in order not to overload the network.

Data processing: When p receives a set of descriptors

from p′, it merges its view with the received descriptors. The n

closest peers of the view (those which are the most similar

to p) become its neighbors. A descriptor is not added in the

view if it is already in it. If the storage space of p is limited,

then only vmax entries are kept.

In order to rank the descriptors in the peers’ views, the data

selection and data processing phases use a proximity function.

We define it as a function proxλ(λ
′) returning a value in [0, 1]

that corresponds to the proximity of a descriptor λ′ w.r.t. an-

other descriptor λ. If proxλ(λ
′) equals 1, then p′ understands

all the concepts of the ontology of p. A proximity function

verifies the following property: λ = λ′ ⇒ proxλ(λ
′) = 1. The

inverse is not necessarily true: the proximity may equal 1 even

with different descriptors.

We present two approaches. For each of them, we define

the content of a peer’s descriptor and an associated proximity

function.



B. Light Version

A peer p is described by its identifier (id) and the identifier

of its ontology µ(p) noted onto id. Table I is an example of

a peer’s view. We define the proximity function by:

proxλ(λ
′) =

{

1 if λ.onto id = λ′.onto id

0 otherwise

Considering a peer p4 using o2 and having the Table I as view,

we find: proxλ4
(λ2) = 0, proxλ4

(λ9) = 1, proxλ4
(λ3) = 0,

and proxλ4
(λ7) = 1.

TABLE I
PEERS’ DESCRIPTORS IN A VIEW (LIGHT VERSION).

id onto id

λ2 id(p2) uri(o1)
λ9 id(p9) uri(o2)
λ3 id(p3) uri(o3)
λ7 id(p7) uri(o2)

This approach ranks peers according to the ontology they

are using. Hence, peers move closer to peers that use the same

ontology. This approach is very convenient because it requires

very little information. Nevertheless, it could be inefficient

when some ontologies are shared by small numbers of peers:

it may be difficult for them to meet. Moreover, the definition

of proximity does not allow to distinguish the case where two

ontologies have 99% of their concepts in common, and the

case where only 5% of their concepts are in common. And

it does not consider the peer’s knowledge of correspondences

either. As a consequence, we propose a more refined approach.

C. Refined Version

Although it would enable to compute a very accurate dispar-

ity between peers, it is quite unrealistic to include the known

correspondences in a peer’s descriptor. Hence, we propose to

consider what looks like a coarse approximation: the number

of correspondences the peer knows between its ontology and

others. The descriptor of a peer p is made of (i) the identifier

of the peer: id, (ii) the identifier of the ontology used by

the peer: onto id, (iii) the number of concepts contained in

the ontology: onto size, (iv) a set corr of triples 〈o, o′, nb〉
where nb is the number of correspondences that p knows be-

tween ontologies o and o′ (i.e. a subset of κ(p)). In this paper,

we only consider equivalences (≡), but the proposed solution

could be generalized to other types. Each triple 〈o, o′, nb〉
concerns p: p uses o or o′. Table II presents a peer’s view.

The second line shows that peer p9 uses o2 (which contains 95
concepts) and knows 72 correspondences between o2 and o1,

and 36 between o2 and o4.

Given this richer definition of descriptor, we intend to reflect

that the proximity of λ′ w.r.t. λ depends on the capacity of p′

to understand concepts from the ontology of p. We define the

proximity as:

proxλ(λ
′) =















1 if λ.onto id = λ′.onto id
nb

λ.onto size
if ∃〈λ.onto id, λ′.onto id, nb〉

∈ λ′.corr

0 otherwise

TABLE II
PEERS’ DESCRIPTORS IN A VIEW (REFINED VERSION).

id onto id onto size corr

λ2 id(p2) uri(o1) 110 {〈uri(o1), uri(o2), 85〉}
λ9 id(p9) uri(o2) 95 {〈uri(o2), uri(o1), 72〉,

〈uri(o2), uri(o4), 36〉}
λ3 id(p3) uri(o3) 1,417 ∅
λ7 id(p7) uri(o2) 95 {〈uri(o2), uri(o3), 58〉}

This function does not satisfy the symmetry property. Indeed

the fact that p2 knows nb correspondences between µ(p1)
and µ(p2) does not imply that p1 also knows these correspon-

dences. For a peer p4 using o2 (which contains 95 concepts)

and having the Table II as view, we find that: proxλ4
(λ2) =

85
95

because p2 has 85 correspondences between o1 and o2;

proxλ4
(λ9) = 1 because p9 also uses o2; proxλ4

(λ3) = 0
because p3 has no correspondence between o3 and o1, etc.

D. Evolution of peers’ semantic descriptors

In this section we deal with the fact that the descriptor of a

peer p may change. It may happen because: (i) p decides to use

another ontology (a new ontology), (ii) p makes its ontology

evolve, (iii) p discovers new correspondences between its

ontology and another one. To support these evolutions, we

add a number version to each descriptor (v). A local clock is

used to initialize the number version. For instance the number

version can be an integer representing the number of seconds

since January 1, 1970. The number version is updated when

the peer’s descriptor changes. Notice that the number version

is used to compare two versions of a peer’s descriptors: it

is never used to compare descriptors of two different peers.

When a peer p receives a set of descriptors (during the data

processing), it must check if each descriptor is already in its

view and keep the latest version. We illustrate the proposed

solution with two scenarios.

Scenario 1: Let us consider a peer p2 using an ontology o2
of 95 concepts, and having 50 correspondences between o2
and o1. If we consider the refined version of GoOD-TA,

the descriptor of p2 is: [id(p2), uri(o2), 95, {〈o2, o1, 50〉}, v1].
After a while, p2 discovers new correspondences. Then the

descriptor is changed and the version number is updated:

[id(p2), uri(o2), 95, {〈o2, o1, 95〉}, v2]. At this point p2 real-

izes that it could use o1 (containing 110 concepts) rather

than o2 because all the concepts of its ontology are mapped to

concepts of o1. Then it gets the ontology o1 and starts to use it.

This situation is realistic, in particular if o1 and o2 come from

a common ontology. As a consequence, a new descriptor is

created: [id(p2), uri(o1), 110, {〈o1, o2, 95〉}, v3]. Known cor-

respondences are kept because they still involve p2’s ontology.

Scenario 2: We consider a peer p2 using an on-

tology o2 of 95 concepts, and knowing 55 corre-

spondences between o2 and o1. Its descriptor equals:

[id(p2), uri(o2), 95, {〈o2, o1, 55〉}, v1]. At this point p2 choses

to add some concepts in the ontology o2 to fit with its need.

A new ontology o′2 is created: it contains concepts of o2 and 6
other concepts. Then o′2 contains 101 concepts of which 95



are in common with o2: 95 correspondences exist between o′2
and o2. Besides the triple 〈o2, o1, 55〉 is not relevant for p2
because it is not using o2 anymore. But as all concepts of o2
are mapped with those of o′2, the triple 〈o′2, o1, 55〉 can be

considered. Thus p2’s descriptor is:

[id(p2), uri(o
′
2), 101, {〈o

′
2, o1, 55〉, 〈o

′
2, o2, 95〉}, v2].

The identifier of o′2 (uri(o′2)) must be unique. It can be

computed using the identifier of o2, the identifier of p2 and

the current value of p2’s clock. It ensures that several peers

can create different ontologies from a common source at the

same time, and that a peer can create different ontologies from

a common source at different times.

E. Dynamicity of the system

In this section we deal with the fact that P2P systems are

dynamic: peers can join or leave the system at any time. To

take it into account, we introduce a new notion: the status

of a descriptor. It can basically be represented by a boolean

value (0 or 1). During its presence in the system, a peer p

communicates its descriptor (through the classic protocol) with

a status equal to 1. This value is unchanged while p is in

the system. If p leaves the system (voluntarily or because of

a failure), its descriptor becomes obsolete because it is not

reachable anymore. We distinguish between both cases.

Peer Departure: When peer p chooses to leave the system,

it changes its descriptor: it puts the status to 0 and updates

its version number. In the light version, peer p would turn its

descriptor [id(p), uri(o), v, 1] into [id(p), uri(o), v′, 0], where

v′ > v. Before leaving, p sends its descriptor to its neighbors.

This way they learn that p left, and they are able to convey

this information to other peers by sharing its new descriptor.

Peer Failure: If peer p fails, the descriptor cannot be

updated by p itself. So when a peer p′ observes that p is

not reachable anymore, it modifies the descriptor desc(p):
it simply sets the status to 0 and increments the version

number by one. Peers clocks are not necessarily synchronized

so p′ does not use its local clock to update p’s descriptor.

In the light version of GoOD-TA, p′ would turn p’s descrip-

tor [id(p), uri(o), v, 1] into [id(p), uri(o), v′, 0] where v′ =
v + 1. Notice that this is the only situation in which a peer

is allowed to modify the descriptor of another peer. After that

it continues to share this descriptor in order to inform other

peers that p left. The peer failure detection is ensured by an

independent mechanism which is out of the scope of this paper.

Peer Join: When a peer p joins the system, the version

number is initialized using the local clock, and the status is

set to 1. If it is not the first time that p joins the system,

the new version number is greater than the number version

propagated in previous sessions.

IV. DISTRIBUTED QUERY EVALUATION

DiQuESH is a distributed top-k query evaluation protocol

in semantically heterogeneous environment. It provides the

query initiator with a set of k best results within a given

neighborhood, defined by a TTL value: Considering the same

neighborhood, there is no result outside this set that has a

strictly better score. A result is a triple (idp, idd, scd): the

peer identified by idp assigns the relevance score scd to the

document locally identified by idd. Hence during execution,

it is not possible to know whether a same document is

returned several times by different peers. We assume that the

scores are normalized in [0, 1] and comparable. We adapt the

generic algorithm Fully Distributed [2] to the case of IR in

semantically heterogeneous context. We describe the different

steps.

A. Query forward

A query initiator p sends the query to its direct neigh-

bors (Np). The message is made of the semantic vector char-

acterizing the search −→qo , expressed relative to its ontology o,

the URI of o, the number k of required documents and a

given TTL. When some peer p′ receives a query −→qo with

TTL 6= 0, it first forwards it to its neighbors and decreases

the TTL value. Then it treats it locally.

B. Local query execution

This step provides the k best local results. It has two stages,

query translation and relevance scoring.

Query translation: To translate a query −→qo , a peer p′ with

ontology o′, uses the correspondences it knows between o et o′.

This results in a semantic vector −→qo′ , expressed in the vector

space defined by o′. To keep simple, this process (described

in Algorithm 1) only considers the equivalences which con-

fidence value n is equal to 1 (cf. line 3). We could as well

consider those where m is above some threshold, and modulate

the weight of concepts according to m. We could also consider

other types of correspondences (subsumption, etc.) in order to

weight additional concepts in the space defined by o′, but with

the well known limits of any expansion process.

Algorithm 1: Translation of vector −→vo by peer p′.

Input: A semantic vector −→vo expressed relative to o.

Output: A semantic vector −→vo′ expressed relative to o′.

1
−→vo′ ← ∅ // Weights initialized with 0

2 for c ∈ −→vo do

3 if ∃c′ ∈ Co′ : 〈c, c
′,≡, 1〉 ∈ κp′(o, o′) then

4
−→vo′ [c

′]← −→vo [c] ; // −→vo [c] is the weight

of c in −→vo

Local relevance scoring: Peer p′ could compute the docu-

ment relevance considering the translated query only and for-

getting the initial query. However, the risk is to assign an inap-

propriate relevance value. For example, let us consider an ini-

tial query represented by [(c1, 1), (c2, 1), (c3, 1)] with a trans-

lation represented by [(c′1, 1)] only, with c1 ≡ c′1 and a docu-

ment d represented by a single concept [(c′1, 1)]. Then consid-

ering the cosine similarity, the relevance value of d is equal

to 1. However, another peer might know more alignments

and better translate the query as: [(c′1, 1), (c
′
2, 1), (c

′
3, 1)]. Then

the relevance value of d is lower. Hence, it seems that a



relevance value that has been computed w.r.t. an approximative

translation should be penalized. This is all the more important

as the algorithm compares the scores from different peers.

Those which perform accurate translations would be wrongly

penalized.

Our proposal is to adjust the score of the document relative

to the translated query by taking into account the deviation of

the translated query relative to the initial query. The deviation

corresponds to the ”error” introduced by the incomplete query

translation. Any receiving peer can compute it, even if it does

not have all the query concepts in its ontology. Hence, the

relevance score of a document
−→
do′ relative to an initial query

−→qo is given by :

score(
−→
do′ ,
−→qo) = cos(

−→
do′ ,
−→qo′)× cos(−→qo ,

−→
q̃o)

where
−→
q̃o is the vector that corresponds to the initial query −→qo

limited to the concepts that have been translated and con-

sidered in −→qo′ . Notice that when d and q are represented

within the same space defined by o, we have −→qo =
−→
q̃o and,

then score(
−→
do′ ,
−→qo) = cos(

−→
do′ ,
−→qo′).

This approach has two advantages. First, the document

scores are comparable as they consider the deviation between

the initial query and the query that is actually evaluated.

Second, it is rather generic and could be used with other

relevance measures.

C. Merge and backward - retrieval

After treating a query locally, peer p′ waits for its neigh-

bors’ results lists. It performs a merge and sort algorithm of

its own list with the received ones. Then it selects the k best

results. It sends back the obtained list to the peer that had

forwarded him the query. To actually get the k most relevant

documents, the query initiator directly contacts the peers. This

is possible because a result is a triple containing the peer’s

address and the document local identifier.

V. PRELIMINARY EXPERIMENTS

A. Dataset and P2P simulator

In order to run our experiments we need a set of ontologies,

a set of alignments between these ontologies, a set of docu-

ments and queries indexed/annotated with concepts of these

ontologies, and a relevance judgment. To our knowledge, no

such predefined IR corpus is available. We used the BioPortal

Web services [11] to get some of these elements but their

size (e.g. the number of ontologies) limits the scope of the

results presented in sections V-C and V-D.

We obtained 149 OWL ontologies that are actively used

in biomedical communities. We also retrieved 1, 417 align-

ments between these ontologies. They contain 28, 027 cor-

respondences (≡) between 91 ontologies: 58 ontologies are

totally disconnected from others. Globally ontologies are very

dissimilar: they hardly overlap. The problem of semantic

heterogeneity is particularly difficult. In order to run infor-

mation retrieval (IR) experiments, we downloaded semantic

annotations of 4, 163 documents (through a BioPortal service).

Documents correspond to articles published in biomedical

journals that come from the PubMed database. Some docu-

ments are annotated w.r.t. different ontologies. Annotations are

used to build semantic vectors.

We implemented GoOD-TA and DiQuESH in Java. We

used the PeerSim simulator [20] to generate P2P systems as

random directed graphs of peers. Each peer is linked to some

others peers which are used to initialize its view. Ontologies

are randomly assigned to peers according to a discrete uni-

form distribution. Each peer initially knows correspondences

involving its own ontology. PeerSim uses a seed to simulate

randomness. Each experiment was launched three times with

different seeds. The results presented correspond to the average

of these three experiments.

B. Metrics

Semantic heterogeneity: We use two metrics defined in [7]:

HRich and HDapAvg . They focus on different facets of hetero-

geneity, and they are normalized in [0, 1]. The HRich measure,

which characterizes the semantic richness, is defined as:

HRich(S) =
|oS | − 1

|P| − 1

where oS is the set of ontologies used in S , and P is the set

of peers in S . The richness measure gives information about

semantic diversity of the system but does not take into account

the organization of the system (i.e. the neighborhood relations

between peers). The neighborhood of a peer p, noted N r
p ,

represents the set of peers accessible from p with at most r

hops (p does not belong to its own neighborhood). We consider

the HDap metric which measures the heterogeneity around a

specific peer p. It is defined as:

Hr
Dap(S, p) =

1

|N r
p |

∑

pi∈N r
p

d(p, pi)

In these experiments, the disparity function d is defined as:

d(p, p′) =

{

0 if o = o′

1−
|κp′ (o,o

′)|

|Co|
otherwise

where o and o′ are the ontologies used by p and p′, Co is the set

of concepts of o, and κp′(o, o′) is the set of correspondences

that p′ knows between o and o′. This measure determines at

which point p′ misunderstands the concepts of p. HDap is

used to define a global measure:

Hr
DapAvg(S) =

1

|P|

∑

p∈P

Hr
Dap(S, p)

It allows to characterize the heterogeneity of a system ac-

cording to its topology. If each peer p is surrounded by

semantically close neighbors, then each Hr
Dap(S, p) is close

to 0. As a consequence, Hr
DapAvg(S) is also close to 0.

IR performances: In order to measure the efficiency of an

information retrieval method we consider the precision and the

recall metrics. Given a top-k query q, they are defined as:

Pq =
|Aq ∩Rq|

|Aq|
and Rq =

|Aq ∩Rq|

min(k, |Rq|)
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Fig. 2. Comparison of both versions of GoOD-TA in different situations of
semantic diversity (HRich).

where Aq is the set of retrieved documents for q, and Rq is

the set of relevant documents for q.

C. Semantic diversity tolerance

In this section we study the performances of GoOD-TA in

different situations of semantic heterogeneity: We evaluate its

capacity to reduce the topology-related heterogeneity (mea-

surable with HDapAvg) according to the semantic diversity of

the system (measurable with HRich). In this experiment, we

aim to vary the diversity degree between 0 and 1. As we only

have 149 ontologies, we are obliged to consider P2P systems

of 149 peers. We vary the number of ontologies: 16, 31, 45, 60,

75, 90, 105, 119, 134 or 149. Thus, HRich equals 0.1, 0.2, ...,

and 1. After the initialization step, the GoOD-TA protocol runs

during 300 cycles, point where heterogeneity is stabilized. The

number of descriptors sent at each cycle is limited to 5. The

size of local caches is set to 20. For this experiment peers do

not leave/join the system and do not change their descriptors.

The degree of connectivity is set to 3: each peer is directly

connected to 3 other peers. The radius r is set to 3.

The results of the experiment are shown on Fig. 2. The

reference corresponds to the case where GoOD-TA is not

running. We can see that both versions are very efficient when

the diversity is lower than 0.8. The more diversified the system,

the less efficient the protocol. When HRich is greater than 0.8,

the light version of the protocol is ineffective. The refined

version still reduces HDapAvg when HRich equals 1. In all

the situations, the refined version is more efficient than the

light one: heterogeneity HDapAvg is more reduced.

D. Stabilization speed

We aim to compare the stabilization speed of both versions

of GoOD-TA. Notice that the stabilization is ensured while

peers store at least log(|P|) entries in their views [16]: it is the

case in our experiments. The parameters are those described

in section V-C and the simulation lasts 300 cycles. Let M

be the minimal value of heterogeneity observed during the

simulation: M = mint∈[0,300]H[t]. We define the stabilization

time st as the minimal time after which all the values of

heterogeneity are close to M : ∀t ∈ [st, 300],H[t] 6 M + ε (in

this experiment ε = 0.05).
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Fig. 3. Stabilization time of GoOD-TA according to the semantic richness.
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Fig. 3 presents the convergence speed of the two versions

of GoOD-TA in different situations of semantic diversity. Both

curves have the same shape. The convergence times increase

when the value of HRich is between 0 and 0.3, and they

decrease when HRich is greater than 0.4. Convergence is

rapid when HRich is low (it is easy to reduce HDapAvg)

and when HRich is high (HDapAvg is slightly reduced). Con-

vergence is slow when HRich is medium (lots of descriptors

exchanges are needed). The convergence speed of the light

version equals 0 when HRich is greater than 0.8 because in

this case HDapAvg is not reduced at all (see Fig. 2).

E. Evolution of peers’ semantic descriptors

In this section we study GoOD-TA when some peers

change their descriptors. We consider systems of 1, 000 peers

using 149 ontologies. Other parameters are those used in

previous sections. In this experiment, we let GoOD-TA run

during 500 cycles. During the first 250 cycles, peers do not

change their ontology. At the 250th cycle, a number of peers

change their ontology (1, 10 or 100 peers). Their descriptors

are updated accordingly. New ontologies chosen by peers are

potentially already used by other peers of the system. The

challenge for these peers is to find new relevant neighbors.

We study the local impact of these changes for peers using

the Hr
Dap(S, p) measure around each peer p that changed its

ontology, and the average of the values is computed. We only

consider the light version of the protocol (the refined version

gives similar results).



Fig. 4 shows that when some peers change their ontology,

they quickly find new relevant neighbors. The proximity with

the new neighborhood is not necessarily the same than with the

old one. It depends on the number of peers that use the same

ontology in the system. To speed up the reconfiguration of the

system, it is possible to make peers restart the protocol (i.e.

empty their views and start exchanging with some peers) as

it is suggested in [16]. Obviously additional experiments have

to be conducted to study the performances of GoOD-TA when

peers constantly and intensively make their ontology evolve,

and discover new correspondences.

F. Dynamicity of the system

In order to simulate dynamicity, i.e. frequent joining or

leaving of peers, we remove and add a given number of peers

at each cycle. This way, the size of the system always remains

the same. The removal of a peer corresponds to the situation

in which it fails. It is considered as a critical situation because

it does not inform other peers that he is leaving. We study the

performance of GoOD-TA when the session duration average

varies between 1 minute and 60 minutes. The session duration

of a peer corresponds to the time it remains in the system. We

consider P2P systems of 1, 000 peers using 149 ontologies (as

a consequence HRich equals 0.15). The connectivity degree is

set to 4. Other parameters are those used in previous sections.

Peers joining the system use ontologies that are potentially

already used in the system. We considered the configurations

presented in Table III with cycle length of 5 seconds. When

the average session duration equals x cycles, the churn rate r

equals 100
x

% (r × |P| peers join/leave at each cycle). In this

context a churn rate greater than 1% is a critical and unlikely

case because it means that peers remain only 8 minutes in

the system in average (this time does not seem sufficient to

share or download data). Our experiment consists in observing

a system during 300 cycles.

TABLE III
CONFIGURATIONS CONSIDERED TO STUDY GOOD-TA WITH CHURN.

Average session duration Churn rate
(# of cycles) (minutes) (%)

12 1 8.33
60 5 1.67
180 15 0.54
360 30 0.27
720 60 0.14
∞ ∞ 0 (no churn)

Fig. 5 presents the semantic heterogeneity according to the

average session duration for the two versions of GoOD-TA.

The reference corresponds to case where no protocol is run-

ning. The curves corresponding to both versions of GoOD-TA

also coincide. It means that they have the same ability to

handle dynamicity. It also shows that, with both versions

of GoOD-TA, heterogeneity is reduced even if peers remain a

single minute in the system. When the average session duration

becomes more important, the semantic heterogeneity is more

reduced. We can see that when the session duration equals 60
minutes, the heterogeneity is reduced from 0.96 to 0.2. In [25]
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authors point out that half of the participants remain in data

sharing systems (e.g. Gnutella and Napster) more than one

hour. Based on this analysis, we can say that GoOD-TA is

suitable for these kind of systems. Fig. 6 presents the evolution

of HDapAvg for different churn rates when the light version

is running. It shows that when the average session duration

decreases, the heterogeneity HDapAvg is less reduced. When

the churn rate is important the system is unstable, and hetero-

geneity oscilates. To conclude we can say that GoOD-TA is

suitable for dynamic P2P systems.

G. Improvement of semantic interoperability

Only 39 ontologies are used to represent the documents that

we downloaded. We generated 1, 353 queries using concepts

of these 39 ontologies. Each query contains between 1 and 3
concepts. The relevance judgment is also generated according

to queries and documents. For each query q, we identified

the best k (k = 10) documents by executing the method

in a centralized system in which all the documents and all

the correspondences are available. These documents form the

set Rq of relevant documents for q.

In this experiment we consider following configuration:

1, 000 peers, 149 ontologies, no churn, no evolution of

peers’ semantic descriptors, connectivity degree |Np| =, ra-

dius r = 3, TTL = 3, and k = 10. As the TTL is set to 3,

each peer can communicate with at most 84 (= 4 + 42 + 43)
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peers. As we consider systems of 1, 000 peers, it repre-

sents 8.4% of the system. The light version of GoOD-TA

runs as in previous experiments (the refined version should

give better results). Every 10 cycles, randomly choosen peers

issue the queries and retrieve documents through the DiQuESH

algorithm. Precision and recall are then computed.

Fig. 7 presents the results of this experiment. Baselines

precision and recall correspond to results obtained when

no protocol is running. Fig. 7 shows that precision and

recall are rapidly increased (from 0.05 at the beginning

to 0.37 and 0.48 after 75 cycles). We can see that they

are stable from the 100th cycle whereas heterogeneity still

decreases (see Fig. 6, curve ∞). This experiment shows that

reducing heterogeneity allows to improve IR performances,

but it also demonstrates that it is not necessary to perfectly

cluster peers because the benefits w.r.t. IR performances are

limited. Nevertheless it allows to easily handle dynamicity of

peers.

VI. RELATED WORK

Many works have used gossiping as presented in [18] to

adapt the system topology to their needs. They differ in the

way they define the peer’s descriptors that are exchanged

during gossip and the proximity function. For example, [16]

presents general results showing how to organize P2P systems

to fit target topologies such as torus. The idea of putting closer

similar peers so that they can interact more easily is used

in several works, which we cite only a few due to space

limitations. For example, [27] consider the peers’ content,

without considering any metadata nor ontology while [4]

consider exchanging peers’ profiles, creating dynamic overlays

of users with same interests but who may not know each

others. However, to our knowledge, no one has focused on

using this type of gossiping in order to put closer peers

with similar ontologies or enough knowledge of mappings to

understand their neighbors’ queries.

Gossiping may also be used to reduce other facets of

semantic heterogeneity. Indeed, if the peers know a lot of

correspondences between entities of different ontologies, het-

erogeneity is lower. Knowledge of correspondences may be

shared across the system by gossiping them [18]. We have

studied this type of solution in [6]. It is also proposed in a

different way in [21]. These approaches are complementary

to the work presented in this paper and would correspond to

another module in the peers’ architecture.

Gossiping is not the only way to obtain overlays of se-

mantically close peers and many works have proposed other

solutions which flexibility degree varies. For instance, super-

peer-based infrastructures have been proposed in [19][22],

based on the clustering of peers that use the same schema.

They do not correspond to our context of unstructured P2P

systems and may not be very suitable when peers change their

ontologies. Changes of ontologies may also be a problem in

PARIS, a semantic overlay network architecture with an hybrid

topology [8] where peers using identical ontologies form a

local group, some of them participating to a distributed hash

table to maintain a connection between the different groups.

Some works focus on computing an ontology summary for

each overlay (cluster ontology) [26]. Their peers clustering

is mainly incremental as each incoming peer searches for

the closest cluster. However, contrary to our proposal, this

solution requires the explicit representation of clusters and its

management during the system lifetime.

In the field of data bases, Peer Data Management Sys-

tems (PDMSs) address the management of heterogeneous

schemas in P2P systems, in order to integrate structured or

semi-structured data. A pioneering work is [1], where a peer’s

neighborhood is composed of peers with similar schema and

peers against which schema it is able to translate queries.

However, the way these overlays are created results from the

analysis of successive query translations to identify a potential

neighbor and from a simple exchange of ping/pong message to

establish a real connection. This is rather far from the way we

create overlays. The term ”semantic gossiping” is introduced

in [1] too, where it means that one ”can propagate queries

towards nodes for which no direct translation link exists.” This

is very different from our definition of gossiping. In fact, this

work and subsequent ones such as [12][9][17][5] mainly focus

on the successive translations of queries, on evaluation of the

quality of translation as it may induce some losses and on

progressive learning of other peers’ schemas. For example,

in [17], peers update their one-hop neighborhood according to

the accuracy of the answers they receive. Some works use an

explicit representation of overlays such as [23][17]. In [23], an

overlay is represented by a set of concepts (from a reference

ontology). The explicit description of the overlays has to

be maintained for new peers to be able to join overlays. A

more flexible solution is proposed in [17] which automatically

computes schema synopses from semantic clusters. On the

contrary, we use gossiping, with no explicit representation of

overlays.

As a conclusion, our work benefits from previous con-

tributions to provide a new original approach to build a

totally decentralized, two layered solution for semantically

heterogeneous P2P systems for distributed information re-

trieval where peers annotate their documents with an ontology.

A main characteristic is the total independence of the two



software layers. Indeed, the way structural heterogeneity is

decreased is totally disconnected from the way documents

are retrieved. Together with the definition of gossip, this is a

major difference with the works previously described. Because

they mix query evaluation and learning about peers’ schemas,

it is possible to study their global performances but no one

can highlight the individual performances of the learning-of-

mappings solution nor those of the clustering algorithm in

reducing semantic heterogeneity.

VII. CONCLUSION

In the context of P2P information retrieval systems where

peers annotate their resources w.r.t. ontologies, we proposed

to distinguish semantic heterogeneity and interoperability. The

former is viewed as a characteristic of the system, that depends

on the ontologies used, on the peers’ semantic knowledge

and on their relationships. It represents the difficulty of the

problem. Interoperability is more application dependent and

is linked to the retrieval performances, that can be measured

through usual metrics such as precision and recall.

To illustrate this approach, we defined two independent

and complementary protocols: (i) the GoOD-TA protocol that

reduces the semantic heterogeneity related to the topology

by putting closer peers that can understand each others and

(ii) the DiQuESH protocol, a distributed top-k algorithm

that ensures some interoperability. First we showed the nice

behavior of the GoOD-TA protocol in reducing semantic

heterogeneity, handling dynamicity and the evolution of peers’

descriptors. Then we showed that precision and recall values

obtained by the DiQuESH protocol alone are improved if we

run both algorithms together. This enables showing the indirect

contribution of GoOD-TA to interoperability.

Future work encompasses more experiments with other data

sets and definition of additional algorithms to manage semantic

heterogeneity/interoperability. We currently assume no peers’

malicious behaviors, such as cheating about one’s profile or

one’s own documents relevance score. We plan to include

existing solutions that enable to avoid such behaviors.
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[1] Karl Aberer, Philippe Cudré-Mauroux, and Manfred Hauswirth. The
chatty web: emergent semantics through gossiping. In WWW, pages
197–206, 2003.

[2] Reza Akbarinia, Esther Pacitti, and Patrick Valduriez. Reducing network
traffic in unstructured P2P systems using top-k queries. Distributed and

Parallel Databases, 19(2-3):67–86, 2006.

[3] Grigoris Antoniou and Frank van Harmelen. Web ontology language:
OWL. In Steffen Staab and Rudi Studer, editors, Handbook on

Ontologies, International Handbooks on Information Systems, pages 91–
110. Springer Berlin Heidelberg, 2009. Second Edition.

[4] Marin Bertier, Davide Frey, Rachid Guerraoui, Anne-Marie Kermarrec,
and Vincent Leroy. The gossple anonymous social network. In 11th

International Middleware Conference, pages 191–211, 2010.

[5] Angela Bonifati, Elaine Qing Chang, Terence Ho, Laks V. S. Laksh-
manan, Rachel Pottinger, and Yongik Chung. Schema mapping and
query translation in heterogeneous P2P XML databases. VLDB Journal,
19(2):231–256, 2010.

[6] Thomas Cerqueus, Sylvie Cazalens, and Philippe Lamarre. Gossiping
correspondences to reduce semantic heterogeneity of unstructured P2P
systems. In 4th International Conference on Data Management in Grid

and P2P Systems, pages 37–48, 2011.

[7] Thomas Cerqueus, Sylvie Cazalens, and Philippe Lamarre. Seman-
tic heterogeneity measures of unstructured P2P systems. In 10th

IEEE/WIC/ACM International Conference on Web intelligence, 2011.
[8] Carmela Comito, Simon Patarin, and Domenico Talia. A semantic

overlay network for P2P schema-based data integration. In 11th IEEE

Symposium on Computers and Communications, pages 88–94, 2006.
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