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This paper reports simulation results of frequency dependent heat conduction through
three-dimensional reconstructed unit cells of an open-cell aluminum foam under acoustic
excitations. First, a three-dimensional random walk based algorithm is proposed to calculate the
dynamic thermal permeability or dynamic bulk modulus of periodic complex porous geometries.
Second, the error and convergence of the implemented calculation algorithm are quantified in terms
of the random walk population, normalized trapping distance, and type of geometry. Finally, the
algorithm is applied to the calculation of the dynamic bulk modulus of an aluminum foam and
compared to laboratory measurements. Good agreement is obtained between simulations and
measurements. © 2007 American Institute of Physics. �DOI: 10.1063/1.2786899�

I. INTRODUCTION

Can a periodic unit cell �PUC�, whose microstructural
parameters have been identified experimentally, serve as a
basis to model acoustic dissipation phenomena in open cell
foams? How do acoustic properties depend on microstruc-
tural parameters? These are two of the many questions that
are dominating studies of relationships between microstruc-
ture and acoustic properties of porous media such as open
cell foams.

Such questions may be addressed in different manners. A
common method consists in conducting a lot of laboratory
measurements on samples of varying microstructural
parameters.1,2 Alternatively, in a search for a theoretical un-
derstanding, one may try to better understand the mathemati-
cal and physical basis of the macroscopic equations govern-
ing acoustic dissipation phenomena.3–7 Finally, numerical
studies based on simulations can be considered.8–13 Each of
these ways of considering these questions has advantages
and disadvantages. Laboratory measurements are of indisput-
able values; however, their interpretation may be limited to a
specific group of materials. Theoretical studies at the macro-
scopic scale are leading to robust models, but they also re-
quire measurements of nonindependent macroscopic param-
eters. Numerical simulations usually attempt to bridge the
gap between theory and experiments. They are nevertheless
typically restrained by either the need to simplify geometry,
physics, or both.

In recent years, another approach to the numerical study
of acoustic properties of porous media has gained some in-
terest. The idea is to numerically solve, in a microstructural
configuration which consists of a PUC, the linearized
Navier-Stokes equation in harmonic regime with the local
incompressibility condition14 �viscous problem� and the lin-
earized heat equation in harmonic regime7 �thermal prob-
lem�, with appropriate boundary conditions, and then to
study how volume-averaged properties of the velocity and
thermal fields relate to microscopic details of the geometry.
Compared to macroscopic models, such an approach offers
the ability to study the microphysical basis of the acoustical
macrobehavior. Additionally, we proceed by increasing order
of complexity, by solving initially the thermal problem, sca-
lar counterpart of the viscous one.

The dynamic thermal permeability k���� plays, in the
description of the thermal exchanges between frame and
saturating fluid, a role similar to the dynamic viscous perme-
ability in the description of the viscoinertial forces. Follow-
ing Lafarge et al.,7 the thermal analog of the dynamic ther-
mal permeability is defined by setting at any frequency
����= �k���� /����p� /�t, where � is the porosity of the po-
rous media, ��� is the macroscopic excess temperature in air
�the symbol � � denotes an intrinsic air-phase average�, � is
the fluid thermal conductivity, and ��p� /�t is the macro-
scopic acoustic pressure derivative. k���� determination is
important not only when a precise prediction of sound propa-
gation and absorption through air-filled porous media is
needed but also as a supplementary microstructure probe.
Explicit relations leading to the propagation constant and the
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characteristic impedance of a medium from its dynamic vis-
cous and thermal permeabilities can be found elsewhere.7

Remarkably, for the scalar problem the overall volume is
equally taken into account in the definition of a pore radius,
whereas in the viscous problem narrowing zones are clearly
playing a particular role in the definition of an effective sec-
tion.

For the case of the viscous problem, solutions by finite
element methods �FEMs� have been investigated. Craggs and
Hildebrandt8 solved the viscous problem for specific cross
sections of uniform pores. Cortis et al.10 studied the case of a
two-dimensional �2D� configuration made of a regular ar-
rangement of solid cylinders. Gasser et al.13 treated the case
of the face centered cubic sphere packing.

The random walk simulation method has been recently
proposed by Lafarge15 to provide an efficient resolution of
the thermal problem. The principle of the method consists in
simulating the Brownian motion for a large number of the
fluid-phase particles and to link their mean free paths to the
thermal conduction properties of the confined fluid.16,17 An
important point of the method is that, once the mean free
path of a large number of particles has been estimated, the
dynamic thermal response might be obtained for all frequen-
cies. Contrary to finite element analysis, the solution has not
to be computed at each frequency.

The random walk simulation method has been imple-
mented in two and three dimensions for computing the trap-
ping constant of a 2D arrangement of overlapping fibers of
circular cross sections,17 and three-dimensional �3D� digi-
talized geometries.18 However, the trapping constant is only
providing the asymptotic low frequency behavior of the ther-
mal problem. The first numerical simulations in the harmonic
regime have recently been proposed for the case of 2D regu-
lar and random arrangements of fibers with circular cross
sections.15

Broadly speaking, the literature on the numerical simu-
lations of the dynamic thermal behavior of porous media has
been focused on two- and three-dimensional arrangements of
spheres. No numerical resolution of the thermal problem has
been proposed for the case of an open-cell foam PUC. More-
over, the three-dimensional implementation of the random
walk simulation method has been limited to the asymptotic
low frequency behavior.

The aim of this study is to carry out a dynamic thermal
permeability computation of a real open-cell foam. For that
purpose, the random walk simulation method will be imple-
mented in 3D, for cellular periodic configurations, whose
microstructural parameters have been experimentally identi-
fied by x-ray computed microtomography.

In Sec. II, the basic equations and relationships between
the heat conduction and survival problems are recalled. Sec-
tion III describes more specifically the Brownian motion
simulation technique. Section IV treats the evaluation of the
survival time and dynamic thermal permeability from the
Brownian motion simulation technique. The convergence
and error of the method are then exposed in Sec. V. Numeri-
cal and experimental results are presented and discussed in
Sec. VI. Finally, in Sec. VII, we summarize and conclude
this paper.

II. BASIC EQUATIONS

A. Multiscale formulation

At the microscopic scale, it has been shown by Lafarge
et al.7 that the frequency dependent heat conduction bound-
ary value problem is locally governed at order 0 by the lin-
earized heat equation in the harmonic regime, the zero acous-
tic temperature at the solid interface ��, and the periodicity
condition on the volume �. These equations are, respec-
tively, given by

j�

��
� = �2� +

j�p

�
in � f , �1�

� = 0 on �� , �2�

periodicity of � and p in � , �3�

where �2 is the Laplace operator, � and p are the acoustic
temperature and pressure, respectively, ��=� /�0Cp is the
fluid thermal diffusivity, and �0Cp characterizes the fluid
thermal inertia given by the product of the fluid density at
equilibrium by its specific heat at constant pressure. Thus,
j�p /� appears as the source term of the partial differential
equation, �2� as the diffusion term by thermal conduction in
the fluid space, and �j� /���� the term of thermal inertia.

Note that � needs to be rhombohedral, so that bound-
aries are periodic. Clearly, this is an attempt to directly
model the geometry of the porous structure by defining a
PUC that captures the intricate details of the foam. As a
result, this models an infinitely large matrix as if the porous
structure within the unit cell were replicated in all other unit
cells, without discontinuities in the porous structure between
one unit cell and the one adjacent. It can be proved from
homogenization techniques19 that this approach is valid if
and only if the fundamental condition of scale separation is
respected, that is, l /L�1, where l is the characteristic di-
mension of the heterogeneities, L is the macroscopic charac-
teristic dimension, and l /L is a measure of the separation of
scales. This means that the microscopic characteristic length
must be small compared to the macroscopic sample size and
to the physical phenomenon characteristic size. The macro-
scopic characteristic length L is thus the smallest between the
characteristic sample size and physical phenomenon. In
acoustics, the physical phenomenon characteristic size is on
the order of 	 /2
, where 	 is the wavelength of the incident
acoustic wave. Another important consequence of this scale
separation hypothesis justified by homogenization techniques
is that the pressure term p appears as a spatial constant at the
cell size level.

Under harmonic excitations, the fluid is locally subjected
to a compression/expansion cycle resulting in a locally
increasing/decreasing temperature. The local heat excess/
defect is consequently diffusing according to two antagonist
dissipative mechanisms by thermal conduction and inertia
depending on the angular frequency of excitation. The solid-
fluid interface temperature is assumed to be constant since
the thermal inertia of the solid phase is generally much larger
than the fluid one. This can be written by the condition �1
−����0Cp�solid����0Cp�fluid. For the specific case of an alu-

074917-2 Perrot, Panneton, and Olny J. Appl. Phys. 102, 074917 �2007�

Downloaded 12 Oct 2007 to 132.210.92.87. Redistribution subject to AIP license or copyright, see http://jap.aip.org/jap/copyright.jsp



minum foam with a porosity of 0.92, �1−��
���0Cp�aluminum /���0Cp�air�170 and the previous inequal-
ity is fully respected.

At the macroscopic scale, the overall dissipative phe-
nomena by thermal effects averaged over an elementary
�-periodic volume are taken into account by its equivalent
dynamic thermal permeability,

k̃eq� ��� = ���
�

j�p
, �4�

whose expression is defined by the product of the mean
acoustic temperature field and the inverse of the source term.
Here the equivalent dynamic thermal permeability of the po-
rous aggregate is linked to the dynamic thermal permeability

of the fluid phase k̃���� �as defined by Lafarge et al.7� by the

relation k̃eq� ���= k̃���� /�.
From then on, the computation of the dynamic thermal

permeability is clearly based on the resolution of the local
problem �Eqs. �1�–�3�� and the spatial integration of the so-
lution temperature field.

B. Analogy with the diffusion-controlled trapping
problem

Consider the steady-state problem of diffusion and reac-
tion among absorbing “traps” in which the concentration
field n of the reactants in the air-filled region is governed by

�b

D
n = �2n +




D
in � f , �5�

with the boundary condition at the pore-trap interface given
by

n = 0 on �� , �6�

indicating that the process is diffusion controlled, i.e., traps
are perfect absorbers, and the periodicity condition

periodicity of n in � . �7�

Here, D is the diffusion coefficient of the reactant, �b is an
air-filled reaction term associated with the decay of physical
quantities such as concentration field, and 
 is a prescribed
rate of production of the reactants per unit pore volume.

Note that the frequency dependent heat conduction prob-
lem �Eqs. �1�–�3�� is formally identical to the steady-state
survival problem �Eqs. �5�–�7��, according to the following
identifications:

n = � , �8�

�b

D
=

j�

��
, �9�

and




D
=

j�p

�
. �10�

This analogy is used to write the thermal permeability in
terms of the steady-state survival problem variables,

k̃eq� ��� = D
�n�



. �11�

In this regime, the amount of diffusing species 
 created per
unit time and air volume is exactly compensated by those
absorbed on contact with the pore walls and in the air-filled
region. Thus, the mean field �n� must be equal to the product

�t�, where �t� is the mean survival time of one diffusing
particle which is released at random position in the pore
space. From that, one gets the following equality:

�t� =
�n�



. �12�

Substituting Eq. �12� into Eq. �11� yields

k̃eq� ��� = D�t� . �13�

It makes clearly apparent from relation �13� that numerical
methods usually dedicated to diffusion problems of a solute
in stationary regime �Eqs. �5�–�7�� can be used to solve the
analog frequency dependent heat conduction problem �Eqs.
�1�–�3��.

III. BROWNIAN MOTION SIMULATION

A. Construction of a random walk

The basic idea of the employed simulation method17,20 is
that the zigzag random motion of the diffusing particle need
not be simulated in detail; instead, it is taken into account in
a single simulation step using the first passage time probabil-
ity distribution,21

P�t,R� = 1 + 2�
m=1

�

�− 1�m exp	−
Dm2
2t

R2 
 , �14�

where P�t ,R� is the cumulative distribution function associ-
ated with the time t taken for a random walker initially at the
origin to reach the surface of the sphere of radius R in the
absence of air-filled absorption. Consequently, one constructs

FIG. 1. Two-dimensional schematic representation of the construction of a
random walk in a hypothetical triangular cell.
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the largest concentric sphere of radius Ri, which does not
overlap with the solid phase acting as a trap. The next posi-
tion of the diffusing particle, the walker, is taken randomly
on the concentric surface sphere. This process is repeated
until the random walker gets trapped �i.e., it comes within a
trapping distance td of a trap�.

The employed simulation method relies consequently on
the construction of a random walk, as illustrated in Fig. 1.
The initial random walker position x0 is taken randomly in
the fluid space, schematically represented by a triangular
prism in Fig. 1. The largest concentric sphere of radius R1 is
constructed, without overlapping with the solid phase. The
next position x1 of the walker is determined randomly at the
surface of the sphere of center x0 and radius R1. In this man-
ner, a Brownian motion path x0 ,x1 , . . . ,xn is generated and
stopped when xn comes within a small distance td of the solid
trap �Rn+1� td�.

B. Random walk algorithm

Now that the construction principle of a random walk
has been recalled, the employed algorithm is briefly pre-
sented. It is a purely geometrical problem solved into six
different steps. �1� Randomly position a walker into an
�-periodic volume �e.g., a rectangular prism defined by the
coordinates �xmin ,xmax� , �ymin ,ymax� , �zmin ,zmax� for a three-
dimensional PUC—see Fig. 2�. �2� Find the concentric
sphere of largest radius R which does not overlap any solid
surface. �3� Check if the walker positioned at point M lies
inside the fluid volume V f. If not, return to step 1. Else,
increment radius counter n and go to step 4. �4� Check if the
walker is trapped. If R� td, the walker is trapped, go to step
1. Else, if the walker is not trapped, go to step 5. �5� Ran-
domly position the walker at the surface of the sphere of
radius R. �6� Apply a periodic boundary condition. If the
random walker lies outside �, then it must be translated by a
period of � in order to be in an equivalent position than the
one it would be if the porous media were infinite. Else, the
walker position stays unchanged. Then, go to step 2 until the
walker is trapped. Once the random walker is trapped, the
radius counter is reinitialized to zero and a new random

walker can be started from step 1. A full description of the
random walk algorithm implementation in three-dimensional
PUCs can be found elsewhere.22

Once the random walk algorithm has been implemented,
numerical simulations can be carried out for a geometric
configuration �e.g., the three-dimensional PUC shown in Fig.
2�. For N random walk simulations, collected data consist in
N successions of radius. The question is then to know how
these collections of random walks and radius can be trans-
lated in terms of the dynamic thermal permeability.

IV. CALCULATION OF DYNAMIC THERMAL
PERMEABILITY

Given the probability p�R� of crossing for the first time
the surface of a sphere of radius R and the time t�R� for

FIG. 3. �Color online� Synthesis of approximated analytical reference solu-
tions available for specific cross-sectional shapes of uniform pores. These
solutions are valid in two or three dimensions. The filiform boxes define the
control volume for the random walk simulations.

FIG. 2. An idealized three-dimensional periodic unit cell �3D PUC� of an
open-cell aluminum foam whose characteristic dimensions have been iden-
tified experimentally by computed microtomography �Ref. 26�. The filiform
box defines the periodic control volume for the random walk simulations.
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trapping or crossing for the first time the surface of this
sphere, the average time for trapping a given random walker
along the path x0 ,x1 , . . . ,xn is simply given by

ti�x0, . . . ,xn� = t�R1� + p�R1�t�R2� + p�R1�p�R2�t�R3�

+ ¯ + p�R1� ¯ p�Rn−1�t�Rn� . �15�

For a large number N of random initial positions x0 �or ran-
dom walk simulations� in the porous space, the mean sur-
vival time �t� of a particle is the mean survival time of N
random walks,

�t� =
1

N
�
i=1

N

ti�x0, . . . ,xn� . �16�

Once the collection of radius have been determined by ran-
dom walk simulations, the dynamic thermal permeability de-

termination k̃eq� ���=D�t� requires the knowledge of two
functions of R, p�R�, and t�R�, whose expressions are given
below.

A. First passage time probability

In the presence of air-filled absorption, the probability
p�R� that a walker initially at the center of a sphere survives
and reaches the boundary is not unity and becomes

p�R� = �
0

� �P�t,R�
�t

exp�− �bt�dt , �17�

where �b is the air-filled absorption coefficient, which gives
in two and three dimensions,23

p�R�2D =
1

I0���
�18�

and

p�R�3D =
�

sinh���
, �19�

respectively. In these equations, I0 is the modified Bessel
function of the first kind and zero order, and

� = R� , �20�

with

� =��b

D
. �21�

B. Survival time

In a stationary regime, a particle released at radius r,
diffusing with the diffusion coefficient D and being absorbed
either instantly at r=R or in the air-filled region �given an
air-filled absorption coefficient �b�, has a survival time t�r�
given by24,25

t�r� = uR�r�/D , �22�

where uR�r�
n�x ,y ,z� is the scaled concentration field
which verifies Eq. �5� in domain x2+y2+z2�R2, boundary
condition uR�r=R�=0, and condition 
=D �the source term
is set to unity�,

�b

D
uR�r� = �2uR�r� + 1, �23�

�uR�r=R = 0. �24�

The three-dimensional solution of this boundary value prob-
lem �Eqs. �23� and �24�� is derived in spherical coordinates
and yields

uR�r� =
1

�2�1 −
j0�j�r�
j0�j�R�� , �25�

where j0 denotes the spherical Bessel function of the first
kind of order 0.

Then, the average time for a particle released at the ori-
gin to be either absorbed in the air-filled region or to be
present for the first time at r=R can be defined from Eq. �22�
by

t�R� = uR�0�/D , �26�

where, from Eq. �25�,

uR�0� =
1

�2�1 −
1

j0�j�R�� , �27�

because j0�0�=1.

C. Dynamic thermal permeability

Now, going back to the original frequency dependent
heat conduction problem, making use of the analogy given in
Eq. �9� and substituting the canonical field for the scaled
field uR�0�, Eq. �27� rewrites

ũR�0� = −
1

K2�1 −
1

j0�KR�� , �28�

with

K = 	− j�

��

1/2

. �29�

From Eqs. �13� and �26�, the dynamic thermal permeability
simplifies to

k̃eq� ��� = �ũR�0�� . �30�

For the sake of simplicity, the notation ũR�0� is replaced by
ũ�R� and

k̃eq� ��� = �ũ�R�� =
1

N
�
i=1

N

ũi�x0, . . . ,xn� , �31�

with, for a given random walk,

ũi�x0, . . . ,xn� = ũ�R1� + p�R1�ũ�R2� + p�R1�p�R2�ũ�R3�

+ ¯ + p�R1� ¯ p�Rn−1�ũ�Rn� , �32�

where the first passage time probability in the presence of
air-filled absorption p�R� is given by Eqs. �18� and �19� in
2D and 3D, respectively, and the scaled canonical field ũ�R�
is given by Eq. �28� in 3D. In 2D, Eq. �28� has to be modi-
fied by simply substituting J0 for j0, where J0 is the Bessel
function of the first kind and order 0.
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The interest of this somewhat unconventional method is
that the simulation of N random walks is independent of
frequency. This means that, once the N successions of radius
are known for a given geometric configuration, the thermal
permeability can be computed whatever the frequency, with
the same computational cost. For this reason, the difficulties
met with conventional computational methods, such as the
finite element method, are overcome. With the finite element
method, the mesh must be refined in the vicinity of the in-
terface when the frequency is increased in order to take into
account the decreasing thickness of the boundary layer; this

may rapidly become prohibitive in terms of computation
time and memory allocation for three-dimensional configu-
rations.

V. CONVERGENCE AND ERROR OF THE METHOD

A simulation procedure is now proposed to test the con-
vergence of the numerical solution and to estimate the error
made on the prediction. In this proposed simulation proce-
dure, the dynamic thermal permeability is computed on 60
frequency points uniformly distributed on a logarithmic scale

FIG. 4. Comparison between analyti-
cal reference solutions �Ref� and nu-
merical computations performed by
means of the three-dimensional imple-
mentation of the random walk �RW�
algorithm for a number of random
walks N=500 000 and a normalized
trapping distance �=10−5 �the circum-
scribed radius of the specific cross-
sectional shapes of uniform pores has
been fixed to R=1 mm�.

FIG. 5. Mean relative error and mean
standard deviation on the dynamic
thermal permeability with the number
of random walks, in imaginary part
and modulus. In this example, the nor-
malized trapping distance � has been
fixed to 10−5.
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and centered around �tc—the critical angular frequency for
thermal effects �characterizing the transition from the low
frequency isothermal regime to the high frequency adiabatic
regime�. For the case of a circular cross-section tube, the
critical thermal angular frequency is given by the following
relationships:7

�tc =
���

k0�
, �33�

with

k0� =
���

2

8
, �34�

where � is the open porosity, k0� is the static thermal perme-
ability or low frequency limit of the dynamic thermal perme-
ability, and ��=2Vp /Sp is the thermal characteristic length4

defined as twice the ratio between the pore volume Vp and
wet surface Sp which generalizes the notion of hydraulic ra-
dius for arbitrary geometries of the frame. This allows esti-
mating a priori the critical thermal angular frequency from
the knowledge of the fluid physical characteristics ���

=� /�0Cp�2�10−5 m2 s−1 for air� and pore geometry ��
and �� are computed from spatial integration on the fluid
volume and wet surface of the PUC� and thus deducing the
angular frequencies for which the dynamic thermal perme-
ability will be computed.

In order to simulate a large number of random walks for
evaluating the influence of the simulation parameters on the
dynamic thermal permeability results, simulations of random
walks will be carried out on a personal computer �PC� cluster
using 846 nodes thanks to the Scientific Computation Center
facility of the Université de Sherbrooke �each computational
unit is composed of an Intel P4 processor running at 3.2 GHz
with a 2 Go random access memory �RAM��.

A. Solution convergence

In the general case made of a nontrivial geometric con-
figuration, there is no reference solution to test the solution
convergence. However, the solution stability can be studied
by means of indicators called norms. For this purpose, the
evolution of the relative difference between the computed
response for a number of random walks equal to N and the
one computed for a number of random walks equal to N
+�N will be examined. In practice, �N is fixed to 2000. Two
norms are presented below.

The geometric configuration studied is a typical ideal-
ized foam microstructure, a three-dimensional PUC whose
characteristic dimensions have been identified by computed
microtomography26 �i.e., an orthotropic tetrakaidecahedron
having ligaments of triangular cross-section shapes, see Fig.
2�.

1. L2 norm

L2 norm, as formulated here, is a measurement of the
solution stability with respect to the number of random
walks. It represents the sum of the relative variations be-
tween the computed response for a number of random walks
equal to N+�N and the computed response for a number of
random walks equal to N. It is given by

L2 =�
�
�

�Re�k̃eq� ���N+�N� − Re�k̃eq� ���N��2

�
�

�Re�k̃eq� ���N+�N� + Re�k̃eq� ���N�
2

�2
+

�
�

�Im�k̃eq� ���N+�N� − Im�k̃eq� ���N��2

�
�

� Im�k̃eq� ���N+�N� + Im�k̃eq� ���N�
2

�2
, �35�

where Re and Im denotes the real and imaginary parts of a
complex number.

2. L
�

norm

L� norm is a measurement a priori more constraining
than L2 norm because, this time, it is the largest of the local
differences �at a given angular frequency� between the com-

puted response for a number of random walks equal to N
+�N and the computed response for a number of random
walks equal to N, which is compared to the averaged re-
sponse. Contrary to L2 norm, the cumulated frequency re-
sponse fluctuations are no more smoothed by the averaged
cumulated response. In addition, the response is forced to be
computed on a sufficiently large number of random walks for
the largest relative fluctuations to be lower than a specific
threshold value. It is given by

TABLE I. Normalized trapping distances � relative to the highest correla-
tion coefficients between the computed mean relative errors ��� of the pre-
dicted dynamic thermal permeabilities and a function of the form
log 10���=a log 10�N�+b, where N is the number of random walks.

Geometry Slits, square Circle Triangle

�= td /R 10−4 10−5 10−6
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L� = max� max
�

�Re�k̃eq� ���N+�N� − Re�k̃eq� ���N��

1

N�
�
i=1

nb �
Re�k̃eq� ���N+�N� + Re�k̃eq� ���N�

2

,

max
�

�Im�k̃eq� ���N+�N� − Im�k̃eq� ���N��

1

N�
�
i=1

nb �
Im�k̃eq� ���N+�N� + Im�k̃eq� ���N�

2
� , �36�

where N� is the number of angular frequency for which the
dynamic thermal permeability is computed.

B. Error estimation

The knowledge of reference solutions enables one to es-
timate the errors made on the numerical predictions as a
function of the simulation parameters. Here, existing refer-
ence solutions for the case of specific cross-sectional shapes
of uniform pores are first recalled. Second, a straightforward
logarithmic law relating the error evolution with the number
of random walks is proposed from simple considerations on
stochastic phenomena. As a result of the simulations, the
relevance of such a law can be evaluated in a least squares
sense from the examination of the determined correlation
coefficients. Information about the error decay rate with the
number of random walks, for different trapping distances,
can then be derived from the coefficients of the logarithmic
regressions.

1. Reference solutions

Stinson27 proposes simplifying the exact Kirchhoff
theory28 on the propagation of sound in circular tubes for the
range of radii and frequencies defined by rf3/2�104 m s−3/2

and r�10 �m. For the thermal problem, the author seeks
approximate solutions for arbitrary shapes of uniform pores
expressed in terms of a single function F����. Hence, the
dynamic thermal permeability can be written in the follow-
ing general form:

k���� =
��

j�
F���� . �37�

Specific cross-sectional shapes that were considered are
shown in Fig. 3 with �� expressed as a function of their
geometric descriptors. Solution for a slit of width w,

F���� = 1 −

tanh	w

2
� j�

��



w

2
� j�

��

, �38�

was discussed by Attenborough.29 The result for a circular
tube of radius R which was originally obtained by Zwikker
and Kosten30 is expressed by

F���� = 1 −
2

R�− j�

��

J1	R�− j�

��



J0	R�− j�

��

 , �39�

where J1 is the Bessel function of the first kind and order 1.
Stinson27 derived the solutions for a rectangular cross sec-
tion,

F���� =
4j�

��a2b2�
k=0

�

�
n=0

� ��k
2�n

2	�k
2 + �n

2 +
j�

��

�−1

, �40�

where the coefficients �k and �n are given by

FIG. 6. Convergence in L2 and L� norms for different
normalized trapping distances � on a periodic unit cell
�PUC� geometry.

074917-8 Perrot, Panneton, and Olny J. Appl. Phys. 102, 074917 �2007�

Downloaded 12 Oct 2007 to 132.210.92.87. Redistribution subject to AIP license or copyright, see http://jap.aip.org/jap/copyright.jsp



�k = 	k +
1

2




a
, �n = 	n +

1

2




b
. �41�

Finally, the derivation of F���� for the equilateral triangle is
due to Stinson and Champoux31 who found

F���� =
�2 − 3� coth��� + 3

�2 , �42�

with

� =
s�3

4
� j�

��
. �43�

2. Error evolution law

Stochastic phenomena are generally characterized by an
error � inversely proportional to the root of the number of
experiments N.16 If this tendency holds for the Brownian
motion simulation problem, it means that it is necessary to

increase the number of random walks by two orders of mag-
nitude with a view to reducing the error on the estimate by
one order of magnitude. Therefore, it is important to use a
dynamic scale providing an identical sensitivity on several
orders of magnitude. By taking the decimal logarithm of
such a tendency, one can propose the following error evolu-
tion law:

log10 � = a log10 N + b , �44�

where a is a linear decay rate expressed in
�number of random walks�−1 and b is the initial error �di-
mensionless� obtained for a unitary number of random
walks. Following these observations, it is proposed to com-
pute these coefficients by means of linear regressions in the
least squares sense and to evaluate the linear correlation hy-
pothesis between variables log10 � and log10 N for different
geometries and trapping distances.

VI. RESULTS AND DISCUSSION

In this section, the proposed simulation method is ap-
plied to canonical geometries and to an idealized PUC rep-
resenting a real aluminum foam. First, the error estimate on
the computed dynamic thermal permeability is investigated
for the cases of the canonical geometries having reference
solutions. Second, the solution convergence is studied for the
case of the nontrivial geometric PUC configuration. Finally,
the computed dynamic thermal permeability of the PUC con-
figuration is compared to experimental measurements on a
real aluminum foam with a view to validating the proposed
method.

A. Error estimation

Figure 4 compares analytical reference solutions27,29–31

and random walk �RW� simulations in terms of the dynamic
thermal permeability for specific cross-sectional shapes of
uniform pores: �a� slit with 1 mm width, �b� circle with
1 mm radius, �c� square with �2 mm side, and �d� equilateral
triangle with �3 mm side. In order to validate the three-
dimensional implementation of the random walk simulation
method, these shapes have been extruded, see Fig. 3. In these
examples, for each simulation, the normalized trapping dis-
tance �= td /R is set to 10−5, and the number of random walks
to 500 000, R being the circumscribed radius of the porous
structure. Random walk simulation points represent the av-
erage of three distinctive random walk simulations. Simulat-
ing 500 000 random walks with a 10−5 normalized trapping
distance and computing dynamic thermal permeability val-
ues for 60 different frequencies required approximately be-
tween 90 min �three-dimensional slits made of 4 facets� and
210 min �circular pore made of 720 facets� with an Intel
Pentium 4, 3.2 GHz. As one can note in Fig. 4, the random
walk simulation points fall closely on the analytical refer-
ence curves. The relative differences between analytical and
numerical solutions are quantified in Fig. 5. As an example,
for a 500 000 random walk simulation with a 10−5 normal-
ized trapping distance, the error on the computed dynamic

FIG. 7. �Color online� Dynamic bulk modulus K̃eq normalized by the adia-
batic bulk modulus Ka. Comparison between impedance tube measurements
�•••� and the random walk simulation method applied on the identified 3D
PUC �Ref. 26� �—�.
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thermal permeability is estimated to be less than �0.3±2�%
on the imaginary parts and less than �0.2±5�% on the modu-
lus.

Now the influence of the trapping distance is investi-
gated. For each cross-sectional shape, the normalized trap-
ping distance � is successively fixed to 10−2, 10−3 , . . ., 10−9,
10−10 and the number of random walks N varies accordingly
to the sequence 10 000, 20 000, 50 000, 70 000, 100 000,
200 000, 500 000, 700 000, 1 000 000. Each case character-
ized by a different triplet �geometric configuration, � N� is
simulated three times so that the dispersion of the results can
also be determined. Four geometric configurations, nine nor-
malized trapping distances, and 9�3 random walk simula-
tions have been tested, for a total number of 972 numerical
experiments. Simulation results are then processed in order
to evaluate the mean error � compared to analytical reference
solutions �average of the relative errors over 60 points� and

the average of the standard deviations of the numerical re-
sults �� �a standard deviation results from three points, and
�� is the average of 60 standard deviations�. For each geo-
metrical configuration and each normalized trapping dis-
tance, it is thus possible to determine coefficients a, b, and r,
�r is the linear correlation coefficient� of the straight line of
the form given by Eq. �44� and to minimize the squared
differences with 9�3 random walk simulation points. These
coefficients are reported in Tables II and III for the mean
errors and standard deviations, respectively. The real part,
imaginary part, and modulus of the dynamic thermal perme-
abilities are examined separately. The best correlation coef-
ficients in in Table II and absolute values are generally
higher than 0.9 �for the slits, the square, and the circle� and
systematically higher than 0.8 �0.81 for the triangle�, which
means that a law of the form of Eq. �44� enables one to
correlate the decreasing of the error logarithm with the num-

TABLE II. Regression coefficients for the evaluation of the mean error � on k̃eq� ��� �in modulus �Ab�, real part �Re�, and imaginary part �Im�� as a function
of the number of random walks N �10 000�N�1 000 000� for various normalized trapping distances �.

�

Ab Re Im

a b �%� �r� a b �%� �r� a b �%� �r�

slit 10−2 0.02 −180 0.26 −0.07 −140 0.84 0.00 −150 0.02
10−3 −0.06 −226 0.24 −0.22 −126 0.80 −0.11 −177 0.28
10−4 −0.40 −79 0.99 −0.43 −32 0.96 −0.68 71 0.93
10−5 −0.52 −20 0.92 −0.54 22 0.92 −0.40 −62 0.74
10−6 −0.55 −16 0.88 −0.56 25 0.92 −0.45 −41 0.74
10−7 −0.59 17 0.86 −0.50 0 0.90 −0.72 99 0.85
10−8 −0.51 −13 0.72 −0.47 −3 0.82 −0.48 −4 0.65
10−9 −0.13 −156 0.64 −0.15 −134 0.71 −0.11 −140 0.54
10−10 −0.01 −117 0.15 −0.01 −102 0.28 −0.01 −87 0.35

circle 10−2 −0.01 −174 0.29 −0.03 −174 0.57 −0.02 −161 0.28
10−3 −0.13 −209 0.34 −0.41 −40 0.90 −0.23 −136 0.49
10−4 −0.33 −144 0.76 −0.48 −25 0.93 −0.37 −101 0.68
10−5 −0.42 −94 0.83 −0.43 −53 0.90 −0.48 −51 0.92
10−6 −0.36 −103 0.77 −0.40 −58 0.87 −0.43 −51 0.70
10−7 −0.30 −148 0.62 −0.41 −55 0.90 −0.47 −44 0.79
10−8 −0.55 −17 0.80 −0.53 9 0.94 −0.43 −58 0.79
10−9 0.00 −227 0.00 −0.08 −170 0.44 0.07 −243 0.24
10−10 0.01 −125 0.41 0.02 −121 0.64 0.00 −99 0.14

square 10−2 −0.01 −163 0.20 −0.03 −160 0.54 −0.01 −152 0.12
10−3 −0.19 −169 0.52 −0.34 −67 0.94 −0.32 −77 0.69
10−4 −0.60 35 0.99 −0.54 30 0.98 −0.61 63 0.94
10−5 −0.62 24 0.95 −0.51 12 0.98 −0.61 38 0.88
10−6 −0.58 9 0.83 −0.60 54 0.90 −0.64 56 0.78
10−7 −0.47 −50 0.82 −0.45 −22 0.95 −0.53 −2 0.81
10−8 −0.50 −45 0.87 −0.55 23 0.96 −0.32 −114 0.65
10−9 0.09 −278 0.59 −0.01 −209 0.08 0.15 −292 0.74
10−10 0.00 −124 0.07 −0.01 −109 0.20 0.01 −106 0.26

triangle 10−2 −0.02 −139 0.50 −0.04 −143 0.77 −0.02 −133 0.22
10−3 −0.19 −150 0.50 −0.35 −59 0.90 −0.26 −96 0.59
10−4 −0.35 −117 0.69 −0.37 −68 0.92 −0.30 −116 0.63
10−5 −0.61 23 0.82 −0.65 83 0.97 −0.58 30 0.75
10−6 −0.41 −75 0.90 −0.40 −47 0.90 −0.38 −71 0.81
10−7 −0.28 −143 0.74 −0.42 −38 0.98 −0.37 −71 0.78
10−8 −0.63 38 0.85 −0.52 16 0.88 −0.47 −25 0.79
10−9 −0.07 −184 0.38 −0.10 −155 0.54 −0.11 −142 0.66
10−10 0.02 −131 0.49 0.03 −129 0.60 0.01 −106 0.36
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ber of random walks, with a relatively high degree of confi-
dence. Then, for each geometrical configuration, the higher
correlation coefficients are associated with their correspond-
ing normalized trapping distances. This means that, for each
geometrical configuration, an adequate normalized trapping
distance value is known, ensuring that the numerical solution
converges to the reference solution according to a law of the
form of Eq. �44�. Furthermore, note that the correlation co-
efficients of Table III associated with the mentioned normal-
ized trapping distances also correspond to a satisfying degree
of confidence ��r��0.75�. Consequently, for each specific
shape, the dynamic thermal permeability might then be given
with error ��a� ,b�� and standard deviation ���a�� ,b��� esti-
mates, where coefficients a�, b�, a��, and b�� are the shaded
values reported in Tables II and III.

From the previous results, Table I summarizes the ad-
equate trapping distances for the four canonical cross-section
shapes. Table I suggests the following geometrical interpre-
tation.

• The slit and the square are two specific configurations
of the same geometry, the rectangle. This geometry
essentially shows plane surfaces to the particle.

• The circle is modeled as a regular polygon of order
n=360. The angle between two noncoplanar facets of
the polygon is obtuse.

• The triangle is also a regular polygon, of order n=3.
The angle formed between two noncoplanar facets is
acute.

From this simple geometrical interpretation, it is sug-
gested that the normalized trapping distance to use in a ran-
dom walk simulation is as follows.

• 10−4 when the wet surfaces of the geometry are essen-
tially plane;

• 10−5 when the wet surfaces of the geometry are essen-
tially concave with obtuse angles;

• 10−6 when the wet surfaces of the geometry are essen-
tially concave with acute angles.

TABLE III. Regression coefficients for the evaluation of the mean standard deviation �� on k̃eq� ��� �in modulus �Ab�, real part �Re�, and imaginary part �Im��
as a function of the number of random walks N �10 000�N�1 000 000� for various normalized trapping distances �.

�

Ab Re Im

a b �%� �r� a b �%� �r� a b �%� �r�

slit 10−2 −0.58 105 0.78 −0.57 97 0.79 −0.54 50 0.91
10−3 −0.39 20 0.70 −0.39 18 0.72 −0.39 −16 0.79
10−4 −0.43 46 0.75 −0.44 45 0.76 −0.46 14 0.82
10−5 −0.70 182 0.90 −0.70 175 0.90 −0.63 103 0.93
10−6 −0.41 36 0.81 −0.41 36 0.82 −0.45 14 0.87
10−7 −0.59 124 0.93 −0.58 117 0.94 −0.54 60 0.96
10−8 −0.46 64 0.83 −0.45 57 0.83 −0.43 5 0.85
10−9 −0.31 −33 0.55 −0.32 −32 0.57 −0.38 −32 0.73
10−10 −0.51 105 0.93 −0.51 99 0.93 −0.53 64 0.93

circle 10−2 −0.35 −1 0.74 −0.36 −1 0.75 −0.38 −24 0.81
10−3 −0.57 114 0.87 −0.57 107 0.88 −0.50 40 0.93
10−4 −0.65 148 0.94 −0.64 141 0.94 −0.61 91 0.97
10−5 −0.53 117 0.87 −0.54 115 0.87 −0.52 68 0.88
10−6 −0.69 182 0.93 −0.68 175 0.93 −0.70 146 0.95
10−7 −0.57 108 0.87 −0.56 102 0.89 −0.54 55 0.95
10−8 −0.40 41 0.71 −0.41 40 0.73 −0.45 27 0.84
10−9 −0.59 143 0.97 −0.59 137 0.97 −0.57 89 0.95
10−10 −0.65 155 0.88 −0.64 149 0.89 −0.60 98 0.96

square 10−2 −0.51 65 0.80 −0.51 62 0.81 −0.51 33 0.87
10−3 −0.68 154 0.85 −0.67 143 0.86 −0.52 42 0.89
10−4 −0.42 30 0.90 −0.42 27 0.91 −0.40 −16 0.92
10−5 −0.40 31 0.90 −0.40 28 0.91 −0.38 −20 0.88
10−6 −0.48 59 0.85 −0.48 55 0.85 −0.51 37 0.90
10−7 −0.68 153 0.96 −0.67 146 0.96 −0.62 86 0.95
10−8 −0.42 24 0.78 −0.42 23 0.80 −0.46 7 0.87
10−9 −0.62 131 0.86 −0.62 122 0.87 −0.56 65 0.90
10−10 −0.46 59 0.81 −0.46 54 0.82 −0.41 −3 0.87

triangle 10−2 −0.46 25 0.78 −0.46 23 0.79 −0.51 12 0.85
10−3 −0.50 45 0.92 −0.50 43 0.93 −0.52 17 0.95
10−4 −0.58 89 0.93 −0.57 82 0.94 −0.51 18 0.92
10−5 −0.62 98 0.83 −0.63 97 0.84 −0.65 76 0.87
10−6 −0.40 −3 0.75 −0.41 −6 0.77 −0.36 −58 0.84
10−7 −0.50 26 0.76 −0.49 18 0.77 −0.44 −36 0.77
10−8 −0.32 −63 0.87 −0.33 −62 0.89 −0.42 −45 0.96
10−9 −0.47 32 0.85 −0.48 32 0.87 −0.52 21 0.94
10−10 −0.72 158 0.95 −0.70 145 0.95 −0.59 56 0.95
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This attempt to interpret the trapping distance as a func-
tion of the geometry seems to be in accordance with the
following physical representation. A relatively large normal-
ized trapping distance increases the trapping risk before the
particle had probed the fluid concavities of the porous space.
Therefore, as the angle formed between two planes describ-
ing a fluid concavity tends to zero, the normalized trapping
distance must also tend to zero in order to prevent the par-
ticle from being trapped before having probed the overall
geometry.

B. Solution convergence

Here, the solution convergence is studied on a nontrivial
PUC geometry as the one shown in Fig. 2. Figure 6 presents
on a logarithmic scale the evolution of L2 and L� norms with
the number of random walks N for three different normalized
trapping distances �: 10−4, 10−5, and 10−6. Each point results
from the averaging of three random walk simulation tests. A
number of 11�6�3=198 random walk simulations have
been carried out to plot this graph �results obtained in ap-
proximately 4 h thanks to a serial PC cluster�. A linear re-
gression has been computed from the overall random walk
simulation results using a function having the form of Eq.
�44� and compared to convergence data. The linear regres-
sion line is obtained with a good correlation coefficient, �r�
=0.95. Tendency mentioned in Eq. �44� is thus reasonably
verified and can be quantified with a=−1.39 and b=3.42.
Typically, increasing the number of random walks by an or-
der of magnitude divides by 25 the relative difference be-
tween two runs. For a number of 50 000 random walks, the
relative error is equal to 0.077%; it is thus not necessary to
increase significantly the number of random walks per simu-
lation. It is the matter of a compromise between the comput-
ing time and desired precision. Furthermore, the L2 �L�� ran-
dom walk simulation points are generally positioned above
�below� the regression line. This confirms that L� norm is
actually more restrictive than L2 norm.

Therefore, one can reasonably conclude to the stability
of the numerical solution computed by the random walk
simulation method for the three-dimensional PUC: the sum
of the relative differences on a large frequency range, be-
tween the computed response for a number of random walks
equal to N+�N and the computed response for a number of
random walks equal to N, is small and decreases monotoni-
cally in average, whatever the norm considered.

As a summary, it has been shown that

• practically, monotonic convergence is observed for the
random walk simulation method according to a loga-
rithmic law;

• for the 3D PUC, relative variations with the number of
random walks is predictable and a good compromise
between computational time and precision is obtained
with 50 000 random walks.

C. Comparison with experimental data

Here, the random walk method is used to compute the
dynamic thermal permeability of an idealized PUC of a real

aluminum foam. The reconstruction method of the PUC by
x-ray computed microtomography was presented elsewhere
by the authors.26 The aluminum foam studied is the 40 pores
per linear inch �PPI� open-cell aluminum foam manufactured
by ERG Aerospace. The reconstructed PUC is the one shown
in Fig. 2. The computations were run and averaged over
50 000 random walks. The normalized trapping distance was
taken to be 10−5 �the wet surfaces of the PUC are essentially
plane or concave with obtuse angles�. Under these condi-
tions, a simulation requires less than half an hour on a CPU
Intel P4, 3.2 GHz, 2 Gbyte RAM. Figure 7 shows the com-

puted equivalent dynamic thermal permeability k̃eq� ��� con-
verted into the equivalent dynamic bulk modulus Keq��� nor-
malized by the adiabatic bulk modulus Ka and compared to
impedance tube measurements. It has been shown by Lafarge

et al.7 that the dynamic bulk modulus K̃eq��� of an equiva-
lent fluid medium can be linked to its dynamic thermal per-

meability k̃eq� ��� according to the following expression:

Ka

K̃eq���
= � + �� − 1�

j�

��
k̃eq� ��� , �45�

where Ka=�P0 is the adiabatic bulk modulus, � is the heat
capacity ratio, and P0 the atmospheric pressure. The macro-
scopic measurements �dots� were obtained using a 44.4 mm
impedance tube with the two-cavity technique.32 Good
agreement is observed between the simulations and the mea-
surements, especially at the higher frequencies. As one can
note, the numerical computations predict a transition fre-
quency around 16 Hz. This very low transition frequency is
due to the large cells of the studied 40 pore/in. aluminum
foam �pore diameter greater than 2 mm, see Ref. 26�. With
the used experimental setup, it was not possible to obtain
higher accuracy in the low frequency range; however, the
experimental results in the measurable frequency range
�100–1000 Hz� are in good accordance with the predicted
post-transition and asymptotic adiabatic regimes.

VII. SUMMARY AND CONCLUSIONS

We have applied a numerical method for the determina-

tion of the equivalent dynamic thermal permeability k̃eq� ���
of a 3D PUC of porous media. This method is based on a
Brownian motion simulation technique using a random walk
algorithm. It can be applied to porous media for which a
periodic unit cell is identified by means of computer micro-
tomography. The interest of this method is that the simula-
tion of random walks is independent of frequency. This
means that, once the random walks have been simulated for
a given geometric configuration, the thermal permeability
can be computed whatever the frequency, with the same
computational cost, showing a relatively fast execution time.
A 3D PUC of open cell aluminum foam provides a numerical
example showing convergence in terms of L2 and L� norms.
Typically, increasing the number of random walks by an or-
der of magnitude divides by 25 the relative error on the pre-
diction. The numerical method has also been applied to spe-
cific cross-sectional shapes of uniform pores having
reference solutions. In this case, the computed dynamic ther-
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mal permeabilities are found to be in excellent agreement
with the reference solutions. The numerical solution is very
accurate when the data represent averages over 50 000 ran-
dom walk realizations, with a normalized trapping distance �
fixed to 10−5 and the mean error inferior to 0.25% in modu-
lus for all models of uniform pores. Note that � needs to be
refined if the geometrical configuration shows concave sur-
faces with very acute angles, in order to prevent the particle
from being trapped before having probed the overall geom-
etry. To demonstrate the application of our results, we have
compared the numerical simulations to experimental data ob-
tained from impedance tube measurements of an open cell
aluminum foam. For the sample studied here, numerical
simulations provided a good estimate of the dynamic bulk
modulus without any adjustable parameter. However, due to
its large cell size, it was difficult to measure the low fre-
quency behavior of the aluminum foam. Further research is
required on commonly used open cell foams in acoustics,
including fully measurable thermal transition frequencies
�i.e., pore radius �0.1 mm�.
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APPENDIX: REGRESSION COEFFICIENTS

Tables II and III present the results of the linear regres-
sions over the computed dynamic thermal permeabilities and
the reference solutions where a and b are the coefficients of
Eq. �44� and r the correlation coefficient.
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