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We report the achievement of highly monodisperse emulsions exhibiting about ten acoustic Mie

resonances. Thanks to robotics, the effective acoustic properties of such strongly scattering media can

be precisely targeted by means of the production of calibrated (random) liquid-droplets. Ultrasonic

experiments are compared, with an excellent quantitative agreement, to theoretical predictions derived

within the framework of the independent scattering approximation. The dependence of the sound

speed and of the acoustic attenuation on both the size and the volume fraction of droplets is

quantitatively examined for dilute and more concentrated emulsions, and is presented in a

dimensionless way. VC 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4733615]

Wave propagation and scattering in random media have

been intensely studied for two decades.1 In this context, scat-

tering resonances play an important role by affecting the

macroscopic (effective) properties of such complex media.

In acoustics, the different modal resonances of particles are

driven by the shape and the physical properties of the scatter-

ers. The experimental study of such resonances in the Mie

scattering regime, i.e., when the wavelength is comparable

with the size of the scatterers (ka � 1), is a hard task due to

the difficulties associated with observing them at the high

frequencies required.2 Finding a model system exhibiting a

wide collection of observable multipolar resonances is chal-

lenging because many drastic conditions are required to their

emergence in the coherent-wave dispersive properties. One

of them is the monodispersity in both size and shape of the

random medium, as obtained with suspensions of polysty-

rene microspheres.3 Indeed, polydispersity effects tend to

smooth the spectral resonant features.4 In case of huge

mechanical contrasts between the scatterers and the sur-

rounding medium, such latter restriction becomes less impor-

tant as for bubbly media. However, the high compressibility

of the air bubbles induces such a strong monopolar reso-

nance, so-called the Minnaert resonance, which the others

modal resonances are not observable.5,6 As another example,

inertial effects of heavy core-shell particles7 or membrane-

type inclusions8 favor the dipolar resonance to the detriment

of the others modes.

In place of solid particles or gas bubbles, liquid droplets

randomly dispersed in a fluid matrix could provide an appro-

priate system to reveal multipolar scattering resonances, pro-

vided the structure of such random media is perfectly

controlled (droplet size, polydispersity, etc). Practically,

ultrasound scattering by emulsions has been mostly consid-

ered in the long-wavelength regime.9 Although resonant

scattering from spherical cavities in viscoelastic media has

already been theoretically considered,10 no experimental

results have been reported on the resonant regime occurring

in emulsions.

In this letter, we report the realization of highly mono-

disperse emulsions that exhibit sharp multipolar resonances.

The macroscopic (effective) acoustic properties of such ran-

dom media can be frequency-driven by tuning the Mie

resonances of the droplets (essentially by fixing the droplet

radius). As controlled properties, we mainly think here about

the frequency-location of the attenuation peaks along with

their magnitude, which depends on the volume fraction of

droplets. We also aim at prospecting the sensitivity of the

sound speed to the resonant features that can be experimen-

tally assessed.

To examine precisely the multi-resonant behavior of

emulsions, a low absorption suspending fluid is required.

Thus, we used an aqueous polymer gel (Carbopol
VR

ETD

2050, 0.2 wt %),11 of which the acoustic properties are very

close to those of water in the megahertz range we investi-

gated. The sound speed v0 and the acoustic attenuation a0 in

this water-based gel were measured (see below) and fitted as

1492 m s�1 and 8.10�5 MHz�2 mm�1, respectively, while its

mass density q0 is 1.005 g cm�3.

In order to enhance Mie scattering resonances, high

mechanical contrasts between the fluid matrix and the liquid

inclusions are required. Thus, we used fluorinated-oil drop-

lets (FC-40, Fluorinert
VR

) possessing a rather low sound speed

v1 for a pure liquid (about 640 m s�1) and a high mass den-

sity (q1¼ 1.85 g cm�3). Note that the yield stress (�7 Pa) of

the aqueous gel-matrix circumvents the sedimentation of the

heavy oil-droplets.

As previously done for bubbly media,12 periodic rows of

regularly spaced fluorinated-oil droplets were achieved

thanks to robotics. The fluorinated oil was continuously

injected within the aqueous gel-matrix by means of a moving

syringe. Typically, 100 lm-radius droplets were obtained

with fast displacements (�100 mm s�1) and low rates of oila)Electronic mail: thomas.brunet@u-bordeaux1.fr.
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flow (�10 ll min�1). This immiscible-in-water oil is much

more stable than a gas, which makes the emulsion produc-

tion faster and its conservation longer than those of a bubbly

medium. In addition, we obtained an excellent monodisper-

sity for both size and spherical-shape of droplets as illus-

trated in Fig. 1. The droplet-size distribution was optically

characterized by the analysis of about a hundred droplets.

The radius measurements were made with a one pixel accu-

racy, i.e., 1 lm. The size-polydispersity, of about 1%, was

determined from the discrete distribution of the droplet

radius as shown in Fig. 1. Two samples were prepared: a

dilute emulsion (sample 1 with Uv¼ 0.25% and �a¼ 104 lm)

and a more concentrated one (sample 2 with Uv¼ 6% and

�a¼ 175 lm). The volume fractions of the fluorinated oil-

droplets were estimated from the liquid quantity injected

within the aqueous gel-matrix. Finally, note that the disorder

will be due to the transfer of the (regularly spaced) emulsion

into the cell devoted to acoustic measurements, with no

change in droplet size.

For dilute emulsions such as sample 1, ultrasonic

measurements were carried out in a large water tank

(80� 40� 30 cm3) by multi-echo spectroscopy.13 An ultra-

sound pulse was generated by a broadband pulser/receiver

connected to a half-inch 10-MHz longitudinal-wave trans-

ducer with a broad frequency-bandwidth (1–12 MHz). The

emulsion was poured into a polystyrene cell (10� 10 cm2)

and placed at the Rayleigh distance of the transducer. The

cell was thick enough (15 mm) to separate the multiple ech-

oes reflected by the walls. By means of this reflexion tech-

nique, we first measured the complex-valued wavenumber

k0 ¼ k00 þ ik000 of the pure polymer gel-matrix (k00 ¼ x
v0

and

k000 ¼ a0 with x ¼ 2pf standing for the angular frequency)

as shown in Fig. 2 (dotted line). Then, we measured both the

phase velocity v and the attenuation coefficient a of the

coherent wave propagating in emulsions. In such scattering

media, the incoherent part of the ultrasonic field could be

non negligible.14 However, as we used large transducers, of

which the diameters are about 10 times larger than the lon-

gest wavelength k0 (�1.5 mm at 1 MHz) involved in our

experiments, a “self-averaging” on their surfaces provides an

access to a good estimate of the coherent part from only one

configuration of the disorder.

The ultrasonic measurements reported in Fig. 2 evidence

several sharp attenuation peaks associated with fast phase-

velocity variations. Since the volume fraction of droplets is

quite low (Uv� 1%), we analyzed the experimental results

within the framework of the independent scattering approxi-

mation (ISA).1 This approach is equivalent to the Foldy’s

model and does not take into account the coupling between

scatterers.15 Thus, the effective wavenumber kef f of the

coherent pressure wave propagating in such random mixture

is given by:

k2
ef f ¼

x
v
þ ia

� �2

¼ k2
0 þ 4pgfsð0Þ; (1)

where g is the number of droplets per unit volume

(Uv ¼ 4
3
pa3g) and fsð0Þ ¼ 1

ik0

X1
n¼0

f2nþ 1gSn the forward

scattering function.16 The complex-valued coefficients Sn,

which depend on both k0a and k1a, and on the ratios
q1

q0

FIG. 1. Histogram of the droplet radius distribution for

sample 1 obtained by optical measurements on 132 drop-

lets. The average radius droplet �a is 104 lm and the size-

polydispersity is about 1%. The corresponding volume

fraction Uv of droplets displayed in the image is about

0.25%.
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FIG. 2. Phase velocity (top) and attenuation (bottom) measured in sample 1

(red open circles). Theoretical predictions from the ISA for a monodisperse

emulsion (solid line) and for a 1%-polydisperse emulsion (dashed line, see

the discrete radius-distribution in Fig. 1) with Uv¼ 0.23% and �a¼ 104 lm.

Fitted measurements of acoustic properties of the pure aqueous gel-matrix

(dotted line).
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and v1

v0
, are the scattering modal coefficients of a single drop-

let embedded in the gel-matrix. The index n refers to the nth

mode, e.g., n¼ 0, n¼ 1, and n¼ 2 are associated with the

monopolar, dipolar, and quadrupolar vibration modes,

respectively. The resonance frequencies of each mode fix the

locations of the attenuation peaks as well as the correspond-

ing maxima in the phase-velocity variations. For example,

we observe in Fig. 2 at 2.3, 3.3, and 4.5 MHz the signature of

the very first resonances of the monopolar, dipolar, and

quadrupolar modes.

For comparison, both the phase velocity and the attenua-

tion coefficient predicted from Eq. (1) have been superim-

posed on the experimental measurements performed on

sample 1 (Fig. 2). By slightly tuning the sound speed v1 of

the fluorinated oil, we made the predicted absorption peak

locations match precisely the experimental ones for all reso-

nant peaks. The best agreement is found for v1¼ 645 m s�1.

Subsequently, the attenuation level is recovered by adjusting

the value of the droplet volume-fraction (Uv¼ 0.23%). Note

that possible misalignment in the acoustical set-up may

induce a deviation on the measured attenuation level at high

frequencies. However, the resonance peak locations should

not be affected because they mainly depend on the droplet

size.

As a result, the ISA well-fits the measured attenuation

peaks as well as the phase-velocity dispersion in the Mie

scattering regime, especially for the first modes (n � 2).

Obviously the narrowest absorption peaks, which are

theoretically expected at higher frequencies, are not experi-

mentally recovered (Fig. 2) because the actual emulsion

is not strictly monodisperse. In spite of a very low size-

polydispersity (�1%), taking into account the discrete

radius distribution shown in Fig. 1 in the ISA (k2
ef f ¼ k2

0

þ
X

ai
4pgðaiÞfsð0; aiÞ) leads to a much better description of

the experimental data beyond 8 MHz. Note that for these

higher frequencies, the phase-velocity variations become

weaker and weaker (less than 1 m/s, i.e., less than 0.1%) but

still remain observable and in good agreement with theoreti-

cal predictions as shown in the zoom of Fig. 2.

We also investigated the acoustic response of a more

concentrated emulsion with a different mean-radius: sample

2 (Uv¼ 6% and �a¼ 175 lm). As the volume fraction of

droplets is appreciably increased in comparison with sample

1, the scattering effects induce much stronger losses and so

higher attenuation. Therefore, in order to still make accurate

acoustic measurements, there is a need to reduce the distance

of propagation. Thus, we used a through-transmission

configuration with a pair of 5-MHz longitudinal-wave trans-

ducers, and a thinner measurement cell (5 mm). The same

resonant features are observable for sample 2 (Fig. 3), as

those reported for sample 1 (Fig. 2). Note that the frequency-

shift of the attenuation peaks to lower frequencies is due to

the larger droplet-radius of sample 2. More importantly, the

higher volume fraction of droplets induces stronger effects in

sample 2 such as large attenuation peaks (�1 mm�1) and

large phase-velocity dispersion (�13%) as illustrated by the

temporal signal shown in the inset of Fig. 3. The acoustic

measurements also show at around 3 MHz an increase of the

sound speed of about 50 m s�1 compared to the pure gel-

matrix. As done for sample 1, the best agreement between

the experimental results and the theoretical predictions has

been found by adjusting the value of the droplet volume-

fraction of sample 2 (Uv¼ 5.8%).

At last, we focus our attention on the variations of the

emulsion acoustic properties induced by the scattering

effects only. Thus, we use dimensionless expression for the

phase-velocity variation (Dv ¼ v� v0) normalized by the

phase velocity v0 of the pure aqueous gel-matrix and reduced

to the volume fraction Uv of droplets. In the same way, we

consider the attenuation increase (Da ¼ a� a0) per wave-

length k0 (¼2p=k00) and also reduced to the volume fraction

Uv of droplets. On one hand, Eq. (1) can be linearized with

the assumption a� x
v , provided the emulsions are not too

much concentrated. On the other hand, the absorption within

the pure gel-matrix is low enough to also consider that

a0 � x
v0

. Thus, the dimensionless acoustic parameters can be

estimated from the ISA model as following:

1

Uv

Dv

v0

� �
¼ �3

2ðk00aÞ3
Im

"X1
n¼0

f2nþ 1gSnðk00aÞ
#

(2a)

1

Uv

Da
k00

� �
¼ �3

2ðk00aÞ3
Re

"X1
n¼0

f2nþ 1gSnðk00aÞ
#
: (2b)

Due to the form of the scattering coefficients Sn, the

dimensionless phase-velocity variations (Eq. (2a)) and the

FIG. 3. Phase velocity (top) and attenuation (bottom) measured in sample 2

(blue open squares). Theoretical predictions from the ISA for a monodis-

perse emulsion (solid line) and for a 1%-polydisperse emulsion (dashed

line) with Uv¼ 5.8% and �a¼ 175 lm. Inset: temporal signal transmitted

through sample 2 without space-averaging.
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dimensionless attenuation increase (Eq. (2b)) are independ-

ent of both the volume fraction Uv and the droplet radius a.

Thus, whatever the values of the latter parameters, for rea-

sonably small Uv, the experimental data should follow a

unique master theoretical curve for the given couple of mate-

rials here studied, i.e., fluorinated oil-droplets randomly

dispersed within an aqueous gel-matrix. Fig. 4 shows that

the two experimental curves (open symbols) are well-

superimposed on the master theoretical curve (solid line).

The phase-velocity dispersion, the attenuation level, and the

resonance-frequency locations are well-recovered for both

samples. The first resonances are clearly evidenced whatever

the volume fraction and the size of the droplets. At high fre-

quencies, the size-polydispersity of both the samples (�1%)

is responsible for the spreading of the resonance peaks,

which are no longer observable beyond k00a � 5.

In summary, we have presented experimental evidence

about acoustic multipolar resonances occurring in precisely

controlled monodisperse emulsions with high sound-speed

contrasts in the Mie scattering regime. The independent scat-

tering approximation well-describes the acoustic resonant

response of these emulsions for 1 � k00a � 5, even for mod-

erate volume fractions of scatterers of about few percents.

These strongly scattering media might be used as functional

materials with frequency-controlled acoustic properties

(sound speed and acoustic attenuation). Slow/fast wave

effects and ultra-damping could be achieved if the volume

fraction of oil-droplets is appreciably increased. However,

the tools for the design of highly concentrated emulsions

need then to consider interactions between oil-droplets

through the modeling of multiple scattering. At last, these

results may have an interest in the metamaterial community.

In fact, as mentioned by Li et al. (see Chap.8 in Ref. 17), one

possibility to obtain metamaterial features such as “negative

mass density” and/or “negative compressibility” is to create

strong Mie-type resonances. That should be achieved by

finding two components with huge sound-speed contrasts,

i.e., much higher than those presented in this paper.
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FIG. 4. Dimensionless phase velocity (top) and dimensionless attenuation

(bottom) versus reduced frequency measured in sample 1 (red open circles)

and sample 2 (blue open squares). Theoretical predictions from Eq. (2a) and

(2b) for a monodisperse emulsion made of fluorinated oil-droplets randomly

dispersed within an aqueous gel-matrix (solid line).
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