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We have calculated the Bardeen-Stephen contribution to the vortex viscosity for uniaxial anisotropic
superconductors within the time-dependent Ginzburg-Landau (TDGL) theory. We focus our attention on
superconductors with a mismatch of anisotropy of normal and superconducting characteristics. Exact asymptotics
for the Bardeen-Stephen contribution have been derived in two limits: (i) lEab � ξab, lEc � ξc and (ii) lEc � ξc,
lEab � ξab, where lEab, lEc and ξab, ξc are the electric field penetration lengths and the coherence lengths in the
ab plane and in the direction of the c axis. Also, we suggest a variational procedure which allows us to calculate
the vortex viscosity for superconductors with arbitrary parameters ξ and lE . The approximate analytical result
is compared with numerical calculations. Finally, using a generalized TDGL theory, we prove that the viscosity
anisotropy and, thus, the flux-flow conductivity anisotropy may depend on temperature.

DOI: 10.1103/PhysRevB.85.174502 PACS number(s): 74.25.fc, 74.20.De, 74.25.Op, 74.40.Gh

I. INTRODUCTION

The existence of a nonzero electrical resistivity in type–II
superconductors in the mixed state is connected with the
motion of magnetic flux vortices. It can be observed in the
presence of a sufficiently large transport current so that pinning
is suppressed. In the stationary flux-flow regime, the Lorentz
force acting on an isolated vortex is balanced by the intrinsic
viscous drag force:

φ0

c
(jtr × n) = ηVL. (1)

Here, φ0 is the flux quantum, jtr is the transport current density,
n is the unit vector along the magnetic field, VL is the vortex
velocity, and η is a viscous drag coefficient. As vortices move,
the magnetic field in the sample becomes nonstationary and a
macroscopic electrical field E is induced, which is connected
with the transport current via Ohm’s law: E = jtr/σ . For weak
average magnetic fields B � Hc2, where Hc2 is the upper
critical field, the flux-flow conductivity σ is

σ = c2η

Bφ0
. (2)

The presence of a finite conductivity implies that current flow
is accompanied by dissipation. It has been shown that there are
two main mechanisms of dissipation: losses due to relaxation
of the order parameter1 and Ohmic losses associated with
normal currents flowing through the vortex core.2

For an anisotropic superconductor, Eq. (2) is generalized as
follows:

σ̂ = c2

Bφ0

(
ηyy −ηyx

−ηxy ηxx

)
(3)

with the z axis along the magnetic field. The peculiar structure
of the conductivity tensor is explained by the fact that the x

component of the electric field depends on the y component
of the vortex velocity, and vice versa.

It can be seen from Eq. (3) that the flux-flow conductivity
is determined by the magnetic field and the viscosity tensor
η̂. A rigorous approach to the problem of viscosity evaluation
has been first suggested by Schmid3 and was later developed

by Gor’kov and Kopnin4 (see also Ref. 5 for review). Their
method is based on the time-dependent Ginzburg-Landau
(TDGL) theory. Within this model, the flux-flow conductivity
has been evaluated for isotropic superconductors in several
papers.6–8 Both viscosity components due to order-parameter
relaxation and Ohmic losses (frequently called the Bardeen-
Stephen contribution) have been derived.

Theoretical studies of free flux flow in anisotropic materials
have been stimulated by the discovery of high-temperature
superconductors, which appeared to possess rather strong
anisotropy. A number of papers have addressed this problem
using different models and approximations.9–11 The procedure
of viscosity calculation can be essentially simplified in the
limit of dirty uniaxial superconductors with the ratio s0 =
mcσc/mabσab equal to unity. Here, σc, σab and mc, mab

are the normal conductivities and Cooper-pair masses in the
direction of the anisotropy axis c and in the perpendicular ab

plane, respectively. The condition s0 = 1 allows us to reduce
the problem of anisotropic vortex dynamics to an isotropic
one by means of a scaling transformation.10 Yet, this is not
true in the case s0 �= 1, i.e, for a mismatch of anisotropies
of Cooper-pair masses and normal conductivities. Such a
mismatch is theoretically possible in the relatively clean limit12

and it may have been experimentally observed in a new class of
Fe-based pnictide superconductors. According to Ref. 13, the
ratio σab/σc in PrFeAsO0.7 is close to 120, whereas mc/mab

in the same compound is about 25, as determined in Ref. 14
from upper critical field measurements. In Refs. 15 and 16,
anisotropies of the same order in Ba1−xKxFe2As2 are reported.
However, existing experimental data for the pnictides are
contradictory. In Ref. 17, a relatively low-resistivity anisotropy
in BaFe2As2 is given: σab/σc ∼ 2–3. In some works,14,18 an
anisotropy mismatch has not been clearly detected. Previous
calculations of the viscous drag tensor accounted for the
anisotropy mismatch only on the basis of a simplified model
of a steplike order-parameter profile within the vortex core.9

Of course, a detailed comparison with experimental data
demands these calculations to be generalized for a more
realistic order-parameter profile.

In this paper, we evaluate analytically the viscosity tensor
for a realistic gap profile within the core, focusing our attention
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on the case s0 �= 1 and considering both standard TDGL
model for gapless superconductors and its generalization for
superconductors with a finite gap.12,19 Note that for Fe-based
materials, the gapless regime may be achievable due to the
strong interband scattering on dopant’s ions.20 In Sec. II, we
derive the basic equations following the approach of Gor’kov
and Kopnin.5 In Sec. III, we develop approximate methods
based on different assumptions about the ratio of the electric
field penetration depth to the coherence length. The results
of preceding works6,7,9 are revised and improved. In the end
of this section, we consider a variational principle, which
provides us with a simple general relation for the Bardeen-
Stephen contribution. In Sec. IV, the problem is considered in
the framework of a generalized TDGL theory. Here, we derive
our main result: we predict that the flux-flow conductivity
anisotropy may depend on temperature in superconductors
with the parameter s0 �= 1.

II. BASIC EQUATIONS

Following Gor’kov and Kopnin,5 we start the analysis of
vortex motion with the TDGL equation for the superconduct-
ing order parameter ψ :

γ

(
h̄

∂ψ

∂t
+ 2ie	ψ

)
= − δF

δψ∗ , (4)

F =
∫ [(

ih̄∇ − 2e

c
A

)
ψ∗ m̂−1

2

(
−ih̄∇ − 2e

c
A

)
ψ

+ a |ψ |2 + 1

2
b |ψ |4

]
d3r.

Here, F is the usual GL free energy, γ is a relaxation constant,
and A and 	 are the vector and scalar potentials, respectively.
We consider uniaxial anisotropic superconductors, so the
Cooper-pair mass m̂ is a tensor with components mij =
mab(δij + μνiνj ), where ν is the unit vector along the c

axis, μ = mc/mab − 1. Equation (4) is supplemented by the
equation for the current density

div j = 0, (5)

where

j = 2e |ψ |2 m̂−1

(
h̄∇θ − 2e

c
A

)
− σ̂n

(
∇	 + 1

c

∂A
∂t

)
. (6)

Here, θ = arg(ψ) and σ̂n is the normal-state conductivity
tensor with components σnij = σabδij + (σc − σab)νiνj . For
simplicity, we will consider only superconductors with a
large Ginzburg-Landau parameter κ = λ/ξ � 1, where λ is
the London penetration length and ξ is the superconducting
coherence length. One can prove that |2eA/c| / |h̄∇θ | � 1 at
distances much smaller than λ from the vortex axis in the gauge
where A = 0 on the vortex axis and divA = 0. Imposing the
additional condition l2

E/λξ � 1, where lE is the electric field
penetration depth [see Eq. (12)], one can neglect the term

1

c

∂A
∂t

in Eq. (6).
Let us consider the orientation of the internal magnetic

field at an angle ϕ to the crystallographic c axis. We choose

FIG. 1. The coordinate frame.

the coordinate frame (x, y, z) with the z axis coinciding with
the vortex axis and with the c axis lying in the xz plane (see
Fig. 1). In this frame, the functions ψ and 	 do not depend on
z, and the tensor η̂ is diagonal.

The derivation of the force balance equation (1) and the
explicit expression for the viscous drag tensor may be found
in Refs. 5 and 9. However, in Appendix A, we outline the
calculations for the reader’s convenience.

The components of the Bardeen-Stephen contribution η̂oh

are given by

ηx = −2
|a|
b

γh̄

∫
f 2(ρ1)

y1

ρ2
1

(
u2	x − y1

ρ2
1

)
dx1dy1, (7)

ηy = −2
|a|
b

γh̄

∫
f 2(ρ1)

x1

ρ2
1

(
u2	y − x1

ρ2
1

)
dx1dy1. (8)

Here,

ηx = [m(ϕ)/mab]1/2(ηoh)xx, (9)

ηy = [mab/m(ϕ)]1/2(ηoh)yy, (10)

m(ϕ) = mab(1 + μ)

1 + μ cos2 ϕ
, u = ξab/ lEab,

(x1,y1) = ξ−1
ab

(√
m(ϕ)

mab

x,y

)
, ρ1 =

√
x2

1 + y2
1 , (11)

ξab and lEab are the coherence length and the electric field
penetration depth in the ab plane, respectively:

ξab =
√

h̄2

2mab |a| , lEab =
[
h̄σab

/ (
8e2γ

|a|
b

)]1/2

. (12)

The function f (ρ) describes the profile of the dimensionless
order-parameter modulus in a static isotropic vortex. This
function satisfies the relation

1

ρ

d

dρ

(
ρ

df

dρ

)
− f

ρ2
+ f − f 3 = 0, (13)

which follows from Eqs. (A8) and (A17). The boundary
conditions are f (0) = 0, f (∞) = 1. The functions 	x and
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	y in Eqs. (7) and (8) should be determined from the linear
equations

s
∂2	x

∂x2
1

+ ∂2	x

∂y2
1

=
(

u2	x − y1

ρ2
1

)
f 2(ρ1), (14)

s
∂2	y

∂x2
1

+ ∂2	y

∂y2
1

=
(

u2	y − x1

ρ2
1

)
f 2(ρ1), (15)

where

s(ϕ) = 1 +
(

mcσc

mabσab

− 1

)
sin2 ϕ

1 + μ cos2 ϕ
> 0. (16)

The electric potential can be expressed in terms of 	x and 	y

via

	 =
(

	x

√
m(ϕ)

mab

VLx − 	yVLy

)
4γ eh̄

bσab

√
|a|

2mab

. (17)

Note that there is a relation connecting the components ηx and
ηy :

ηy(s,u) = ηx

(
1

s
,

u√
s

)
. (18)

In the next section, we consider some limiting cases.

III. APPROXIMATE SOLUTIONS

A. The lE � ξ limit

Consider such materials that the electric field penetration
length is much smaller than the coherence length:

lEab � ξab, lEc � ξc. (19)

This limiting case is closer to gapless superconductors with
a high concentration of magnetic impurities, which are
characterized by the ration ξ/ lE = √

12. The conditions (19)
impose the following restrictions on the parameters s and
u: u � 1, s � u2. In this section, we will analyze the case
s � 1. The case 1 � s � u2 can be considered in a similar
way by dividing Eqs. (14) and (15) by s. We shall search the
asymptotics of the viscosity when u → ∞ neglecting small
terms of order higher than u−2 (however, it will be shown that
one should keep terms of the order of u−2).

Our approximation is based on the fact that the charac-
teristic length scale for the functions 	x and 	y is u−1.
Hence, the unknown functions reach their asymptotic behavior
at distances ρ � 1 from the vortex axis, where the order-
parameter profile f (ρ) is well approximated by the first several
terms of its Taylor series:

f 2(ρ) ≈ k2ρ
2 + k4ρ

4 + k6ρ
6.

We substitute this expansion into Eq. (14) and introduce the
new variables ρ̃ = ρ1

√
u, 	̃x = 	xu

3/2:

∂2	̃x

∂ỹ2
+ s

∂2	̃x

∂x̃2

=
(

k2ρ̃
2 + k4

ρ̃4

u
+ . . .

) (
	̃x − ỹ

ρ̃2

)
. (20)

Further, the tilde over x̃ and ỹ will be omitted. The solution of
Eq. (20) can be expanded in the powers of u−1:

	̃x = 	(0)
x + u−1	(1)

x + Rx, (21)

where 	(0)
x and 	(1)

x satisfy the following relations:

∂2	(0)
x

∂y2
+ s

∂2	(0)
x

∂x2
= k2ρ

2	(0)
x − k2y, (22)

∂2	(1)
x

∂y2
+ s

∂2	(1)
x

∂x2
= k2ρ

2	(1)
x + k4ρ

4

(
	(0)

x − y

ρ2

)
, (23)

and Rx is a remainder term. It is proved in Appendix B that
an analogous expansion can be made in the integral in the
right-hand side of Eq. (7):

ηx = −2
|a|
b

γh̄

[
I1x(s)

u
+ I2x(s)

u2
+ o(u−2)

]
, (24)

where

I1x(s) =
∫

k2y

(
	(0)

x − y

ρ2

)
dx dy, (25)

I2x(s) =
∫

y

ρ2

[
k4ρ

4

(
	(0)

x − y

ρ2

)
+ k2ρ

2	(1)
x

]
dx dy. (26)

The viscosity component ηy can be calculated similarly:

ηy = −2
|a|
b

γh̄

[
I1y(s)

u
+ I2y(s)

u2
+ o(u−2)

]
. (27)

Using Eq. (18), we obtain

I1y(s) = I1x(s−1)
√

s, I2y(s) = I2x(s−1)s. (28)

In principle, the functions I1x(s) and I2x(s) can be determined
by numerical calculations; however, in Sec. III C we present
some analytical expressions for these functions.

In Ref. 9, the u � 1 limit was considered using the
Bardeen-Stephen model.2 This approach is essentially based
on the assumption about a steplike order-parameter profile
within the core and does not allow us to obtain a leading term
of the order of u−1 in the expansion (24).

The particular case s = 1 has been considered in a
number of works mentioned above.3,6–8 It corresponds to
isotropic superconductors, or anisotropic superconductors
with no anisotropy mismatch: (mcσc)/(mabσab) = 1. If s = 1,
Eqs. (22) and (23) can be solved exactly:

	(0)
x = 1 − exp(−√

k2ρ
2/2)

ρ2
y,

	(1)
x = k4y

uk2

(
1

4
+

√
k2ρ

2

8

)
exp(−

√
k2ρ

2/2).

After some integration, we obtain a simple relation for the
viscous drag coefficients:

ηx = ηy = 2π
|a|
b

γh̄α2(u), (29)

α2(u) ≈
√

k2

u
+ k4

2k2u2
= 0.583

u
− 1

8u2
. (30)

Here, the value
√

k2 = 0.583 was taken from Ref. 7, and the
relation k4 = −k2/4 follows from Eq. (13).

It is appropriate to recall here the result obtained by Hu7:

α2 = K0(δu)

δuK1(δu)
, (31)

where K0 and K1 are the modified Bessel functions of an
imaginary argument and δ is a fitting parameter. Equation (31)
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was derived from the exact solution of Eq. (A12) with an
approximate order-parameter profile3,21:

f (ρ) = ρ√
δ2 + ρ2

. (32)

According to Schmid3 and Hu,7 the optimal value of δ is
√

2,
which follows from a variational principle. We can compare
different values of α2(u). When u = √

12, Eq. (31) yields
α2 = 0.186, Eq. (30) yields α2 = 0.158, while the numerical
result is α2 = 0.159.8 Our formula gives an error less than 1%.
If we keep only the term of order u−1 in Eq. (30), we will get
a 6% error, which increases with decreasing u.

B. The lEc � ξc limit

Consider the range of parameters s � u2 and u � 1. In
terms of lE , ξ , and ϕ, these conditions read as

lEc � ξc, lEab � ξab, cos2 ϕ � σcl
2
Eab

σabξ
2
ab

.

Thus, the magnetic field must make a small angle with the ab

plane.
When s � u2, the term u2	x in Eq. (14) is negligible com-

pared to y1/ρ
2
1 in the region ρ � √

s/u, so we immediately
obtain from Eq. (7)

ηx ∼ ln s/u2.

More complicated calculations, which can be found in
Appendix C, yield

ηx = 2πh̄γ
|a|
b

(
ln

√
s

u
− 1.475

)
, (33)

ηy = 2πh̄γ
|a|
b

(
ln

√
s

u
− 0.475

)
. (34)

Note that in Ref. 9 in the u � 1 limit, similar expressions
containing ln u−1 have been derived. This similarity is not
accidental: the presence of the logarithm ln(lE/ξ ) is a
characteristic feature of the lE � ξ limit.

C. A variational principle

In this section, we suggest a simple variational procedure
for the calculation of the viscous drag tensor. According to
Ref. 5, a general expression for the dissipation function W [	]
reads as

W [	] = ∇	σ̂n∇	 + 2γ

h̄

∣∣∣∣h̄ ∂ψ

∂t
+ 2ie	ψ

∣∣∣∣
2

. (35)

The electric potential should be found from Eq. (A12), which
can be viewed as a condition of zero variational derivative of
the functional ∫

z=0
W [	]d2ρ.

Thus, the minimum of the functional above equals the loss
power per unit length of a moving vortex:

VLη̂VL = min
	

∫
z=0

W [	]d2ρ. (36)

This relation allows us to apply the direct variational method
to our problem.

For the sake of convenience, we rewrite Eq. (36) in our
rescaled coordinate frame separately for both components of
the Bardeen-Stephen contribution:

ηx = η̃(s,1,u), ηy = η̃(1,s,u), (37)

η̃(sx,sy,u) = 2
|a|
b

γh̄u2 min
φ

∫ [
sx

(
∂φ

∂x

)2

+ sy

(
∂φ

∂y

)2

+ f 2(ρ)

u2

(
u2φ − y

ρ2

)2
]

dx dy.

(38)

Equations (37) and (38) have two important consequences.
First, the viscous drag tensor is positively defined when σab >

0 and σc > 0. Second, the components of η̂oh increase as the
conductivity increases:

∂ηi

∂σab

> 0,
∂ηi

∂σc

> 0, i = x,y.

We can obtain an upper estimate for the viscosity compo-
nents if we substitute a trial function into Eq. (38). In order to
find an appropriate trial function, consider the exact equation
for φ:

sx

∂2φ

∂x2
+ sy

∂2φ

∂y2
=

(
u2φ − y

ρ2

)
f 2(ρ). (39)

The solution of this equation is an even function of x and an
odd function of y, so its Fourier series has the form

φ =
∞∑

n=0

φ2n+1(ρ) sin(2n + 1)χ, (40)

where χ is the polar angle in the xy plane. When ρ is
sufficiently large, φ ≈ y/(u2ρ2), that means that the series
in Eq. (40) contains only the first term. Thus, the trial function

φt = 4φ̃(ρ)

sx + 3sy

sin χ (41)

has the correct parity and the correct asymptotics. Let us
substitute this function into Eq. (38):

η̃ ≈ 2
|a|
b

γh̄πũ2 min
φ̃

∫ ∞

0
ρ

[(
dφ̃

dρ

)2

+ φ̃2

ρ2

+ f 2(ρ)

ũ2

(
ũ2φ̃ − 1

ρ

)2
]

dρ, (42)

where

ũ = u

(
sx

4
+ 3sy

4

)−1/2

.

The differential equation for φ̃ is

− 1

ρ

d

dρ

(
ρ

dφ̃

dρ

)
+ φ̃

ρ2
+ f 2(ρ)

(
ũ2φ̃ − 1

ρ

)
= 0. (43)

Note that we obtain exactly the same equation if we substitute
	x = φ̃(ρ) sin χ into Eq. (14) when s = 1 and u = ũ. This
means that the trial function (41) reduces our problem to an
isotropic one. Unfortunately, an exact solution of Eq. (43)

174502-4
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is unknown. However, Schmid3 found a solution with an
approximate order-parameter profile [see Eq. (32)]:

φ̃ = K1(ũδ)δ −
√

δ2 + ρ2K1(ũ
√

δ2 + ρ2)

δK1(ũδ)ũ2ρ
.

By using this function and the expression (32) for f , we can
calculate the right-hand side of Eq. (42):

η̃ ≈ 2
|a|
b

γh̄π
K0(δũ)

δũK1(δũ)
. (44)

We take δ = f ′(0)−1 = k
−1/2
2 in order to obtain the correct

asymptotics when u → ∞, s = 1 [this asymptotics is deter-
mined by f ′(0) (see Sec. III A)]. Finally, combining (37) and
(44) we get approximate relations for the components of η̂′:

ηx ≈ 2π
|a|
b

γh̄
f ′(0)

2u

√
s + 3

K0
(

2u

f ′(0)
√

s+3

)
K1

(
2u

f ′(0)
√

s+3

) , (45)

ηy ≈ 2π
|a|
b

γh̄
f ′(0)

2u

√
3s + 1

K0
(

2u

f ′(0)
√

3s+1

)
K1

(
2u

f ′(0)
√

3s+1

) . (46)

No restrictions on the parameters s and u are implied here.
Let us check if these relations are in accordance with the

results from Secs. III A and III B. Expanding ηx in the form
(45) in the powers of u−1 when u � 1 and s � 1, we obtain the
following expressions for the coefficients I1x and I2x , which
were introduced in Sec. III A [see Eq. (24)]:

I1x(s) = −π
√

k2
√

s + 3

2
, I2x(s) = πk2(s + 3)

8
. (47)

When s = 1,

ηx = ηy = 2π
|a|
b

γh̄
f ′(0)

u
+ O(u−2),

which should be compared with Eq. (30). The perfect
agreement between the exact and approximate result is not
surprising because the trial function (41) is the exact solution
of our variational problem in the isotropic case.

In order to check whether Eqs. (45) and (46) are applicable
for s �= 1, we used numerical calculations. We solved Eq. (39)
in the region x > 0, y > 0 with the boundary conditions

∂φ

∂x

∣∣∣∣
x=0

= 0, φ

∣∣∣∣
y=0

= 0.

A sufficiently large 450 × 450 mesh with a 0.03 × 0.03 unit
cell has been used. The numerical algorithm applied was the
method of steepest descent. After the determination of the
function φ(ρ), numerical integration has been performed.

When s = 0, Eqs. (47) and (28) give

ηx = 2
|a|
b

γh̄
1.59

u
+ O(u−2),

ηy = 2
|a|
b

γh̄
0.92

u
+ O(u−2).

FIG. 2. The ϕ dependencies of the viscosity components. Solid
lines correspond to analytical results [Eqs. (45) and (46)], dashed
lines show the results of numerical simulations. Here, ηxx and ηyy are
measured in the units η0 = h̄γ |a| /b, ξab/ lEab = √

12.

These analytical expressions are in a good agreement with the
asymptotics derived by numerical calculations:

ηx = 2
|a|
b

γh̄
1.58

u
+ O(u−2),

ηy = 2
|a|
b

γh̄
0.86

u
+ O(u−2).

When s � u2, Eqs. (45) and (46) give

ηx ≈ ηy ≈ 2πh̄γ
|a|
b

ln

√
s

u
,

which coincides with the main logarithmic term in Eqs. (33)
and (34). One can see that the agreement between the exact
and approximate asymptotics is quite good. This is a strong
argument in favor of the applicability of Eqs. (45) and (46) for
intermediate values of s and u.

In Fig. 2, we plot the analytical and numerical ϕ dependen-
cies of the diagonal components of the full viscous drag tensor
(η̂ = η̂p0 + η̂oh).

IV. TEMPERATURE DEPENDENCE OF THE VISCOSITY
ANISOTROPY

Within the framework of the TDGL equation (4), the
viscosity anisotropy ηxx/ηyy does not depend on temperature.
However, the region of applicability of Eq. (4) is limited by
gapless superconductivity. In this section, we consider a more
general approach based on the generalized TDGL equations19
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(see also Ref. 12 for review):

2h̄γ
√

1 + q|ψ |2/|ψ∞|2 ∂|ψ |
∂t

= − δF

δ|ψ | , (48)

γ |ψ |2√
1 + q |ψ |2/ |ψ∞|2

(̄
h

∂θ

∂t
+ 2e	

)
= h̄2

2
∇(|ψ |2 m̂−1∇θ

)
,

(49)

q = 32π2τ 2
phTc(Tc − T )

7ζ (3)h̄2 , |ψ∞|2 = |a|
b

.

Here, Tc is the critical temperature and τph is the electron-
phonon mean free time. In the isotropic case, Eqs. (48) and
(49) are valid for dirty superconductors when the temperature
is close to Tc and variations of the order parameter in space
and in time are sufficiently slow.

The main relations for the viscous drag tensor can be
derived in same way as described in Sec. II. As a result, we
find that the viscosity still comprises two terms representing
two mechanisms of dissipation, but the viscosity components
undergo some changes. For example, Eq. (A19) is modified as
follows:

(η′
p0)ij = 2πh̄γ

|a|
b

δij

∫ ∞

0

(
df

dρ

)2

ρ
√

1 + qf 2(ρ)dρ. (50)

In order to obtain the counterparts of Eqs. (7), (8), (14), and
(15), one should make the following substitutions in these
equations:

u2 → u2

√
1 + q

,

f 2 →
√

1 + qf 2√
1 + qf 2

, (51)

ηi → ηi

√
1 + q, i = x,y.

It can be seen from Eq. (49) that the electric field penetration
depth is increased by a factor (1 + q)1/4 as compared to
Eq. (12). It may seem that at low temperatures we would reach
the lE � ξ limit, which has been analyzed in Ref. 9. However,
this is not quite true because of the different relative impacts of
the two mentioned mechanisms of dissipation in the simple and
generalized TDGL models. Within the simple TDGL theory,
the Bardeen-Stephen contribution and the relaxational term
are of the same order of magnitude in the lE � ξ limit.
On the contrary, in the generalized model, the viscosity is
dominated by the relaxational term at low temperatures (see
the following).

It is obvious that all main relations from Sec. III can be
derived again within the generalized TDGL theory, but they
are slightly modified. For example, Eq. (29) now reads as

ηx = ηy ≈ 2πh̄γ
|a|
b

[√
k2

u
− 1 + 2q

8u2

]
. (52)

Now, consider the temperature dependence of the viscous
drag tensor. The quantity q depends on the temperature T , and
q ′

T < 0. Hence,

∂

∂T

(ηp0)xx

η0
= ∂

∂T

(ηp0)yy

η0
< 0,

FIG. 3. Schematic temperature dependence of the viscosity
anisotropy for ϕ = π/2. The parameter ε is of the order of unity.

where η0 = h̄γ |a| /b. On the other hand, the modified Eq. (38)
can be written in the form

η̃(sx,sy,u) = 2
|a|
b

γh̄u2 min
φ

∫ [
sx

(
∂φ

∂x

)2

+ sy

(
∂φ

∂y

)2

+ f 2(ρ)

u2
√

1 + qf 2

(
u2φ− y

ρ2

)2]
dx dy,

(53)

if we leave Eqs. (37) unchanged. Hence,

∂

∂T

(ηoh)xx

η0
> 0,

∂

∂T

(ηoh)yy

η0
> 0.

At sufficiently low temperatures, when q � 1, s � 1, and u ∼
1, it may happen that

(ηp0)xx � (ηoh)xx, (ηp0)yy � (ηoh)yy.

Then, the viscosity anisotropy is determined by the relax-
ational term

ηxx

ηyy

≈ (ηp0)xx

(ηp0)yy

= 1 + μ

1 + μ cos2 ϕ
.

Note that when s �= 1, ηx �= ηy , so

ηxx

ηyy

�= 1 + μ

1 + μ cos2 ϕ

when q � 1. We have proved that within the generalized
TDGL theory, the viscosity anisotropy and the flux-flow con-
ductivity anisotropy do depend on temperature. The schematic
T dependence of the ratio ηxx/ηyy is plotted in Fig. 3.

Note that in preceding papers, a correct order of magnitude
estimate for the ratio ηxx/ηyy has been obtained using either a
standard TDGL equation9,10 or within a generalized Bardeen-
Stephen model.11 Certainly, these approaches do not allow
us to determine the temperature dependence of the viscosity
anisotropy obtained above.

V. CONCLUSION

By solving the time-dependent Ginzburg-Landau equation,
we analyzed the viscous flux flow in anisotropic superconduc-
tors. The Bardeen-Stephen contribution to the viscous drag
tensor η̂ has been calculated in the lE � ξ and lEc � ξc

limits. We emphasize that in these calculations, we did not
use any simplifying assumptions concerning the shape of the
order parameter in a static vortex. We suggested a variational

174502-6



MISMATCH OF CONDUCTIVITY ANISOTROPY IN THE . . . PHYSICAL REVIEW B 85, 174502 (2012)

procedure, which allowed us to derive the relations (45) and
(46) suitable for arbitrary electric field penetration lengths
(lEab and lEc), coherence lengths (ξab and ξc), and orientation of
the magnetic field. Our results may be useful for interpretation
of experimental data on flux-flow conductivity in isotropic
and anisotropic superconductors in weak magnetic fields
(B � Hc2).

Viscous flux flow has also been examined within a general-
ized TDGL theory. We found that the viscosity anisotropy may
depend on temperature and, thus, the flux-flow conductivity
anisotropy may be altered by heating or cooling the sample.
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APPENDIX A

In this Appendix, we derive Eqs. (7), (8), (14), and (15).
In Eq. (4), it is convenient to make a scaling of the variables
x ′ = x[m(ϕ)/mab]1/2, y ′ = y, z′ = z. We rewrite Eq. (4) in
the form

γh̄
∂|ψ |
∂t

= h̄2

2mab

[∇′2|ψ | − |ψ |(∇′θ )2] − a|ψ | − b|ψ |3,
(A1)

γ |ψ |2
(
h̄

∂θ

∂t
+ 2e	

)
= h̄2

2mab

∇′(|ψ |2 ∇′θ ). (A2)

According to Eq. (5), the two-dimensional current j′ =
(jx[m(ϕ)/mab]1/2,jy) satisfies the relation

div′j′ = 0. (A3)

It follows from Eqs. (A2) and (A3) that

γ |ψ |2
(
h̄

∂θ

∂t
+ 2e	

)
= h̄

4e
∇′(σ̃n∇′	), (A4)

where we introduced the tensor σ̃n with components

σ̃nx ′x ′ = s(ϕ)σab, σ̃ny ′y ′ = σab,

σ̃nx ′y ′ = σ̃ny ′x ′ = 0, (A5)

with s(ϕ) given by Eq. (16). For a moving vortex, one
should search the solution of Eqs. (A1), (A2), and (A3) in
the form ψ = ψ(ρ′ − ṼLt), 	 = 	(ρ′ − ṼLt), where ṼL =
(VLx[m(ϕ)/mab]1/2,VLy) and ρ′ = (x ′,y ′). We expand |ψ | and
θ in powers of VL up to the first-order term, assuming the vortex
velocity to be sufficiently small:

|ψ | ≈ ψ0(ρ′ − ṼLt) + ψ1(ρ′ − ṼLt), (A6)

θ ≈ θ0(ρ′ − ṼLt) + θ1(ρ′ − ṼLt). (A7)

Here, ψ0(ρ′) and θ0(ρ′) correspond to a static vortex. The
functions ψ1, θ1, and 	 are of the order VL. We substitute

(A6) and (A7) into Eqs. (A1), (A3), and (A4):

−aψ0 − bψ3
0 + h̄2

2mab

[∇′2ψ0 − ψ0(∇′θ0)2] = 0, (A8)

h̄2

2mab

[∇′2ψ1 − ψ1(∇′θ0)2 − 2ψ0∇′θ0 · ∇′θ1
]

− aψ1 − 3bψ2
0 ψ1 = −γh̄(ṼL∇′)ψ0 (A9)

div′j′0 = 0, j′0 = 2eh̄ψ2
0

mab

∇′θ0, (A10)

div′j′1 = 0,

j′1 = 2eh̄

mab

(
2ψ0ψ1∇′θ0 + ψ2

0 ∇′θ1
) − σ̃n∇′	, (A11)

h̄σab

4e

[
s(ϕ)

∂2	

∂x ′2 + ∂2	

∂y ′2

]
= γψ2

0 (2e	 − h̄ṼL · ∇′θ0).

(A12)

Now, we introduce some new notations: ψd = (d∇′)ψ0, θd =
(d∇′)θ0, j′d = (d∇′)j′0, where d is an arbitrary vector. A simple
equation connecting ψd and θd can be obtained by applying
the operator d∇′ to Eq. (A8):

h̄2

2mab

[∇′2ψd − ψd (∇′θ0)2 − 2ψ0∇′θ0 · ∇′θd ]

−aψd − 3bψ2
0 ψd = 0. (A13)

The vector j′d satisfies the obvious relation div′j′d = 0. Let us
multiply Eq. (A9) by ψd , subtract Eq. (A13) multiplied by
ψ1, and integrate the resulting equation over a large volume
containing the whole vortex. After some simple algebra and
integration by parts, we obtain

−γh̄

∫
(ṼL∇′)ψ0ψdd

3r′

= h̄

4e

∫
[(j′1 + σ̃n∇′	)∇′θd − j′d∇′θ1]d3r′

= h̄

4e

∫
(σ̃n∇′	)∇′θdd

3r′ + h̄

4e

∫
S

(j′1θd − j′dθ1)dS.

(A14)

Here, S is a surface far from the vortex axis. At large distances
ρ ′ � ξab we have

j′1 ≈ 2eh̄ |a|
bmab

∇′θ1 = j′tr, θ1 = bmab

2eh̄ |a| (j′tr · ρ′) + const,

where j′tr is the transport current which is constant. If we
calculate the surface integral in Eq. (A14) and make some
simple transformations, we obtain the force balance equation9

πh̄

e
[d · (j′tr × n)] = −2πγh̄(d · ṼL)

∫ ∞

0

(
dψ0

dρ

)2

ρ dρ

+ h̄σab

2e

∫ [
s(ϕ)

∂2	

∂x ′2 + ∂2	

∂y ′2

]
(d · ∇′θ0)d2ρ ′, (A15)

where n is a unit vector along the magnetic field. If we compare
Eqs. (1) and (A15), we can see that the viscous drag tensor in
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the frame (x ′,y ′,z′) should be defined as follows:

d · η̂′ṼL = 2πγh̄(d · ṼL)
|a|
b

∫ ∞

0

(
df

dρ

)2

ρ dρ

− h̄σab

2e

∫ [
s(ϕ)

∂2	

∂x ′2 + ∂2	

∂y ′2

]
(d · ∇′θ0)d2ρ ′, (A16)

where we introduced the function

f (ρ) = ψ0(ρξab)

√
b

|a| . (A17)

The components of the tensor η̂ in the frame (x, y, z) are given
by

ηxx = [m(ϕ)/mab]1/2η′
x ′x ′ , ηyy = [mab/m(ϕ)]1/2η′

y ′y ′ .

(A18)

The right-hand side of Eq. (A16) contains two terms, rep-
resenting two mechanisms of dissipation. The viscous drag
tensor due to relaxation of the order parameter is6–9

(η′
p0)ij = 2πh̄γ

|a|
b

α1δij , (A19)

α1 =
∫ ∞

0

(
df

dρ

)2

ρ dρ = 0.279.

The second term in the right-hand side of Eq. (A16) defines
the Ohmic viscosity tensor η̂′

oh, which is to be evaluated:

d · η̂′
ohṼL = −h̄σab

2e

∫ [
s(ϕ)

∂2	

∂x ′2 + ∂2	

∂y ′2

]
(d∇′θ0)d2ρ ′.

(A20)

Now, if we substitute 	 in the form (17) into Eqs. (A12) and
(A20) and switch to the coordinates (x1,y1) [see Eq. (11)], we
obtain Eqs. (7), (8), (14), and (15).

APPENDIX B

In this Appendix, we will derive Eq. (24). First, we divide
the integral in Eq. (7) into two parts:

ηx = ηx1 + ηx2, (B1)

ηx1 = −2
|a|
b

γh̄

∫
ρ1<ρ0/

√
u

f 2(ρ1)
y1

ρ2
1

(
u2	x − y1

ρ2
1

)
dx1dy1,

(B2)

ηx2 = −2
|a|
b

γh̄

∫
ρ1>ρ0/

√
u

f 2(ρ1)
y1

ρ2
1

(
u2	x − y1

ρ2
1

)
dx1dy1,

(B3)

where ρ0 = u1/6+δ , δ � 1/6. Note that the left-hand side of
Eq. (14) is small when ρ1 > ρ0/

√
u � u−1/2, so it can be

accounted for by perturbation theory:

	x = y1

u2ρ2
1

+ 	x1 + 	x2 + . . . , (B4)

	x1 = 1

u4f 2(ρ1)

(
∂2

∂y2
1

+ s
∂2

∂x2
1

)
y1

ρ2
1

,

	x2 = 1

u6

[
1

f 2(ρ1)

(
∂2

∂y2
1

+ s
∂2

∂x2
1

)]2
y1

ρ2
1

.

The main contribution to the integral in Eq. (B3) is determined
by small ρ1. The integral of 	x2 is of the order of (uρ6

0 )−1 �
u−2; the integrals of higher-order terms are also negligibly
small, hence,

ηx2 ≈ −2
|a|
b

γh̄
I ′

0x

u
, (B5)

I ′
0x =

∫
ρ>ρ0

y

ρ2

(
∂2

∂y2
+ s

∂2

∂x2

)
y

ρ2
dx dy.

Let us consider the component ηx1. In the new variables
introduced in Sec. III A, Eq. (B2) reads as

ηx1 = −2
|a|
b

γh̄

∫
ρ<ρ0

f 2

(
ρ√
u

)
y

ρ2

(
	̃x − y

ρ2

)
dx dy.

(B6)

Now, we estimate the term Rx introduced in Eq. (21). It satisfies
the following relation:

∂2Rx

∂y2
+ s

∂2Rx

∂x2
− uf 2

(
ρ√
u

)
Rx

=
[
uf 2

(
ρ√
u

)
− k2ρ

2 − k4ρ
4

u

] (
	(0)

x − y

ρ2

)

+
[
uf 2

(
ρ√
u

)
− k2ρ

2

]
	(1)

x

u
. (B7)

Note that when ρ � √
u, the source in the right-hand side of

(B7) can be presented as S(x,y)u−2, where S(x,y) is some
function independent of u. Since (B7) is a screening equation,
the function Rx(x,y,u) for small ρ does not depend on the
behavior of the source in the area of big ρ and can be presented
as Rx = R̃x(x,y)u−2. On the other hand, when ρ � 1, the
derivatives in the left-hand side of Eq. (B7) are small, hence,
in the area 1 � ρ � √

u,

Rx ≈ 1

u2

[
−k6ρ

4

k2

(
	(0)

x − y

ρ2

)
− k4ρ

2

k2
	(1)

x

]
,

|Rx | � const

ρu2
. (B8)

Now, we substitute 	̃x in the form (21) into (B6):

ηx1 = −2
|a|
b

γh̄

(
I ′

1x

u
+ I ′

2x

u2
+ I3x

)
, (B9)

where

I ′
1x =

∫
ρ<ρ0

k2y

(
	(0)

x − y

ρ2

)
dx dy, (B10)

I ′
2x =

∫
ρ<ρ0

y

ρ2

[
k4ρ

4

(
	(0)

x − y

ρ2

)
+ k2ρ

2	(1)
x

]
dx dy,

(B11)

I3x =
∫

ρ<ρ0

[
f 2

(
ρ√
u

)
−k2ρ

2

u
−k4ρ

4

u2

](
	(0)

x − y

ρ2

)
y

ρ2
dx dy

+
∫

ρ<ρ0

[
f 2

(
ρ√
u

)
− k2ρ

2

u

]
	(1)

x

u

y

ρ2
dx dy

+
∫

ρ<ρ0

f 2

(
ρ√
u

)
Rx

y

ρ2
dx dy. (B12)
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One can easily prove that

	(0)
x = y

ρ2
+ 1

k2ρ2

(
∂2

∂y2
+ s

∂2

∂x2

)
y

ρ2
+ O(ρ−9), (B13)

k4ρ
4

(
	(0)

x − y

ρ2

)
+ k2ρ

2	(1)
x = O(ρ−5). (B14)

From Eqs. (B13), (B14), and (B8), we can see that all integrals
in Eq. (B12) are of the order ρ2

0/u3. Thus, |I3x | � u−2, so it
can be neglected. Also, we can integrate in Eqs. (B10) and
(B11) over the whole xy plane since∣∣I ′

0x + I ′
1x − I1x(s)

∣∣ � u−1, (B15)∣∣I ′
2x − I2x(s)

∣∣ � 1, (B16)

Finally, taking into account Eqs. (B1), (B5), and (B9), we
obtain Eq. (24).

APPENDIX C

In this Appendix, we consider in detail the derivation of
Eqs. (33) and (34). We will present here the calculations for
the ηy component since the calculations for the ηx component
are less complicated. First, we rewrite Eq. (15) in the form

s
∂2	y

∂x2
− u2	y + x

ρ2
f 2(ρ)

= −∂2	y

∂y2
− u2	y[1 − f 2(ρ)]. (C1)

The index “1” is omitted. It will be proved below that the terms
in the right-hand side of Eq. (C1) give a small contribution to
the viscosity, so they can be neglected. Then, the solution of
Eq. (C1) has the form

	y ≈ 	y0 =
∫ +∞

−∞

x ′f 2(ρ ′)
x ′2 + y2

exp(−u
∣∣x − x ′∣∣ /√s)

2u
√

s
dx ′,

(C2)

where ρ ′ =
√

x ′2 + y2. Consider a quantity y0 in the range
1 � y0 � √

s/u (for example, y0 = s1/4/u1/2). We divide the
integral in Eq. (8) into three parts:

ηy = −2
|a|
b

γh̄

[∫
|y|<y0

f 2(ρ)
x

ρ2
u2	y dx dy

−
∫

|y|<y0

f 2(ρ)
x2

ρ4
dx dy

]

− 4
|a|
b

γh̄

∫
y>y0

f 2(ρ)
x

ρ2

(
u2	y − x

ρ2

)
dx dy. (C3)

Using the inequality

f 2(ρ) <
ρ2

A1 + ρ2
, (C4)

where A1 is some constant, we can estimate the first integral∣∣∣∣
∫

|y|<y0

f 2(ρ)
x

ρ2
u2	y dx dy

∣∣∣∣ � const
y0u√

s

(
ln

√
s

u

)2

� 1.

(C5)

Here and further, “const” denotes a constant independent of
any parameters. The second term in Eq. (C3) has the following

asymptotics when y0 � 1:∫
|y|<y0

f 2(ρ)
x2

ρ4
dx dy ≈ π ln y0 + Cy. (C6)

The constant Cy will be evaluated below. The third integral in
Eq. (C3) can be simplified if we take into account that ρ > y0,
ρ ′ > y0, and y0 � 1, so we can substitute unity instead of f 2:∫

y>y0

f 2(ρ)
x

ρ2

(
u2	y − x

ρ2

)
dx dy

≈
∫ ∞

y0

(
πu√

s

∫ +∞

−∞

y exp
( − u|x|√

s

)
x2 + 4y2

dx − π

2y

)
dy

= π

2

∫ ∞

0
dx

∫ ∞

y0

dy

(
4y

sx2/u2 + 4y2
− 1

y

)
e−x

≈ −π

4

∫ ∞

0
ln

sx2

4y2
0u2

e−xdx = π

2
ln y0 − π

4
ln

s

4u2
+π

2
C,

(C7)

where C is the Euler constant:

C = −
∫ ∞

0
ln x e−xdx ≈ 0.577.

Using (C3)–(C7), we obtain

ηy = 2πh̄γ
|a|
b

(
1

2
ln

s

4u2
+ Cy

π
− C

)
. (C8)

The component ηx can be calculated in a similar way:

ηx = 2πh̄γ
|a|
b

(
1

2
ln

s

4u2
+ Cx

π
− C

)
, (C9)

Cx = lim
y0→∞

(∫
|y|<y0

f 2(ρ)
y2

ρ4
dx dy − π ln y0

)
. (C10)

Now, we evaluate Cx and Cy . Here, the constant g′
4 from

Ref. 7 will be useful:

g′
4 =

∫ ∞

0

[
f 2(ρ) − ρ2

1 + ρ2

]
ρ−1dρ = −0.3982. (C11)

It is easy to check that

Cx = πg′
4 + lim

y0→∞

∫
|y|<y0,ρ>y0

y2ρ−4 dx dy = π

(
g′

4 + ln 2 − 1

2

)
.

Similarly,

Cy = π
(
g′

4 + ln 2 + 1
2

)
.

Finally, the components of the viscous drag tensor take the
form

ηx = 2πh̄γ
|a|
b

(
ln

√
s

u
+ g′

4 − C − 1

2

)
, (C12)

ηy = 2πh̄γ
|a|
b

(
ln

√
s

u
+ g′

4 − C + 1

2

)
. (C13)

If we substitute C and g′
4 with their numerical values, we obtain

Eqs. (33) and (34).
Now, it is necessary to prove our assumption concerning

the right-hand side of Eq. (C1). Consider it as a perturbation.
The first-order correction to the approximate solution 	y0 has

174502-9
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the form

	y1 = R(1)
y + R(2)

y ,

R(1)
y =

∫ +∞

−∞

u	y0(x ′,y)[1 − f 2(ρ ′)]
2
√

s
exp

(
−u

∣∣x − x ′∣∣
√

s

)
dx ′,

(C14)

R(2)
y = 1

2u
√

s

∫ +∞

−∞

∂2	y0

∂y2
(x ′,y) exp

(
−u

∣∣x − x ′∣∣
√

s

)
dx ′.

(C15)
The contribution of 	y1 to ηy is equal to

�ηy = −2
|a|
b

γh̄
(
I (1)
y + I (2)

y

)
,

where

I (1)
y =

∫
f 2(ρ)

x

ρ2
u2R(1)

y dx dy, (C16)

I (2)
y =

∫
f 2(ρ)

x

ρ2
u2R(2)

y dx dy. (C17)

We will show that |I (1)
y | � 1 and |I (2)

y | � 1 when s � u2.
A simple estimate for |	y0| can be obtained with the help

of (C4):

|	y0| � const
ln

√
s

u

u
√

s
. (C18)

Using the inequality

ρ2

A2 + ρ2
< f 2(ρ)

and Eq. (C18), we can estimate I (1)
y :

∣∣I (1)
y

∣∣ � const
u√
s

ln

√
s

u
� 1.

For all x ′ and y, we can write∣∣∣∣ ∂2

∂y2

(
1

x ′2 + y2
f 2(ρ ′)

)∣∣∣∣ � const

(A3 + x ′2 + y2)2
,

whence

∣∣I (2)
y

∣∣ � const

s

∫ |x| exp
(− u|x−x ′ |√

s

)
exp

(− u|x ′′−x ′ |√
s

)
(A3 + x ′′2)(A1 + x2)

dx ′dx ′′dx

� const

s
ln

√
s

u

∫ exp
(
− u|x ′′−x ′ |√

s

)
x ′′2 + A3

dx ′dx ′′

� const√
su

ln

√
s

u
� 1

when u � 1.
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