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Let G be a simple, undirected graph with vertex set V . For v ∈ V and r ≥ 1, we denote by B G,r (v) the ball of radius r and centre v. A set C ⊆ V is said to be an r-identifying code in G if the sets B G,r (v) ∩ C, v ∈ V , are all nonempty and distinct. A graph G admitting an ridentifying code is called r-twin-free, and in this case the size of a smallest r-identifying code in G is denoted by γ r (G).

We study the following structural problem: let G be an r-twin-free graph, and G * be a graph obtained from G by adding or deleting a vertex, or by adding or deleting an edge. If G * is still r-twin-free, we compare the behaviours of γ r (G) and γ r (G * ), establishing results on their possible differences and ratios.

Introduction

We introduce basic definitions and notation for graphs, for which we refer to, e.g., [START_REF] Berge | English translation: Graphs[END_REF] and [START_REF] Diestel | Graph Theory[END_REF], and for identifying codes (see [START_REF] Karpovsky | On a new class of codes for identifying vertices in graphs[END_REF] and the bibliography at [START_REF] Lobstein | A bibliography on watching systems, identifying, locating-dominating and discriminating codes in graphs[END_REF]).

We shall denote by G = (V, E) a simple, undirected graph with vertex set V and edge set E, where an edge between x ∈ V and y ∈ V is indifferently denoted by {x, y}, {y, x}, xy or yx. The order of a graph is its number of vertices |V |.

A path P n = x 1 x 2 . . . x n is a sequence of n distinct vertices x i , 1 ≤ i ≤ n, such that x i x i+1 is an edge for i ∈ {1, 2, . . . , n -1}. The length of P n is its number of edges, n -1. A cycle C n = x 1 x 2 . . . x n is a sequence of n distinct vertices x i , 1 ≤ i ≤ n, where x i x i+1 is an edge for i ∈ {1, 2, . . . , n -1}, and x n x 1 is also an edge; its length is n.

A graph G is called connected if for any two vertices x and y, there is a path between them. It is called disconnected otherwise. In a connected graph G, we can define the distance between any two vertices x and y, denoted by d G (x, y), as the length of any shortest path between x and y, since such a path exists. This definition can be extended to disconnected graphs, using the convention that d G (x, y) = +∞ if there is no path between x and y.

For any vertex v ∈ V and integer r ≥ 1, the ball of radius r and centre v, denoted by B G,r (v), is the set of vertices within distance r from v:

B G,r (v) = {x ∈ V : d G (v, x) ≤ r}.
Two vertices x and y such that B G,r (x) = B G,r (y) are called (G, r)-twins; if G has no (G, r)-twins, that is, if ∀x, y ∈ V with x = y, B G,r (x) = B G,r (y), then we say that G is r-twin-free.

Whenever two vertices x and y are within distance r from each other in G, i.e., x ∈ B G,r (y) and y ∈ B G,r (x), we say that x and y r-cover each other. When three vertices x, y, z are such that x ∈ B G,r (z) and y / ∈ B G,r (z), we say that z r-separates x and y in G. A set is said to r-separate x and y in G if it contains at least one vertex which does.

A code C is simply a subset of V , and its elements are called codewords. For each vertex v ∈ V , the r-identifying set of v, with respect to C, is the set of codewords r-covering v, and is denoted by I G,C,r (v):

I G,C,r (v) = B G,r (v) ∩ C.
We say that C is an r-identifying code [START_REF] Karpovsky | On a new class of codes for identifying vertices in graphs[END_REF] if all the sets I G,C,r (v), v ∈ V , are nonempty and distinct: in other words, every vertex is r-covered by at least one codeword, and every pair of vertices is r-separated by at least one codeword.

It is quite easy to observe that a graph G admits an r-identifying code if and only if G is r-twin-free; this is why r-twin-free graphs are also sometimes called r-identifiable.

When G is r-twin-free, we denote by γ r (G) the cardinality of a smallest r-identifying code in G. The search for the smallest r-identifying code in given graphs or families of graphs is an important part of the studies devoted to identifying codes.

In this preprint and the forthcoming [START_REF] Charon | Minimum sizes of identifying codes in graphs differing by one edge[END_REF] and [START_REF] Charon | Minimum sizes of identifying codes in graphs differing by one vertex[END_REF], we are interested in the following issue: let G be an r-twin-free graph, and G * be a graph obtained from G by adding or deleting one vertex, or by adding or deleting one edge. Now, if G * is still r-twin-free, what can be said about γ r (G) compared to γ r (G * )? More specifically, we shall study their difference and, when appropriate, their ratio, γ r (G)γ r (G * ) and γ r (G) γ r (G * ) , as functions of the order of the graph G, and r.

Note that a partial answer to the issue of knowing the conditions for which an r-twin-free graph remains so when one vertex is removed was given in [START_REF] Charon | Structural properties of twin-free graphs[END_REF] and [START_REF] Charon | On the structure of identifiable graphs[END_REF]: any 1-twin-free graph with at least four vertices always possesses at least one vertex whose deletion leaves the graph 1-twin-free; for any r ≥ 1, any r-twin-free tree with at least 2r + 2 vertices always possesses at least one vertex whose deletion leaves the graph r-twin-free; on the other hand, for any r ≥ 3, there exist r-twin-free graphs such that the deletion of any vertex makes the graph not r-twin-free. The case r = 2 remains open.

Of what interest this study is, can be illustrated by the watching of a museum: we place ourselves in the case r = 1 and assume that we have to protect a museum, or any other type of premises, using smoke detectors. The museum can be viewed as a graph, where the vertices represent the rooms, and the edges, the doors or corridors between rooms. The detectors are located in some of the rooms and give the alarm whenever there is smoke in their room or in one of the adjacent rooms. If there is smoke in one room and if the detectors are located in rooms corresponding to a 1-identifying code, then, only by knowing which detectors gave the alarm, we can identify the room where someone is smoking.

Of course we want to use as few detectors as possible. Now, what are the consequences, beneficial or not, of closing or opening one room or one door? This is exactly the object of our investigation, in the more general case when r can take values other than 1.

In the conclusion of [START_REF] Roberts | Locating sensors in paths and cycles: the case of 2-identifying codes[END_REF], it is already observed, somewhat paradoxically, that a cycle with one vertex less can require more codewords/detectors. We shall exhibit examples of large variations for the minimum size of an identifying code.

A related issue is that of t-edge-robust identifying codes, which remain identifying when at most t edges are added or deleted, in any possible way; see, e.g., [START_REF] Honkala | An optimal edge-robust identifying code in the triangular lattice[END_REF]- [START_REF] Honkala | On identifying codes that are robust against edge changes[END_REF], [START_REF] Laihonen | Optimal t-edge-robust r-identifying codes in the king lattice[END_REF] or [START_REF] Laihonen | On edge-robust (1, ≤ ℓ)-identifying codes in binary Hamming spaces[END_REF].

Let us mention that in the sequel, we shall consider two cases, (i) both graphs G ands G * are connected, (ii) the graph with one edge less or one vertex less may be disconnected, and observe one significant difference in our results for vertex addition/deletion, whereas our constructions can always be made such that (i) holds when edge addition/deletion is concerned.

Before we proceed, we still need some additional definitions and notation, and we also give three lemmata which, although very easy, will prove useful in the sequel, even implicitly.

When we delete the edge e ∈ E in a graph G = (V, E), we denote the resulting subgraph by G e = G \ e = (V, E e ). For a vertex v ∈ V , we denote by G v or G \ v the graph with vertex set V ′ and edge set E ′ , where

V ′ = V \ {v}, E ′ = {xy ∈ E : x ∈ V ′ , y ∈ V ′ }.
If G = (V, E) is a graph and S is a subset of V , we say that two vertices x ∈ V and y ∈ V are (G, S, r)-twins if

I G,S,r (x) = I G,S,r (y).
In other words, x and y are not r-separated by S in G. By definition, if C is r-identifying in G, then no (G, C, r)-twins exist.

Lemma 1 [(G, S, r)-twin transitivity] In a graph G = (V, E), if x, y, z are three distinct vertices, if S is a subset of V , if x and y are (G, S, r)-twins and if y and z are (G, S, r)-twins, then x and z are (G, S, r)-twins. E) is 1-twin-free and contains a vertex v which is linked to all the other vertices, then there is an optimal 1-identifying code C not containing v.

△ Lemma 2 If C is an r-identifying code in a graph G = (V, E), then so is any set S such that C ⊆ S ⊆ V. △ Lemma 3 If a graph G = (V,
Proof. Assume that an optimal 1-identifying code C contains v. Since v cannot 1-separate any pair of vertices in G, its only purpose as a codeword is to 1-cover some vertices not 1-covered by any other codeword; because these vertices are 1-separated by C, only one of them, which we denote by x, can be such that I G,C,1 (x) = {v}. Then C \ {v} ∪ {x} is also optimal and 1-identifying. △

Part I: Addition and deletion of one vertex

We present our main results in the following way. In Section 3 we consider the case r = 1: we study how large γ 1 (G x )γ 1 (G) and γ 1 (G x )/γ 1 (G) can be (Proposition 4), then Theorem 5 states exactly how small the difference can be (namely, -1).

In Section 4, we study how large the difference γ r (G x )γ r (G) can be, in the following three cases: (i) r ≥ 2, r is even and the graphs are connected (Proposition 9); (ii) r ≥ 3, r is odd and the graphs are connected (Proposition 11); (iii) r ≥ 2 and the graph G x is disconnected (Proposition 13). Then we consider how large the ratio γ r (G x )/γ r (G) can be (Proposition 15), and it so happens that the graphs we use are connected.

Finally, we study how small γ r (G x )γ r (G) can be for any r ≥ 2 (Proposition 17) and how small γ r (G x )/γ r (G) can be for any r ≥ 2 (Proposition 18), and again it so happens that the graphs we use are connected.

In these sections, the number n represents the order of either G or G x , or an approximation. A general conclusion recapitulates our results in a Table .   3 The case r = 1

Note that we obtain the following result with connected graphs: we found no better with disconnected graphs. Proposition 4 Let k ≥ 1 be an arbitrary integer. There exist two (connected) 1-twin-free graphs G and G x , where G has 2k + ⌈log 2 (k + 1)⌉ + 2 vertices, such that γ 1 (G) ≤ ⌈log 2 (k + 1)⌉ + 2 and γ 1 (G x ) ≥ k.

Proof. We put the cart before the horse and, before defining G, we describe G x (see Figure 4 with r = 1): we begin by choosing k vertices x 1 , . . . , x k , none of them adjacent with each other, and then build a graph G x with a "small" 1-identifying code in the following way: we take s = ⌈log 2 (k +1)⌉+1 auxiliary vertices a 1 , . . . , a s . We first connect each x i to a 1 ; then we connect each x i to the vertices of a unique nonempty subset A i of the set A = {a 2 , . . . , a s }. The sets A i can indeed be chosen in this way, because there are 2 s-1 -1 nonempty subsets of A, and s-1 = ⌈log 2 (k +1)⌉. Without loss of generality, we can choose the sets A i in such a way that the graph constructed so far is connected.

Clearly the auxiliary vertices form a 1-identifying code in this graph: the 1-identifying set of each auxiliary vertex is a singleton consisting of the vertex itself; and for all the vertices x i , the 1-identifying set contains a 1 and at least one more vertex, and no two of these sets are the same by the construction.

As the next step, we take another set of k vertices, y 1 , . . . , y k , none of them adjacent with each other, and each y i connected to exactly the same auxiliary vertices a j as x i . In this new graph G x , which is connected, every 1-identifying code must contain at least one of the vertices x i and y i for each i: otherwise we cannot 1-separate between x i and its "copy" y i . But certainly if for each i we take at least one of x i and y i into the code and take all the auxiliary vertices a j into the code, then the code is 1-identifying, and G x is 1-twin-free. All in all, for this graph G x , the smallest 1-identifying code has size at least k.

However, if we add one more vertex x, and connect it to each x i (but not to any y i nor any a j ), then in the resulting graph G the set consisting of x and all the auxiliary vertices a j is a 1-identifying code.

Therefore, γ 1 (G) ≤ ⌈log 2 (k + 1)⌉ + 2 and γ 1 (G x ) ≥ k. △

Remark. The difference γ 1 (G x )γ 1 (G) and ratio γ 1 (G x )/γ 1 (G) can be made arbitrarily large:

γ 1 (G x ) -γ 1 (G) ≥ k -⌈log 2 (k + 1)⌉ -2, (1) 
γ 1 (G x ) γ 1 (G) ≥ k ⌈log 2 (k + 1)⌉ + 2 . ( 2 
)
In terms of n = 2k + ⌈log 2 (k + 1)⌉, which is the approximate order of G and G x , we can approximate these two lower bounds by n 2 -3 2 log 2 n and n 2 log 2 n , respectively.

An open question is whether these difference or ratio can be made substantially larger.

Theorem 5 Let G = (V, E) be any 1-twin-free graph with at least three vertices. For any vertex x ∈ V such that G x is 1-twin-free, we have:

γ 1 (G x ) ≥ γ 1 (G) -1. (3) 
Proof. Cf. [START_REF] Foucaud | Extremal graphs for the identifying code problem[END_REF]Prop. 3]. For completeness, we still give a proof. Let x ∈ V be such that G x is 1-twin-free. Let C x be a minimum 1-identifying code in G x : |C x | = γ 1 (G x ). There are two cases: either (a)

x is not 1-covered (in G) by any codeword of C x , or (b) x is 1-covered (in G) by at least one codeword of C x . (a) In this case, let C = C x ∪ {x}. Then C is clearly 1-identifying in G (in particular, thanks to Lemma 2); therefore, γ 1 (G) ≤ γ 1 (G x ) + 1. (b) x is 1-covered by y ∈ C x . If C x is 1-identifying in G, then γ 1 (G) ≤ γ 1 (G x
), and we are done. So we assume that C x is not 1-identifying in G. This means that either (i) at least one vertex in G is not 1-covered by C x , or (ii) at least two vertices in G are not 1-separated by C x .

(i) Since C x 1-covers any vertex in G x and x is linked to y ∈ C x , this case is impossible.

(ii) Let u, v ∈ V be two distinct vertices which are not 1-separated by C x . One of them is necessarily x, and without loss of generality, we assume that x = u. Now, v is unique by Lemma 1: C x is not 1-identifying in G only because one pair of vertices, x and v, is not 1-separated by C x .

Since G is 1-twin-free, there is a vertex z which 1-covers exactly one of the vertices v and x. We set C = C x ∪ {z}, and we obtain a 1-identifying code in G, so

γ 1 (G) ≤ γ 1 (G x ) + 1. △ Corollary 6 If γ 1 (G x ) ≤ a and γ 1 (G) ≥ a + 1, then γ 1 (G x ) = a and γ 1 (G) = a + 1. △
Note that we made no assumption on the connectivity of G or G x . Examples where

γ 1 (G x ) = γ 1 (G) -1, or γ 1 (G x ) = γ 1 (G)
, are numerous and easy to find.

Conclusion 7

Provided that the graphs considered are 1-twin-free, we can see, using Proposition 4 and Theorem 5, that γ 1 (G x )γ 1 (G) cannot be smaller than -1, but examples exist where it can be as large as, approximately, n 2 -3 2 log 2 n, and where the ratio γ 1 (G x ) γ 1 (G) can be as large as, approximately, n 2 log 2 n . This can even be obtained with connected examples.

4 The case r ≥ 2

Things are different for r ≥ 2, since we can exhibit pairs of graphs (G, G x ) proving that γ r (G x )γ r (G) and γ r (G x )/γ r (G) can be arbitrarily large or small. We first give a result with γ r (G x )γ r (G) arbitrarily large. We start with connected graphs, and have two subcases, r even and r odd. In both cases, we shall use the following result on cycles of even length.

Theorem 8 [START_REF] Bertrand | LOBSTEIN: Identifying and locating-dominating codes on chains and cycles[END_REF] For all r ≥ 1 and for all even n, n ≥ 2r + 4, we have:

γ r (C n ) = n 2 . △ • (i) Case of a connected graph G x and r ≥ 2,

r even

Proposition 9 There exist two (connected) r-twin-free graphs G and G x , with n + 1 and n vertices respectively, such that Remark preceding the proof. The lower bound (4) is equivalent to n/4 when n increases with respect to r. An open question is whether this can be improved. The lower bound ( 5) is equivalent to 2, but will be strongly improved in Proposition 15.

γ r (G x ) -γ r (G) ≥ n 4 -(r + 1), (4) 
γ r (G x ) γ r (G) ≥ 2n n + 4r + 4 . ( 5 
Proof of Proposition 9. Let r ≥ 2 be an even integer, and n be an (even) integer such that n = k • 2r, k ≥ 2; let G x = C n = x 1 x 2 . . . x n be the cycle of length n and G be the graph obtained from G x by adding the vertex x and linking it to the k vertices x j•2r , 1 ≤ j ≤ k. See Figure 1, which illustrates the case r = 6, k = 4, n = 48 and G has 49 vertices.

We know by Theorem 8 that γ r (G x ) = n 2 , and we claim that

γ r (G) ≤ 1 + (k + 2) n 4k = n 4 + r + 1,
from which (4) and ( 5) follow. Proving this claim, by exhibiting an ridentifying code for G, is tedious and of no special interest; therefore, we content ourselves with showing how it works in the case r = 6, n = 48, hoping that this will help the reader to gain an insight into the general case. We consider a first set Let us consider the first three pairs, {x 48 , x 1 }, {x 2 , x 3 }, {x 4 , x 5 }. Using edges going through x, they can be 6-separated, for instance, by the vertices x 16 , x 14 and x 12 (see the large black circles), and these three vertices also 6separate the other pairs of (G, S, 6)-twins, except for {x 12 , x 13 }, {x 14 , x 15 }, {x 16 , x 17 }. These three pairs can however be 6-separated by three more codewords, for instance x 4 , x 2 and x 48 , see the black squares in Figure 1. Now the code C = S ∪ {x 12 , x 14 , x 16 , x 48 , x 2 , x 4 } is 6-identifying in G and has 1 + (4 × 3) + (2 × 3) = 19 codewords. In the general case,

S = {x, x 1 , x 3 , x 5 , x
S = {x} ∪ {x 1+j•2r , x 3+j•2r , . . . , x r-1+j•2r : 0 ≤ j ≤ k -1},
there are k × r 2 pairs of (G, S, r)-twins, and C can be chosen, for instance, as

C = S ∪ {x n , x 2 , . . . , x r-2 } ∪ {x 2r , x 2r+2 , . . . , x 2r+(r-2) }, which shows that the cardinality of C is 1 + (k × r 2 ) + (2 × r 2 ) = 1 + (k + 2) n 4k ,
and so γ r (G)

≤ 1 + (k + 2) n 4k . △ Conclusion 10
When r is even, Proposition 9 gives pairs of connected graphs proving that γ r (G x )γ r (G) can be, asymptotically, as large as approximately n 4 .

• (ii) Case of a connected graph G x and r ≥ 3, r odd Proposition 11 There exist two (connected) r-twin-free graphs G and G x , with n + 1 and n vertices respectively, such that

γ r (G x ) -γ r (G) ≥ n(3r -1) 12r -r, (6) 
γ r (G x ) γ r (G) ≥ 6nr n(3r + 1) + 12r 2 . ( 7 
)
Remark preceding the proof. An open question is whether the first lower bound, which is equivalent to n(3r-1)

12r
when r is fixed and n goes to infinity, can be improved. The second lower bound, equivalent to 6r 3r+1 , will be improved in Proposition 15.

Proof of Proposition 11. Let r ≥ 3 be an odd integer, and n be an (even) integer such that n = k • 2r, where k ≥ 3 is a multiple of 3; let G x = C n = x 1 x 2 . . . x n be the cycle of length n and G be the graph obtained from G x by adding the vertex x and linking it to the k vertices x j•2r , 1 ≤ j ≤ k. See Figure 2, which illustrates the case r = 5, k = 6, n = 60 and G has 61 vertices. We know by Theorem 8 that γ r (G x ) = n 2 , and we claim that

γ r (G) ≤ n 4 + n 12r + r,
from which ( 6) and ( 7) follow. Again, proving this claim is of no interest here, and we just show how it works in the case r = 5, n = 60. We consider a first set

S = {x, x 1 , x 3 , x 11 , x 13 , x 21 , x 23 , x 31 , x 33 , x 41 , x 43 , x 51 , x 53 },
see the small black circles in Figure 2. It is straightforward to see that only the following sets of (G, S, 5)-twins exist:

• (i) {x, x 10 , x 20 , x 30 , x 40 , x 50 , x 60 }, • (ii) {x 59 , x 1 , x 2 } together with the five symmetrical sets {x 9 , x 11 , x 12 }, . . .,

• (iii) {x 3 , x 4 } together with the five symmetrical sets {x 13 , x 14 }, . . . The first two cases are annoying and will be "expensive" because they present symmetries with respect to x. Define the set T as follows:

T = S ∪ {x 5 , x 15 , x 35 , x 45 },
see the large black circles in Figure 2. Now in Case (i), all the vertices are 5-separated by the vertices in T \ S, and so are x 59 on the one hand and x 1 , x 2 on the other hand, as well as their symmetrical counterparts from Case (ii). The remaining pairs of (G, T , 5)-twins are {x 1 , x 2 }, {x 3 , x 4 } and the 10 pairs obtained by symmetry. As in the proof of Proposition 9, these handle very economically: the vertex x 60 5-separates the 5 pairs {x 13 , x 14 }, . . . , {x 53 , x 54 }, and so does x 2 for {x 11 , x 12 }, . . . , {x 51 , x 52 }; finally, {x 1 , x 2 } and {x 3 , x 4 } can be 5-separated, for instance, by x 10 and x 12 , see the black squares in Figure 2:

C = T ∪ {x 60 , x 2 , x 10 , x 12 } is a 5-identifying code in G and has 1 + (6 × 2) + (4 × 1) + (2 × 2) = 21
codewords. In the general case,

S = {x} ∪ {x 1+j•2r , x 3+j•2r , . . . , x r-2+j•2r : 0 ≤ j ≤ k -1} contains 1 + (k × r-1 2 ) vertices; then T = S ∪ {x r+j•2r : 0 ≤ j ≤ k -1, j not congruent to 2 modulo 3} contains |S| + 2k
3 elements, and finally we take

C = T ∪ {x n , x 2 , . . . , x r-3 } ∪ {x 2r , x 2r+2 , . . . , x 2r+(r-3) }, which shows that γ r (G) ≤ 1 + (k × r -1 2 ) + 2k 3 + (2 × r -1 2 ) = n 4 + n 12r + r.

△ Conclusion 12

When r ≥ 3 and r is odd, Proposition 11 gives pairs of connected graphs proving that γ r (G x )γ r (G) can be, asymptotically, as large as approximately n(3r-1) 12r .

If we do not require to consider a connected graph G x , then we can obtain a larger difference or ratio than in ( 4)-( 7), we need consider only one case, whatever the parity of r is, and moreover the construction is easy to understand; see next paragraph.

• (iii) Case of a disconnected graph G x and r ≥ 2, r even or odd Proposition 13 There exist two graphs G and G x , with p(2r + 1) + 1 and n = p(2r + 1) vertices respectively, such that

γ r (G x ) -γ r (G) ≥ n(2r -2) 2r + 1 -2r, (8) 
γ r (G x ) γ r (G) ≥ nr n + 4r 2 + 2r . ( 9 
)
Remark preceding the proof. Can the first lower bound, equivalent to

n(2r-2)
2r+1 , be improved? The second bound, equivalent to r, is still improved in Proposition 15.

Proof of Proposition 13. Let r ≥ 2 and p ≥ 3 be integers; the graph G x consists of p copies of the path P 2r+1 , and G is obtained by adding the vertex x and linking it to all the middle vertices of the path copies, see Figure 3. We claim that: (a) γ r (G x ) = 2pr and (b) γ r (G) ≤ 2p + 2r, from which (8) and ( 9) follow. Proof of (a). The result comes from the obvious fact that γ r (P 2r+1 ) = 2r. Proof of (b). It is not difficult to check that

C = {x} ∪ {v i,1 , v i,2r+1 : 1 ≤ i ≤ p -1} ∪ {v p,j : 1 ≤ j ≤ 2r + 1}
(see the black circles in Figure 3) is indeed r-identifying in G. Note however that, for simplicity, we chose to give the bound 2p + 2r, when actually, with a little more care, 2p + 2r -3 can be reached, which would improve only slightly on (8) and [START_REF] Charon | Possible cardinalities for identifying codes in graphs[END_REF]. △ Conclusion 14 Proposition 13 gives pairs of graphs (G, G x ), where G x is not connected, proving that γ r (G x )γ r (G) can be, asymptotically, as large as approximately n(2r-2) 2r+1 . Finally, we give a construction (obtained with connected graphs) with a ratio γ r (G x )/γ r (G) arbitrarily large, but where the difference γ r (G x )γ r (G) is not as large as in ( 4) and [START_REF] Charon | Minimum sizes of identifying codes in graphs differing by one vertex[END_REF].

Proposition 15 Let k ≥ 2 be an arbitrary integer. There exist two (connected) r-twin-free graphs G and G x , where G has 2rk +r⌈log 2 (k +1)⌉+r +1 vertices, such that

γ r (G x ) γ r (G) ≥ k r⌈log 2 (k + 1)⌉ + r + 1 . ( 10 
)
Proof. The construction is a straigthforward generalization to any r ≥ 2 of the one used in the proof of Proposition 4, see Figure 4; the basic idea is similar, but the implementation becomes somewhat more involved. We consider, for each i between 1 and k, the paths x i (1)x i (2) . . . x i (r), and y i (1)y i (2) . . . y i (r). We need also some auxiliary vertices. Denoting again s = ⌈log 2 (k + 1)⌉ + 1, for each j = 1, 2, . . . , s, we consider the path a j (1)a j (2) . . . a j (r); we denote the set of these sr auxiliary vertices by A. We say that the vertices x i (-h), y i (-h) and a j (h) are on the h-th level (cf. Figure 4).

We now imitate the proof of Proposition 4, and for each i ∈ {1, . . . , k} choose a unique nonempty subset A i of the set {a 2 (1), . . . , a s (1)} and connect x i (1) and y i (1) by an edge to the vertices a j (1) for which j ∈ {1} ∪ A i .

In the resulting graph G x , we first take all the vertices in A as codewords. Then we observe that for an arbitrary, unknown vertex v,

• B r (v) contains at least two vertices a j (r) if v is on the level -1;

• B r (v) does not contain any vertices a j (r) if v is on the h-th level for some h ≤ -2; and

• B r (v) contains exactly one a j (r) if v ∈ A.
From the last case we see that we can uniquely tell whether or not v ∈ A simply by looking which vertices of A are in B r (v). We can in fact do even more: if j is the only index for which a j (r) is in B r (v), then v is one of the vertices a j (h) for some h = 1, 2, . . . , r. We know that a j (1) is connected to at least one x i (1) (as we chose s to be as small as possible) and x i (1) is connected to at least one a j ′ (1) with j ′ = j. Then exactly rh of the vertices a j ′ (1), . . . , a j ′ (r) are in B r (v), and this uniquely identifies v.

Assume now that we already know that v / ∈ A. Let h be the highest level for which some a j (h) belongs to B r (v). Then v must be one of the vertices x i (r + 1h) or y i (r + 1h), and moreover, we can uniquely tell i by looking at the indices j for which a j (h) belong to B r (v), because by the construction {j : a j (h) ∈ B r (v)} = {1} ∪ A i (as we can only reach these vertices from v by going from v to x i (1) or y i (1) and from it directly to those a j (1) to which x i (1) or y i (1) was connected to by an edge).

In conclusion, by only looking at which auxiliary vertices are in B r (v) we can "almost" identify v: we find indices i and m such that v is either x i (m) or y i (m). This implies that the graph is clearly r-twin-free. Indeed, if all the vertices are in the code, then the only remaining task, i.e., separating each x i (m) from y i (m), becomes easy:

if x i (r) is in B r (v) then v = x i (m); if not then v = y i (m).
Moreover, every r-identifying code must contain at least one element of the set {x i (1), x i (2), . . . , x i (r), y i (1), y i (2), . . . , y i (r)}: otherwise we cannot r-separate x i (1) and y i (1). Consequently, any r-identifying code in this graph has size at least k.

We now add one more vertex x, and connect it by an edge to each x i (r). We claim that the vertex x together with all the vertices in A form an r-identifying code. By the construction, the set B r (v), v = x, contains exactly the same vertices of A as before adding the vertex x (and the set B r (x) contains none), so the only thing to check is that x i (m) and y i (m) can now be r-separated: but this is indeed done by x. △

Remark. In terms of n = 2rk + r⌈log 2 (k + 1)⌉, the lower bound [START_REF] Charon | Extremal cardinalities for identifying and locating-dominating codes in graphs[END_REF] Then we turn to examples where γ r (G)γ r (G x ) is arbitrarily large. Note that we obtain this result with connected graphs.

Proposition 17 There exist two (connected) r-twin-free graphs G x and G, with n = pr + 1 and pr + 2 vertices respectively, such that

γ r (G x ) = p + 2r -3 = n + 2r 2 -3r -1 r and γ r (G) = r(p -1) + 1 = n -r,
where p is any integer greater than or equal to 3.

Proof. Let r ≥ 2 and p ≥ 3 be integers; before defining G, we describe G x in the following informal way, illustrated in Figure 5(a): G x consists of p copies of the path P r , and in each copy the last vertex is linked to v. This graph has n = pr + 1 vertices. Next, we construct the graph G consisting of G x to which we add one vertex x, linked to each first vertex of all the 13) and ( 14) follow.

Proof of (a). The code

C = {v 1,i : 2 ≤ i ≤ r} ∪ {v 2,i : 1 ≤ i ≤ r} ∪ {v j,1 : 3 ≤ j ≤ p},
i.e., the code consisting of all the vertices of the first two copies of P r , except v 1,1 , and the first vertex of each of the following copies, is r-identifying in G x ; this it is straightforward to check. So γ r (G x ) ≤ (r -1) + r + (p -2) = p + 2r -3. We now prove that γ r (G x ) ≥ p + 2r -3. The following two observations will be useful. For 1 ≤ i ≤ p and 2 ≤ k ≤ r, we have:

B G x ,r (v i,r-k+1 )∆B G x ,r (v i,r-k+2 ) = {v j,k : 1 ≤ j ≤ p, j = i}, (11) 
where ∆ stands for the symmetric difference, and for 1 ≤ i < j ≤ p:

B G x ,r (v i,r )∆B G x ,r (v j,r ) = {v i,1 , v j,1 }. (12) 
The consequences are immediate. First, in order to have the vertices v i,r , 1 ≤ i ≤ p, pairwise r-separated in G x , we see by [START_REF] Diestel | Graph Theory[END_REF] that we need at least p -1 codewords among the p vertices v i,1 ; second, for k fixed between 2 and r, we see, using [START_REF] Chen | Identifying codes and locatingdominating sets on paths and cycles[END_REF], that we need at least two codewords among the p vertices v i,k . So γ r (G x ) ≥ (p -1) + 2(r -1) = p + 2r -3, and Claim (a) is proved. Proof of (b). Note that in G, for i and j such that 1 ≤ i < j ≤ p, the set of vertices

{x} ∪ {v i,k : 1 ≤ k ≤ r} ∪ {v} ∪ {v j,k : 1 ≤ k ≤ r}
forms the cycle C 2r+2 , which is r-twin-free and is denoted by C(i, j). On such a cycle, we say that the vertex z is the opposite of the vertex y if z is the (only) vertex at distance r + 1 from y.

We claim that, for k fixed between 1 and r, among the p vertices v i,k , at least p -1 of them belong to any r-identifying code C in G. Indeed, assume on the contrary that two vertices, say v 1,k and v 2,k , are not in C; then their opposite vertices in C(1, 2), v 2,r-k+1 and v 1,r-k+1 respectively, cannot be r-separated by C.

Finally, the fact that B G,r (v)∆B G,r (x) = {v, x} shows that v or x belong to C, and finally γ r (G) ≥ (p -1)r + 1. On the other hand,

{v} ∪ {v i,k : 2 ≤ i ≤ p, 1 ≤ k ≤ r} is an r-identifying code in G, with size (p -1)r + 1, thus Claim (b) is proved.
Observe that this code contains all the vertices in G, except the r+1 vertices x and v 1,k , 1 ≤ k ≤ r. △

Note that we could have contented ourselves with the inequalities γ r (G x ) ≤ p + 2r -3 and γ r (G) ≥ r(p -1) + 1, so as to obtain γ r (G)γ r (G x ) ≥ p(r -1) -3r + 4 and γ r (G) γ r (G x ) ≥ r(p-1)+1 p+2r-3 . Remark. The difference γ r (G)γ r (G x ) = p(r -1) -3r + 4 can be made arbitrarily large; in terms of n, the number of vertices of G x , we can see that we have:

γ r (G) -γ r (G x ) = (n -3r)(r -1) + 1 r , (13) 
which is equivalent to n(r-1) r when r is fixed and n goes to infinity. As far as the ratio given by Proposition 17 is concerned, we have:

γ r (G) γ r (G x ) = r(n -r) n + 2r 2 -3r -1 , (14) 
which is equivalent to r when we increase n. This can be improved, with a ratio which becomes arbitrarily large; again, it so happens that the graphs are connected:

Proposition 18 Let k ≥ 2 be an arbitrary integer. There exist two (connected) 2-twin-free graphs G and G x , where G has 3k + 2⌈log 2 (k + 2)⌉ + 4 vertices, such that

γ 2 (G) γ 2 (G x ) ≥ k 2⌈log 2 (k + 2)⌉ + 3 . ( 15 
)
Let r ≥ 3. There exist two (connected) r-twin-free graphs G and G x , where G has (r + 1)k + r⌈log 2 (k + 2)⌉ + 2r + 1 vertices, such that

γ r (G) γ r (G x ) ≥ k r⌈log 2 (k + 2)⌉ + r + 3 . (16) 
Proof. We first deal with the general case r ≥ 3. We construct the graph G for a given k ≥ 2 in the following way, see Figure 6: G consists of the paths x i (0)x(1)x(2) . . . x(r-2)x(r-1)x and y i (0)y i (1) . . . y i (r-1), for i = 1, . . . , k, of the path a 1 (1) . . . a 1 (r + 1), of the paths a j (1) . . . a j (r) for j = 2, . . . , s, where s = 1 + ⌈log 2 (k + 2)⌉, plus the edge xa 1 (1) and the following edges, joining exclusively the vertices x i (0) and y i (0) on the one hand, and the vertices a j (1) on the other hand: for each i we choose a unique nonempty proper subset A i of the set A = {2, 3, . . . , s}, and connect every x i (0) and every y i (0) to every vertex a j (1) for which j ∈ A i . Moreover, we connect every x i (0) and every y i (0) to a 1 (1). The sets A i can indeed be chosen in this way, because there are 2 s-1 -2 proper nonempty subsets of A, and s -1 = ⌈log 2 (k + 2)⌉. Without loss of generality, we can choose the sets A i in such a way that each a j (1) has degree at least two, and so the graph constructed is connected, as will be G x . We say that the vertices x(-h), x i (-h), y i (-h) and a j (h) are on the h-th level, cf. Figure 6 (and x is not given any level). Let

A = {a j (h) : 1 ≤ j ≤ s, 1 ≤ h ≤ r} ∪ {a 1 (r + 1)}.
Let us first consider G x , and let C = A ∪ {x 1 (0), x(r -1)}. We show that C is r-identifying, so that γ r (G x ) ≤ sr + 3. The argument is very similar to the first part of the proof of Proposition 15: let v be an arbitrary, unknown vertex in G x .

If v belongs to A, then v is r-covered by exactly one codeword a j (r), whereas every vertex of level 0 is r-covered by at least two codewords of level r, and no vertex with negative level is r-covered by any codeword of level r; if v ∈ A is r-covered by a j (r), we know moreover that v = a j (h) for some h between 1 and r + 1. If h < r, then h is given by the highest level ℓ of any codeword a j ′ (ℓ) r-covering a j (h), with j ′ = j (such a j ′ exists because a j (1) is connected to at least one x i (0), which in turn is connected to at least one a j ′ (1)). If j = 1 and h = r, then h is given by the fact that no codeword a j ′ (ℓ) (j ′ = j) r-covers a j (h). And if j = 1 and h ∈ {r, r + 1}, then the codeword x 1 (0) tells whether h = r or h = r + 1. This means that we can determine first that v ∈ A, then on which path and at which level it is located.

If v / ∈ A, then its level can be determined by the highest level, say ℓ, of the codewords in A which r-cover it. Then the codeword x(r -1) tells if v is of type x or y; and finally, if v = x i (0) or v = y i (h) for some h between 0 and r -1, then we can uniquely tell i by looking at the indices j for which x(r-1)

x( 1)

level 2 level -1 ... y (0) x (0) 1 level 0 a (r) 1 a (1)
Figure 6: A partial representation of the graph G in Proposition 18, in the general case r ≥ 3: more edges exist between the vertices x i (0) and y i (0) on the one hand, and the vertices a j (1) on the other hand.

a j (ℓ) ∈ B r (v), because by the construction {j : a j (ℓ) ∈ B r (v)} = {1} ∪ A i .
This ends the study of G x . We now consider the graph G, and prove that it is r-twin-free. Comparing with the previous graph G x , it is still true that every vertex in A is r-covered by exactly one vertex a j (r), whereas every vertex of level 0 is r-covered by at least two vertices of level r, and no vertex with negative level is r-covered by any vertex of level r -and note that x is r-covered by exactly one a j (r), namely a 1 (r); it is still true that no two vertices inside A are r-twins, that one vertex in A and one vertex of type y or x (except maybe x itself) are not r-twins, and that no two vertices of type y are rtwins; also, thanks to the vertices y i (r -1), no vertex of type y can be r-twin with a vertex of type x; but we have to see what happens with the vertices of type x between themselves, and with the vertex x and one vertex in A. Now x is not r-twin with any a j (h), j > 1, thanks to a j (r), and not either with any a 1 (h), thanks to a 1 (r + 1) -note in particular that a 1 (r + 1) is the only vertex r-separating x and a 1 [START_REF] Bertrand | Codes identifiants et codes localisateurs-dominateurs sur certains graphes, Mémoire de stage de maîtrise[END_REF]. Assume finally that v is of type x, v = x. If v = x i (0) for some i, the set of indices j for which a j (r) ∈ B r (v) equals {1} ∪ A i , has size at least two, and identifies v. So assume that v is not on level 0, and denote by h ∈ {1, 2, . . . , r -1} the largest level for which at least one a j (h) belongs to B r (v). If the only shortest path between v and a 1 (1) goes via x, then {j : a j (h) ∈ B r (v)} = {1}; if there is a shortest path between v and a 1 (1) that goes via one (and hence all) x i (0), then {j : a j (h) ∈ B r (v)} = {1, 2, . . . , s}: in both cases, h uniquely identifies v.

Ultimately, what is the smallest size of an r-identifying code in G? For 

G

x [START_REF] Berge | English translation: Graphs[END_REF] ...

x Figure 7: A partial representation of the graph G in Proposition 18, in the particular case r = 2: more edges exist between the vertices x i (0) and y i (0) on the one hand, and the vertices a j (1) on the other hand.

a given i between 1 and k, it is easy to see that we have:

B r (y i (0)) = B r (x i (0)) ∪ {y i (r -1)}, (17) 
where the right-hand side is a disjoint union; this shows that any r-identifying code in G contains at least k elements, and ends the case r ≥ 3. Note that if we had considered this construction for r = 2, then [START_REF] Honkala | On identifying codes that are robust against edge changes[END_REF] would not be true, since x(1) would be in B 2 (x i (0)) \ B 2 (y i (0)).

When r = 2, the previous construction does not work, as we have just seen, but the following does: the x-paths are again x i (0)x(1)x, and the y-paths are y i (0)y i (1) as before; the vertex a 1 (3) is removed, and, keeping all the edges between the vertices of level 1 in A and the vertices of level 0 as before, we add all the edges between x and the vertices of level 0; see Figure 7.

It is then rather straightforward, using the same kind of argument as in the general case, to check that C = {a j (h) : 1

≤ j ≤ s, 1 ≤ h ≤ 2} ∪ {x(1)} is 2-identifying in G x ,
that G is 2-twin-free, and that any 2-identifying code in G needs at least k codewords. △

Remark. In terms of n = (r + 1)k + r⌈log 2 (k + 2)⌉, the approximate order of G and G x , we can approximate the lower bounds in ( 15) and ( 16) by n r(r+1) log 2 n . Again, can the bounds given in ( 13), ( 15) and ( 16) be significantly improved?

Conclusion 19

When r ≥ 2, Propositions 17 and 18 provide pairs of graphs proving that γ r (G x )γ r (G) can be, asymptotically, as small as approximately -n(r-1) r , and γ r (H x ) γ r (H) can be, asymptotically, as small as approximately r(r+1) log 2 n n

, and both can even be obtained with connected examples.

20

Table 1 recapitulates the results obtained in the previous sections, using in particular the Conclusions 7, 10, 12, 14, 16 and 19; these are stated for n large with respect to r, where n is the approximate order of G or of G x ; when using X (respectively, X), we mean that we have a lower bound (respectively, an upper bound), for the difference or ratio, which is approximately X . We only consider the difference γ r (G x )γ r (G) and the ratio γ r (G x ) γ r (G) . 

r r comment γ r (G x ) -γ r (G) γ r (G x ) γ r (G) reference impossible to have < -1 r = 1 (connected)

Concl. 19

Table 1: The difference γ r (G x )γ r (G) and ratio γ r (G x ) γ r (G) , as functions of n and r.

Part II: Addition and deletion of one edge

This part is organized as follows. Section 6 is devoted to the case r = 1; here, the difference γ 1 (G e )-γ 1 (G) must lie between -2 and +2. Then in the beginning of Section 7, we study how small γ r (G e )-γ r (G) and γ r (G e )/γ r (G) can be for any r ≥ 2, and it so happens that the graphs we use are connected (Corollary 27 for r ≥ 5 and Proposition 28 for r ∈ {2, 3, 4}); finally, we study how large these difference and ratio can be, for r ≥ 3 in Corollary 29 and for r = 2 in Proposition 30 (in both cases, the graphs can be made connected).

A conclusion recapitulates our results in a Table.

6

The case r = 1

The difference γ 1 (G e )γ 1 (G) can vary only inside the set {-2, -1, 0, 1, 2} (Theorem 24), and these five values can be reached (Examples 21, 23 and 25). We first study how small γ 1 (G e )γ 1 (G) can be. Putting the cart before the horse, in the next theorem we first define G e , and only then, G.

Theorem 20

Let G e = (V, E e ) be a 1-twin-free graph with at least four vertices, let x and y be two distinct vertices in V such that e = xy / ∈ E e , and let G = (V, E) with E = E e ∪ {xy}. Assume that G is also 1-twin-free.

If C e is a 1-identifying code in G e , then there exists a

1-identifying code C in G with |C| ≤ |C e | + 2.
As a consequence, we have:

γ 1 (G e ) -γ 1 (G) ≥ -2. (18) 
Proof. Since we add an edge when going from G e to G, all vertices remain 1-covered, in G, by at least one codeword in C e . Since we only add the edge xy, only the balls of x and y are modified in G. As a consequence, only the following pairs are possible (G, C e , 1)-twins:

• x and y,

• x and u with u = x, u = y,

• y and v with v = x, v = y. Moreover, x and u ′ , with u ′ = u, u ′ = x, u ′ = y, cannot be (G, C e , 1)-twins since this would imply, by Lemma 1, that u and u ′ are (G, C e , 1)-twins, hence (G e , C e , 1)-twins, which would contradict the fact that C e is 1-identifying in G e . The same is true for y and v ′ , with v ′ = v, v ′ = x, v ′ = y. So at most three pairs of (G, C e , 1)-twins can appear.

Similarly, if these three pairs of (G, C e , 1)-twins all do appear, then u and v are (G, C e , 1)-twins, which leads to the same contradiction, unless u = v. In this case, because G is 1-twin-free, we can pick an additional When at most two pairs of (G, C e , 1)-twins appear, then obviously with at most two more codewords added to C e we can 1-separate them. △

x z y 4' 3' 2 1 3 2' 1' 5 6 7 8 5' 6' 7' 8 
Note that we made no assumption on the connectivity of G e . The following example shows that graphs G e and G with γ 1 (G) = γ 1 (G e ) + 2 do exist; we do not know if this is the smallest possible example.

Example 21

Let G e = (V, E e ) be the graph represented in Figure 8, and G the graph obtained by adding the edge e = xy. We claim that: (a) γ 1 (G e ) ≤ 10 and (b) γ 1 (G) ≥ 12, which by [START_REF] Karpovsky | On a new class of codes for identifying vertices in graphs[END_REF] 

implies that γ 1 (G) = 12 = γ 1 (G e ) + 2.
Proof of (a). It is quite straightforward to check that C e = {1, 3, x, 6, 8, 8 ′ , 6 ′ , y, 3 ′ , 1 ′ } is 1-identifying in G e . Hence γ 1 (G e ) ≤ 10.

Proof of (b). Let C be a 1-identifying code in G. Because 1 and 2 must be 1-separated by C, we have 3 ∈ C; and because 1 must be 1-covered by at least one codeword, we have 1 ∈ C or 2 ∈ C. Similarly, C contains 6, 6 ′ , 3 ′ and at least one element in each of the 2-sets {7, 8}, {8 ′ , 7 ′ } and {2 ′ , 1 ′ }, which amounts to eight codewords.

With simple arguments, we obtain the following fact:

• there are at least three codewords in {1, 2, 3, 4, x}.

The same is true for {x, 5, 6, 7, 8}, {y, 5 ′ , 6 ′ , 7 ′ , 8 ′ } and {y, 4 ′ , 3 ′ , 2 ′ , 1 ′ }. So, if neither x nor y belongs to C, there are at least 3 × 4 = 12 codewords, and we are done. If, on the other hand, both x and y belong to C, then we have already ten codewords, and still x, y and z are not 1-separated by any codeword; this will require two additional codewords, and again, |C| ≥ 12.

If we assume finally, without loss of generality, that x ∈ C and y / ∈ C, then we have already chosen (3 × 2) + 5 = 11 codewords: three in each of the sets {4 ′ , 3 ′ , 2 ′ , 1 ′ } and {5 ′ , 6 ′ , 7 ′ , 8 ′ }, one in each of the sets {1, 2} and {7, 8}, plus 3, 6 and x; still, x and z are not 1-separated by any codeword, so again we need at least twelve codewords, which proves Claim (b). △

Next, we establish how large γ 1 (G e )γ 1 (G) can be.

Theorem 22 Let G = (V, E) be a 1-twin-free graph with at least four vertices, let x and y be two vertices in V such that e = xy ∈ E, and let G e = (V, E e ) with E e = E \ {xy}. Assume that G e is also 1-twin-free.

If C is a 1-identifying code in G, then there exists a 1-identifying code C e in G e with |C e | ≤ |C| + 2.

As a consequence, we have:

γ 1 (G e ) -γ 1 (G) ≤ 2. ( 19 
)
Proof. We assume that C is not 1-identifying in G e anymore, otherwise we are done. There can be two reasons why C is not 1-identifying: 1) at least one of the two vertices x and y, say x, is not 1-covered by any codeword anymore:

B G e ,1 (x) ∩ C = ∅ = (B G,1 (x) \ {y}) ∩ C, which implies that B G,1 (x) ∩ C = {y}, y ∈ C and x /
∈ C; we see that in this case y is still 1-covered by a codeword, namely itself.

If meanwhile all vertices remain 1-separated by C in G e , then C ∪ {x} is 1-identifying in G e . But this first reason can go along with the second reason:

2) (G e , C, 1)-twins appear; because only the edge xy is deleted when going from G to G e , and similarly to the proof of Theorem 20, only the following pairs can be (G e , C, 1)-twins: • x and y, • x and u with u = x, u = y, • y and v with v = x, v = y.

If x and y are (G e , C, 1)-twins, this means that

B G e ,1 (x) ∩ C = B G e ,1 (y) ∩ C,
which implies that x / ∈ C, y / ∈ C, and so

B G,1 (x) ∩ C = B G,1 (y) ∩ C, contradicting the fact that C is 1-identifying in G.
Assume next that x and u are (G e , C, 1)-twins. Then If x and u are the only (G e , C, 1)-twins, then with two more codewords we can both 1-cover x if necessary and 1-separate x and u in G e . The same argument would work if y and v were the only (G e , C, 1)-twins. So we assume that x and u, and y and v are (G e , C, 1)-twins. This implies that both x and y are codewords, each 1-covered by itself. All there is left to do is to 1-separate two pairs of (G e , C, 1)-twins in G e , which can be done using two more codewords. △

B G e ,1 (x) ∩ C = B G e ,1 (u) ∩ C = B G,1 (u) ∩ C = B G,1 (x) ∩ C,
Note that we made no assumption on the connectivity of G and G e . The following example shows that (connected) graphs G and G e with γ 1 (G e ) = γ 1 (G) + 2 exist.

Example 23 Let G = (V, E) be the graph represented in Figure 9, and G e the graph obtained by deleting the edge xy. We claim that: (a) γ 1 (G) ≤ 12 and (b) γ 1 (G e ) ≥ 14, which by [START_REF] Laihonen | Optimal t-edge-robust r-identifying codes in the king lattice[END_REF] will imply that γ 1 (G e ) = 14 = γ 1 (G) +2.

Proof of (a). It is quite straightforward to check that C = {1, 3, x, 6, 8, 9, 9 ′ , 8 ′ , 6 ′ , y,

3 ′ , 1 ′ } is 1-identifying in G. Hence γ 1 (G) ≤ 12.
Proof of (b). Let C e be an optimal 1-identifying code in G e , not containing v: thanks to Lemma 3, we know that this is possible. We are going to show that the left part of the graph G e , consisting of the vertices 1 to 10 and x, requires at least seven codewords.

As in Example 21, we have 3 ∈ C e , 6 ∈ C e , and, because v / ∈ C e , C e also contains at least one element in each of the 2-sets {1, 2} and {7, 8}, which amounts to four codewords.

As in Example 21, we also have that:

• there are at least three codewords in {1, 2, 3, 4, x}, and three codewords in {x, 5, 6, 7, 8}. So, if x / ∈ C e , there are, because of 9 and 10, at least 3 + 3 + 2 = 8 codewords, and we are done. We now assume that x ∈ C e , so that we have already taken five codewords. One more codeword is not sufficient to 1-separate both 9 and 10, 9 and x, and 10 and x. This proves Claim (b), by symmetry. △ By Theorems 20 and 22, we have the following result.

Theorem 24 Let G 1 and G 2 be two 1-twin-free graphs, with same vertex set and differing by one edge. Then

γ 1 (G 1 ) -2 ≤ γ 1 (G 2 ) ≤ γ 1 (G 1 ) + 2.
As a consequence, if for instance γ 1 (G 1 ) ≤ a and γ 1 (G 2 ) ≥ a + 2, then γ 1 (G 1 ) = a and γ 1 (G 2 ) = a + 2. △

We conclude the case r = 1 by mentioning that pairs of graphs G and G e such that γ 1 (G e )γ 1 (G) = 0 or γ 1 (G e )γ 1 (G) = ±1 exist.

Example 25 We give simple examples with (a) γ 1 (G e )γ 1 (G) = -1 and (b) γ 1 (G e )γ 1 (G) = 1, omitting the easy case when the difference is 0.

(a) Let G e = P 9 = x 1 x 2 . . . x 9 , and add the edge {x 3 , x 5 } in order to obtain G. It is known [START_REF] Bertrand | LOBSTEIN: Identifying and locating-dominating codes on chains and cycles[END_REF]Th. 3]) that γ 1 (P 9 ) = 5, and it is easy to see that γ 1 (G) = 6, so γ 1 (G e )γ 1 (G) = -1.

(b) Let G e be the graph consisting of P 1 and P 4 , and G be the graph obtained by adding an edge between one extremity of P 4 and the vertex of P 1 , so that G = P 5 . We have γ 1 (P 1 ) = 1, γ 1 (P 4 ) = 3, and γ 1 (P 5 ) = 3, which shows that γ 1 (G e )γ 1 (G) = 1. △

7 The case r ≥ 2

We now give our central result, Theorem 26. It describes graphs for which we delete edges and/or vertices, because we think that it is interesting to have such a "mixed construction", cf. Introduction and the forthcoming paper [START_REF] Charon | Minimum sizes of identifying codes in graphs differing by one vertex[END_REF].

It also presents the remarkable feature that, starting from the graph G and performing two consecutive deletions, we first decrease the function γ r , then increase it. The consequences of this result for edge deletion are detailed in Corollaries 27 and 29, and are extended in Propositions 28 and 30. For simplicity, we give constructions where two of the graphs, namely

(G \ e) \ f and (G \ u) \ f,
are disconnected, but the remarks after the proofs of Corollary 29 and of Proposition 30 show an easy way to have connected graphs, with a slightly different result, when needed. Since we estimate the value of γ r for all these graphs, this means that all are r-twin-free, a fact not stated explicitly in the theorem. 

(i) γ r (G) ≥ k. (ii) There is an edge e of G such that γ r (G \ e) ≤ 1 + r + r⌈log 2 (k + 2)⌉. (iii) There is a vertex u of G such that γ r (G \ u) ≤ 1 + r + r⌈log 2 (k + 2)⌉. (iv) There is a vertex v of G \ e such that γ r ((G \ e) \ v) ≥ k. (v) There is an edge f of G \ e such that γ r ((G \ e) \ f ) ≥ k. There is an edge f of G \ u such that γ r ((G \ u) \ f ) ≥ k. (vii) There is a vertex v of G \ u such that γ r ((G \ u) \ v) ≥ k.
Proof. We first construct the graph G for the given k ≥ 2 and r ≥ 5, see Figure 10. Denote s = 1 + ⌈log 2 (k + 2)⌉.

For each j = 1, 2, . . . , s we form the paths a j (1)a j (2) . . . a j (r) (i.e., a j (h) and a j (h + 1) are connected by an edge for all h = 1, 2, . . . , r -1). Each vertex a j (h) is said to be on level h (cf. Figure 10).

For each i = 1, 2, . . . , k we form the paths y i (0)y i (1) . . . y i (r -1). Each vertex y i (h) is said to be on level -h. Also, we form the paths x i (0)x i (1) . . . x i (r -3)x(r -2)x(r -1)x(r), where now the same three vertices x(r -2), x(r -1) and x(r) appear on all these paths. Again, each vertex x i (h) is said to be on level -h. Now for each i we choose a unique nonempty proper subset A i of the set A = {2, 3, . . . , s}, and connect every x i (0) and every y i (0) to every vertex a j (1) for which j ∈ A i . Moreover, we connect every x i (0) and every y i (0) to a 1 (1). The sets A i can indeed be chosen in this way, because there are 2 s-1 -2 proper nonempty subsets of A, and s -1 = ⌈log 2 (k + 2)⌉. Without loss of generality, we can choose the sets A i in such a way that each a j (1) has degree at least two, and so already the graph constructed so far is connected.

The construction of G is now almost complete. As the final step, we connect the vertex x(r) by an edge to every x i (r -5) (which is fine as we have assumed that r ≥ 5).

In the statement of the theorem u = x(r), v = x(r -1), e is the edge connecting these two, and finally f is the edge connecting x(r -1) and x(r -2).

The first step of the proof consists of working out that if we take

C = {a j (h) : j = 1, 2, . . . , s, h = 1, 2, . . . , r},
that is, the sr vertices of type a, then C is not r-identifying, but it does a lot, for all the graphs in the theorem: as we shall see, the only thing we need to worry about is to make sure that for each i, x i (h) and y i (h) can be r-separated for all h = 0, 1, . . . , r -3 and that x(r -2), x(r -1) and x(r) can be identified.

In what follows, for a vertex w we always denote

I(w) = B r (w) ∩ C
for this particular choice of C, whatever the graph is. To begin with, we observe that

• I(w) contains exactly one vertex from the r-th level, if w = a j (h) for some j and h (and then of course this one vertex is a j (r));

• I(w) contains at least two vertices from the r-th level, if w = x i (0) or y i (0) for some i (and one of them is a 1 (r));

• I(w) does not contain any vertices from the r-th level, if w is any other vertex.

All the vertices a j (h) can now be identified. A vertex w is one of the vertices a j (h) if and only if I(w) contains exactly one vertex on level r, and this unique vertex already tells us j. Moreover, for any j ′ = j, in I(w) the vertex a j ′ (h ′ ) with the largest level is a j ′ (rh) if h < r and there are no vertices a j ′ (h ′ ) at all in I(w) if h = r. Either way, we can determine h. In all the graphs mentioned in the statement of the theorem the following facts are clearly valid:

• Fact 1: If i = i ′ , then the distance between y i (h) and y i ′ (0) is h + 2 (as we can always go via a 1 (1)) and the distance between y i (h) and x i ′ (0) is h + 2; the latter holds also for i = i ′ .

• Fact 2: If w / ∈ {x(r -2), x(r -1), x(r)} is on level h ≤ 0, then the highest level containing at least one vertex in I(w) is h + r, and moreover, if w = x i (h) or y i (h), then the set {j ≥ 2 : a j (h + r) ∈ I(w)}, Corollary 27 Let k ≥ 2 be arbitrary and r ≥ 5. There exist two (connected) r-twin-free graphs G and G e with (2r

-2)k + r⌈log 2 (k + 2)⌉ + r + 3 vertices, such that γ r (G) -γ r (G e ) ≥ k -r⌈log 2 (k + 2)⌉ -r -1, (20) 
γ r (G) γ r (G e ) ≥ k r⌈log 2 (k + 2)⌉ + r + 1 . (21) 
Proof. Use (i) and (ii) in the previous theorem. △

The following proposition gives a very similar result for r ∈ {2, 3, 4} (and also for r ≥ 5).

Proposition 28 Let k ≥ 2 be arbitrary and r ≥ 2. There exist two (connected) r-twin-free graphs G and G e with (r + 1)k + r⌈log 2 (k + 2)⌉ + 2r vertices, such that γ r (G)γ r (G e ) ≥ k -r⌈log 2 (k + 2)⌉r -3,

γ r (G) γ r (G e ) ≥ k r⌈log 2 (k + 2)⌉ + r + 3 . ( (22) 
) 23 
Proof. We slightly modify the construction of G in Theorem 26, so that the x-paths are x i (0)x(1) . . . x(r -1), the vertices x(r -1) and a 1 (1) are connected by the edge e, and there is one additional vertex a 1 (r + 1) which is only connected to a 1 (r), see Figure 11.

The same argument as in the proof of the theorem shows that in G, which is r-twin-free (in particular because a 1 (r + 1) can r-separate x(r -1) and a 1 (2)), any r-identifying code has at least k elements, in order to have each pair of vertices x i (0), y i (0) r-separated by the code. On the other hand, it is straightforward to check that C = {a j (h) : j = 1, 2, . . . , s, h = 1, 2, . . . , r} ∪ {a 1 (r + 1), x(r -1), y 1 (0)} is r-identifying in G e : in particular, x(r -1) r-separates x i (0) and y i (0) for every i, and y 1 (0) r-separates a 1 (r) and a 1 (r + 1) (this job could have been done by any y i (0) or x i (0)). △

The next corollary studies how large γ r (G e )γ r (G) and γ r (G e ) γ r (G) can be for a graph G, when r ≥ 3.

Corollary 29 Let k ≥ 2 be arbitrary and r ≥ 3. There exist two r-twin-free graphs H and H f with (2r -2)k + r⌈log 2 (k + 2)⌉ + r + 2 vertices, such that

γ r (H f ) -γ r (H) ≥ k -r⌈log 2 (k + 2)⌉ -r -1, ( 24 
) γ r (H f ) γ r (H) ≥ k r⌈log 2 (k + 2)⌉ + r + 1 . ( 25 
)
Proof. Consider Theorem 26 and let H = G u = G x(r) . The condition r ≥ 5 can be relaxed and changed into r ≥ 3 because the vertex u = x(r), connected to every x i (r -5), does not exist here. We can then mimic the proof of the theorem for the cases (iii) and (vi), see that it works also for r = 3 and r = 4, and retrieve (24) and (25). △

Remark. If we want connected graphs, we can slightly modify the construction for Corollary 29, e.g., by introducing 2r + 1 new vertices to form a path from x(r -1) to a 1 (r) and by taking them all as codewords. Then, an arbitrary vertex is one of the new vertices if and only if it contains the middle one of the new vertices in its r-identifying set. The slightly different resulting numbers of vertices and of codewords do not fundamentally alter the meaning of Corollary 29.

The following proposition gives a very similar result for r = 2.

Proposition 30 Let k ≥ 2 be arbitrary. There exist two 2-twin-free graphs G and G e with 3k + 2⌈log 2 (k + 2)⌉ + 5 vertices, such that

γ 2 (G e ) -γ 2 (G) ≥ k -2⌈log 2 (k + 2)⌉ -5, (26) 
γ 2 (G e ) γ 2 (G) ≥ k 2⌈log 2 (k + 2)⌉ + 5 . ( 27 
)
Proof. We bring only a very small modification to the graph described in the proof of Proposition 28: see Figure 12, where, compared to the left part of Figure 11, we have added the vertex x(2) and connected it to x(1), renaming this edge x(1)x( 2) by e. Now G is 2-twin-free, and C = {a j (h) : j = 1, 2, . . . , s, h = 1, 2} ∪ {a 1 (3), x(2), y 1 (0)} is 2-identifying in G. In particular, x(2) 2-separates x i (0) and y i (0) for every i, and y 1 (0) 2-separates a 1 (2) and a 1 [START_REF] Bertrand | LOBSTEIN: Identifying and locating-dominating codes on chains and cycles[END_REF]. But in G e , which is 2-twinfree, by the standard argument we need at least k codewords. △

Remark. Similarly to Corollary 29, the addition of a chain of 2r + 1 = 5 vertices linking x(2) to a 1 (3) would give a slightly different result, this time with G e connected.

Conclusion

Table 2 recapitulates the results obtained in the previous sections, for γ r (G e )γ r (G) and, when appropriate, γ r (G e )/γ r (G). In the lower part of the table, the inequalities mean that there exist pairs of graphs G, G e such that these inequalities hold. Whether these inequalities can be substantially improved is left as an open problem. 
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 1 Figure 1: Graph G in Proposition 9, for r = 6 and k = 4. Squares and circles, white or black, small or large, are vertices. The 19 black vertices constitute a 6-identifying code in G.

Figure 2 :

 2 Figure 2: Graph G in Proposition 11, for r = 5 and k = 6. Squares and circles, white or black, small or large, are vertices. The 21 black vertices constitute a 5-identifying code in G.

Figure 3 :

 3 Figure 3: The graphs G x and G in Proposition 13.

Figure 4 :

 4 Figure 4: A partial representation of the graph G in Proposition 15: more edges exist between the vertices x i (1) and y i (1) on the one hand, and the vertices a j (1) on the other hand. The case r = 1 can be used to illustrate Proposition 4.
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 5 Figure 5: The graphs G x and G in Proposition 17.
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 48 Figure 8: Graph G e in Example 21.
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 9 Figure 9: Graph G in Example 23.

1 Figure 10 :

 110 Figure 10: A partial representation of the graph G in Theorem 26: more edges exist between the vertices x i (0) and y i (0) on the one hand, and the vertices a j (1) on the other hand.

Figure 11 :

 11 Figure 11: A partial representation of the graph G in Proposition 28, for r = 2, and for r = 4.

Figure 12 :

 12 Figure 12: A partial representation of the graph G in Proposition 30.

3 ≥

 3 r γ r (G e ) -γ r (G) = 1must be inside {-2, -1, 0, 1, 2}[START_REF] Karpovsky | On a new class of codes for identifying vertices in graphs[END_REF],[START_REF] Laihonen | Optimal t-edge-robust r-identifying codes in the king lattice[END_REF], Th. 24 = 1 graphs with = -2, = -1, = 0, = 1, = 2 Ex. 21, 23, 25r γ r (G e ) -γ r (G) γ r (G e )/γ r (G) = 2, 3, 4 ≤ -(k -r⌈log 2 (k + 2)⌉ -r -3) (22) ≤ r⌈log 2 (k+2)⌉+r+3 k k -r⌈log 2 (k + 2)⌉ -r -1) (20) ≤ r⌈log 2 (k+2)⌉+r+1 k k -r⌈log 2 (k + 2)⌉ -r -1 (24) ≥ k r⌈log 2 (k+2)⌉+r+1 (25) Table 2: γ r (G e )γ r (G) and γ r (G e )γ r(G) , as a function of r and k.The integer k ≥ 2 can be taken arbitrarily, and is linked to n, the order of G and G e , by the relationn = (c 1 r + c 2 )k + r⌈log 2 (k + 2)⌉ + (c 3 r + c 4 ),where the quadruple (c 1 , c 2 , c 3 , c 4 ) can take the values (2, -2, 1, 3), (1, 1, 2, 0), (2, -2, 1, 2), (1, 1, 2, 1); this means, roughly speaking, that k is a fraction, depending on r, of n; therefore, given r ≥ 2, what we have shown is that there is an infinite sequence of graphs G and two positive constants α and β such that γ r (G) ≥ αn, but, after deleting a suitable edge e, we have γ r (G e ) ≤ β log 2 n (or the other way round).

  [START_REF] Foucaud | Extremal graphs for the identifying code problem[END_REF] , x 15 , x 17 , x 25 , x 27 , x 29 , x 37 , x 39 , x 41 }, see the small black circles in Figure1. It is now quite straightforward to observe that the pairs {x 48 , x 1 }, {x 2 , x 3 } and {x 4 , x 5 } are pairs of (G, S, 6)twins, as well as {x 12 , x 13 }, {x 14 , x 15 }, {x 16 , x 17 }, {x 24 , x 25 }, {x 26 , x 27 }, {x 28 , x 29 }, {x 36 , x 37 }, {x 38 , x 39 } and {x 40 , x 41 }, for reasons of symmetry, and that they are the only ones.

which we call the signature of w, equals A i , and since A i is unique for each i, this tells us i.

By Fact 2, the only two remaining things are that we always have to be able to decide whether w belongs to the x-path or the corresponding y-path, and we have to make sure that the three vertices x(r -2), x(r -1) and x(r) (when they exist in the graph) are identified.

Let us first consider the graph G itself. If w = x(r), then the highest level h for which at least one a j (h) is in I(w) is h = 4 (as we can take a shortcut and jump directly from x(r) to every x i (r -5)) and {j ≥ 2 : a j (4) ∈ I(w)} = A. In the same way, if w = x(r -1), then the highest level points in I(w) are on level 3 and {j ≥ 2 : a j (3) ∈ I(w)} = A; and if w = x(r -2), then the highest level points in I(w) are on level 2 and again {j ≥ 2 : a j (2) ∈ I(w)} = A. As all the signatures referred to in Fact 2 were proper subsets of A, the vertices x(r), x(r -1) and x(r -2) are identified by C.

The vertex y i (r -1) is within distance r from all the vertices y i (h) and by Fact 1, its distance to all the x-vertices is larger than r. Therefore G is r-twin-free as the addition of all the vertices y i (r -1) to C would yield an r-identifying code.

Exactly the same argument shows that in fact all the graphs mentioned in the theorem are r-twin-free (but notice that the highest level points in I(x(r-1)) move two levels down, from 3 to 1, if e (or x(r)) has been removed, and that x(r -1) is an isolated vertex if also f has been removed).

Let us now prove (i). Look at the vertices x i (0) and y i (0) for any fixed i. By Fact 1, no y i ′ (h) with i ′ = i can r-separate them; neither can any a j (h). By the construction, every x-vertex is within distance r -2 from at least one x i ′ (0). As x i ′ (0) is connected by an edge to a 1 [START_REF] Berge | English translation: Graphs[END_REF], which in turn is connected by an edge to every vertex on level 0, we see that no x-vertex can r-separate x i (0) and y i (0). Therefore at least one y i (h) has to do the job, and therefore any r-identifying code must contain at least k codewords.

Exactly the same argument gives us (iv)-(vii).

To prove (iii), it suffices to observe that in this graph x(r -1) is within distance r -1 from all the x-vertices, but at distance greater than r from all the y-vertices, so the vertex x(r -1) together with the codewords in C form an r-identifying code.

It remains to prove (ii). Now the vertex x(r -1) is within distance r from all the x-vertices including x(r), and at distance greater than r from all the y-vertices, and again the codewords in C together with x(r -1) will do.

△

The next corollary studies how small γ r (G e )γ r (G) and γ r (G e ) γ r (G) can be for a graph G, when r ≥ 5.