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Optical vortices routing in coupled elliptical spun fibers

We have studied the tunneling of a circularly polarized optical vortex (OV) in parallel strongly spun el liptical fibers. In this case it is possible to route the OV in a pure state from one of the fibers to another. We have determined the power efficiency of this process and have shown that such a directional coupler can serve for inversion of the topological charge of the incoming vortex.

Introduction

Among numerous promising applications of optical vortices (OVs)-singularities of phase fronts [START_REF] Nye | Dislocations in wave trains[END_REF][START_REF]Optical Vortices[END_REF][START_REF] Soskin | Singular optics[END_REF] -one can single out the application connected with their use as information carriers [4][START_REF] Bouchal | Mixed vortex states of light as information carriers[END_REF][START_REF] Su | A simple scheme for quantum networks based on orbital angular momentum states of photons[END_REF][START_REF] Djordjevic | Deep space and near Earth optical commu nications by coded orbital angular momentum (OAM) modulation[END_REF]. The possibility to store in an OV a greater amount of information closely relates to the fact that OVs are the eigenstates of orbital angular momentum (OAM) operators and in this way allow more degrees of freedom in encoding information [START_REF] Allen | Optical Angular Momentum[END_REF][START_REF] Bekshaev | Paraxial Light Beams with Angular Momentum[END_REF][START_REF] Molina Terriza | Special issue on orbital angular momentum[END_REF]. This explains the interest in the topics concerned with OV transmission via optical fibers. In our recent paper we have studied the question of OV tunneling in parallel ideal fibers [START_REF] Alexeyev | Tunneling of orbital angular momentum in parallel optical waveguides[END_REF], where we have demonstrated that the problem of OV routing in such a system may encounter essential difficulties of the fundamental nature. Because of the complicated structure of hybrid modes, no tunneling of a pure OV is possible in coupled ideal fibers. This may essentially handicap routing the OV in a directional coupler. Meanwhile, the ability to route the streams of information encoded in OVs is desirable and can be considered as one of the key features of the optical network based on information encoding in OAM states.

In the present paper we address the problem of OV routing in coupled spun elliptical fibers. The aim of our paper is to study the tunneling of a circularly polarized OV (CV) from one of a couple of spun fibers to the other and find out whether it is possible for the OV to tunnel into the adjacent fiber in a pure OAM eigenstate. We show that, indeed, this process is possible and determine the tunneling length and effectiveness of OV transfer.

Hybrid Modes of Coupled Spun Fibers

As has been established by earlier studies, propagation of OVs in ideal fibers [START_REF] Alexeyev | Optical vortices and the flow of their angular momentum in a multimode fiber[END_REF] is very sensitive to external perturbations such as induced ellipticity of the cross section [START_REF] Alexeyev | Spin orbit interaction in a generic vortex field transmitted through an elliptic fiber[END_REF] and material anisotropy [START_REF] Alekseev | Spin orbit in teraction and evolution of optical eddies in perturbed weakly directing optical fibers[END_REF]. In general, perturbations make OVs decompose into other fields, which leads to conversion of polarization and topological charge of the initial vortex [START_REF] Alexeyev | Optical angular momentum and mode conversion in optical fibres with competing form and material anisotropy[END_REF][START_REF] Alexeyev | Controlling the optical angular momentum by elliptical ani sotropic fibres[END_REF]. This situation can be mended by introducing strong periodic perturbation into the system. Technically, this can be made by twisting anisotropic or elliptical fiber. As has been theoretically demonstrated, this leads to stabilization of OVs in fibers [START_REF] Alexeyev | Optical vortices and the higher order modes of twisted strongly elliptical optical fi bres[END_REF][START_REF] Alexeyev | Intensely twisted elliptic optical fibres maintaining propagation of a single optical vortex[END_REF][START_REF] Alekseev | Twisted optical fibers sustaining propagation of optical vortices[END_REF]. Suppression of the spin-orbit interaction (SOI) results in establishing a novel mode structure in the fiber, at which the modes are given by CVs (in spun elliptical fibers) or linearly polarized OVs (in spun anisotropic fibers). As has been shown in those papers, to overcome the influence of the SOI the pitch of the grating induced in the spun fiber should be on a submillimeter scale. Such orders of twist pitch have been reported for spun monomode fibers in [START_REF] Kopp | Chiral fiber gratings[END_REF][START_REF] Oh | Fabrication of helical long period gratings by use of a CO 2 laser[END_REF][START_REF] Kopp | Single and double helix chiral fiber sensors[END_REF]. For example, [START_REF] Oh | Fabrication of helical long period gratings by use of a CO 2 laser[END_REF] reports fabrication of chiral fiber grating with approximately 20 μm pitch.

It is worth recalling that in ideal fibers, modes with orbital number l 1 are given by TE, TM modes and (in an alternative classification, see [START_REF] Alexeyev | Optical vortices and the flow of their angular momentum in a multimode fiber[END_REF]) two CVs. Modes with l > 1 can be represented by four CVs. It should be emphasized that the spectrum of propagation constants in ideal fibers is partially degenerate, which is the reason for instability of OVs in ideal fibers. Since the mode structure in twisted fibers is simpler, it is natural to suppose that the tunneling of OVs in such fibers may prove to be more pronounced than in ideal ones. To study the evolution of OVs in coupled twisted fibers, let us consider the case of parallel elliptical spun fibers. Here and throughout, the term "spun" means that no elastic stresses arise in the fiber while drawing it from a rotating preform. Also in the context of the cited papers, the twisted fiber is equivalent to the spun fiber. To allow for mechanical stresses in twisted fibers, one has to use more elaborate techniques (see, e.g., [START_REF] Alexeyev | Angular momentum conservation and coupled vortex modes in twisted optical fibres with torsional stress[END_REF]). The fibers are supposed to be identical (see Fig. 1).

Prior to studying the system of two parallel fibers, one should specify the mode regime in which the fibers operate. As is known [START_REF] Alexeyev | Optical vortices and the higher order modes of twisted strongly elliptical optical fi bres[END_REF], if the influence of twisting prevails over the influence of ellipticity, the l 1 modes of spun elliptical fibers are represented by four CVs. Mathematically, the condition of strong spinning is expressed as q β ≫ D 1 , where β is the scalar propagation constant, q 2π∕H; H is the pitch of the fiber; and D 1 is some constant that characterizes the influence of ellipticity. In this case one can speak of the strongly spun fiber. The mode structure of such fibers is very simple: it consists of four CVs. In the basis of linear polarizations jei j e x e y i, where it is implied that the standard representation of the electric field → Ex; y; z → ex; y expiβz is used, their fields can be expressed as jσ; li 1 iσ e ilφ F l r:

Here σ 1, F l satisfies the standard equation in the radial function [START_REF] Snyder | Optical Waveguide Theory[END_REF], and the axial-polar coordinates r; φ are implied. For l 1, the spectra of these modes are

βj1; 1i βj -1; 1i ≡ β β D 1 4q β • D 1 2 β ; βj1; -1i βj -1; -1i ≡ β β - D 1 4q β • D 1 2 β : (2)
The last expression conveys the idea of suppression of mode dispersion. Indeed, as follows from the corresponding results of [START_REF] Alexeyev | Spin orbit interaction in a generic vortex field transmitted through an elliptic fiber[END_REF], D 1 ∕2 β is the intermodal dispersion caused by ellipticity of a straight fiber. Since D 1 ∕4q β ≪ 1 the splitting of propagation constants in Eq. ( 2) is strongly reduced by spinning the fiber-a fact well known for fundamental modes [START_REF]Polarization Mode Dispersion. Optical and Fiber Communications Reports[END_REF].

In this way, for strongly spun elliptical fibers one has a simple effective description. One can disregard the spinning and treat the fiber as some effective waveguiding optical system whose modes and propagation constants are given by Eqs. ( 1) and (2) Of course, the effective Hamiltonian H 0;eff of such a notional fiber on the basis of modes, numbered as

j1i ≡ j1; 1i; j2i ≡ j1; -1i; j3i ≡ j -1; -1i; j4i ≡ j -1; 1i; (3) is represented by a diagonal matrix, diag β 2 ; β 2 ; β 2 ; β 2 .
This notion of an effective fiber essentially simplifies the problem. Indeed, as has been pointed out in [START_REF] Alexeyev | Higher or der modes of coupled optical fibres[END_REF], the propagation in coupled fibers is governed by the equation

∇ 2 t V l V r → e t β 2 → e t ; (4) 
where ∇ t ∂∕∂x; ∂∕∂y and t is the transverse component of the electric field. Here V lr are created by left (right) fibers taken separately. In our case, operator ∇ 2 t V l should be identified with the effective Hamiltonian H 0;eff of the left fiber, whereas the perturbation operator should be taken in the form V r 2k 2 n 2 co Δθ1 -r∕r 0 :

Here k 2π∕λ, λ is the wavelength in vacuum, Δ is the height of the refractive index profile, r 0 is the core's radius, θ is the unity step, and n co is the core's refractive index.

To implement the perturbation theory approach suggested in [START_REF] Alexeyev | Higher or der modes of coupled optical fibres[END_REF], one has to expand the basis Eq. ( 3) over left-and right-localized OVs. Then each vector in Eq. ( 3) should acquire an additional index -L or R-depending on localization of the functions. For example, j1; 1; Li ≡ 1 i exp iφ L F l r L , where φ L , r L are axial-polar coordinates in the frame associated with the left fiber (see Fig. 1). Then the basis for our problem will be j1; 1; LRi; j1; -1; LRi;

j -1; -1; LRi; j -1; 1; LRi: (6) 
Following the scheme used in quantum mechanics [START_REF] Davydov | Quantum Mechanics[END_REF], to obtain the modes of identical interacting systems one has to use perturbation theory with degeneracy. The presence of degeneracy is evident because for separated fibers, each propagation constant will correspond to two waves associated with the left or right fiber; that is, there will be two eigenfunctions that belong to the same eigenvalue. The matrix elements are calculated as

hij Ĥjji ZZ S ψ i ; φ i Ĥ ψ i φ i dS; ( 7 
)
where S is the total cross section and jii colψ i ; φ i . Although in the basis Eq. ( 6) the dimension of the matrix of the total Hamiltonian is 8, actually this matrix can be represented as a Cartesian sum of two matrices of lesser dimensions. Indeed, since perturbation operators V lr are scalar, that is, they are proportional to the unity matrix, they do not couple the states with orthogonal polarizations: hσ; l; FjV lr j -σ; l 0 ; F 0 i 0, where F, F 0 are either L or R. Therefore, it is sufficient to build the matrix of the total Hamiltonian in the subspace of, say, right circularly polarized (RCP) OVs: fj1; 1; Li; j1; -1; Li; j1; -1; Ri; j1; 1; Rig:

Further, for convenience we will use the shortened notation: j1; l; LRi ≡ jl; LRi, indicating only the orbital number and localization. The other subspace is obtained from Eq. ( 8) by changing σ → -σ.

Using the corresponding results of [START_REF] Alexeyev | Tunneling of orbital angular momentum in parallel optical waveguides[END_REF], one can bring the matrix H of the total Hamiltonian to the form:

H 0 B B @ β 2 0 c 1 d 1 0 β 2 d 1 c 1 c 1 d 1 β 2 0 d 1 c 1 0 β 2 1 C C A ; (9) 
where the coupling constants are given by overlap integrals

c l 2k 2 n 2 co r 2 0 ΔN 1 l X nl n0 C n l Λ l n × Z 2π 0 cos l -nφdφ Z 1 0 R n1 Rl K l RJ l RdR; ( 10 
)
d l 2k 2 n 2 co r 2 0 ΔN 1 l X nl n0 C n l Λ n × Z 2π 0 cos 2l -nφdφ Z 1 0 R l n1 Rl K l RJ l RdR: (11) 
Here R2 R 2 Λ 2 2RΛ cos φ, Λ L∕r 0 , R r∕r 0 , L is the distance between fiber centers and C n l are the binomial coefficients. The normalization factor N l 2πr 2 0 R ∞ 0 RF 2 l RdR, K l is the modified Bessel function, J l is the Bessel function. Then the solution of the eigenvalue problem H→ x β→ x gives the spectrum β 2 of modes and their decomposition over the basis Eq. ( 8) by the rule: → xx 1 ; x 2 ; x 3 ; x 4 → jψi x 1 j1; Li x 2 j -1; Li x 3 j1; Ri x 4 j -1; Ri:

If one assumes that spinning is strong enough, that is β 2 -β 2 ≪ c 1 , d 1 , then one can set in Eq. ( 9)

β 2
≈ β2 , which leads to essential simplification of the eigenvalue problem. In this case the eigenvectors are easily found and the corresponding modes are

jψ 1 i j1; Li j -1; Li j1; Ri j -1; Ri; jψ 2 i j1; Li j -1; Li -j1; Ri -j -1; Ri; jψ 3 i -j1; Li j -1; Li -j1; Ri j -1; Ri; jψ 4 i -j1; Li j -1; Li j1; Ri -j -1; Ri: (12) 
The propagation constants of these hybrid modes are

β 1 β c 1 d 1 2 β ; β 2 β - c 1 d 1 2 β ; β 3 β c 1 -d 1 2 β ; β 4 β - c 1 -d 1 2 β ; (13) 
where we have allowed for δβ ≈ Δβ 2 ∕2 β [START_REF] Snyder | Optical Waveguide Theory[END_REF]. The other set of hybrid modes has the same structure, save for the fact that in Eq. ( 12) all the basis vectors jl; LRi should be replaced with the corresponding vectors with the opposite circular polarization. The spectra in Eq. [START_REF] Alexeyev | Spin orbit interaction in a generic vortex field transmitted through an elliptic fiber[END_REF] show that initial degeneracy caused by suppression of mode dispersion by spinning the fiber is lifted by the perturbation introduced by the other fiber. As follows from Eq. ( 12), this simultaneously leads to destruction of a vortex-mode regime in individual spun fibers. The fields of hybrid modes in individual fibers are given by RCP fields j1; LRi j -1; LRi, which are equivalent to Hermite-Gaussian-like fields ∝ cos φ, sin φ. In this way the OV ceases to be the eigenmode in individual fibers and would decay upon propagation. The details of its evolution will be studied next.

Tunneling of Optical Vortices

Consider the evolution of a CV excited at the input end of a coupled spun elliptical fiber. Since this field is no longer an eigenmode of the system, it should be decomposed over the set of modes in Eq. ( 12): jCVz 0; Li ≡ P k a k jψ k i. The decomposition coefficients a k then should be used to obtain the field produced by the left-localized CVj1; Li in the fibers: jCV; Li ≡ P k a k jψ k i expiβ k z. These problems are readily solved; and after a little algebra, one arrives at the following expression for the field:

j1; Lzi fcoszΔβcoszΔβj1; Li i sinzΔβj1; Ri -sinzΔβsinzΔβj -1; -i coszΔβj -1; Rig expi βz; (14) 
where Δβ d 1 ∕2 β, Δβ c 1 ∕2 β.

To study the tunneling of the vortex into the other fiber, one has to study the field jRi in the right fiber:

jRi isinzΔβ coszΔβj1; Ri coszΔβ sinzΔβj -1; Ri expi βz: (15) 
As is evident, the field of the right waveguide is represented by the pure OV j1; Ri at such z 0 , where cosz 0 Δβ sinz 0 Δβ 0. The amplitude A of the vortex then is given by sinz 0 Δβ cosz 0 Δβ. From this condition, one obtains two sets of coordinates of cross sections where the left-localized vortex goes over into the right-localized vortex of the same charge without any impurities:

z 1 k 2k 1π 2Δβ ; z 2 k k 1π Δβ : (16) 
The plots of characteristic lengths Z1 ≡ π Δβ and Z2 ≡ π Δβ as functions of the distance between the fibers are given in Fig. 2. The amplitudes A i k of the tunneled vortex are

A 1 k sin 2k 1πd 1 2c 1 ; A 1 k cos k 1πc 1 2d 1 ; (17) 
where k 0; 1; 2…. Effectiveness of energy transfer is determined by jA k j 2 . The plots of successions in Eq. ( 17) for two values of parameter Λ are given in Fig. 3. As is seen in the figure, at certain k one can achieve rather effective tunneling of the vortex in a pure state. The same problem can be solved for a given k by changing the distance between the fibers. Figure 4 shows the dependence of tunneling efficiency as a function of Λ for k 0, 1. It the case of l ≥ 2 modes, ellipticity does not affect the mode structure essentially, and the modes of separated fibers are given by l ≥ 2 modes of ideal fibers. This is why one can use for the description of coupled spun fibers the results for tunneling of l ≥ 2 vortices in parallel ideal waveguides [START_REF] Alexeyev | Tunneling of orbital angular momentum in parallel optical waveguides[END_REF]. A simple analysis of the corresponding results shows that for l ≥ 2 at negligible spin-orbit coupling, the field in the right fiber will be given by jRi ∝ sinzΔβ l coszΔβ l jl; Ri coszΔβ l sinzΔβ l jl; Ri;

where Δβ l d l ∕2 β and Δβ l c l ∕2 β. This leads to the same expressions for the amplitudes of the tunneled OV A i k as in Eq. ( 17), save for the only difference: d 1 and c 1 should be replaced with d l and c l .

Naturally, along with the process of OV tunneling into the same OAM state, there may take place the tunneling into the state with the inverse topological charge. As follows from Eq. ( 15), this occurs whenever sinzΔβ coszΔβ 0. From this condition, one can easily obtain the equations analogous to Eqs. ( 16) and [START_REF] Alexeyev | Optical vortices and the higher order modes of twisted strongly elliptical optical fi bres[END_REF] in positions of such cross-sections and in amplitudes of j -1; Ri OV. In this way, such types of directional couplers can perform changing the sign of the topological charge of the incoming OV.

Conclusion

In this paper, we have studied the tunneling of a circularly polarized OV in the system of two parallel spun elliptical fibers. We have shown that in the case of strong twisting, where the fiber maintains propagation of circular OVs, it is possible to route the OV in a pure state from one of the fibers to another. We have determined the power efficiency of this process for the set of couplers' length, at which the vortex excited at the input end of one arm tunnels into the pure state in the other arm of the coupler. We have also shown that such directional couplers can serve as inverters of topological charge.
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 1 Fig. 1. (Color online) Geometry of coupled fibers: (a) general configuration of the system and its main parameters: pitch H and spacing L and (b) axial polar coordinates for individual fibers in the transverse cross section.

Fig. 2 .

 2 Fig. 2. Dependence of characteristic lengths Z1 and Z2 on re duced length L∕r 0 . Fiber parameters: waveguide parameter V 4.16, Δ 10 -3 , r 0 10λ He-Ne .

Fig. 3 .

 3 Fig. 3. Dependence of squared modules jA i k j 2 of tunneled l 1 OV on k at fixed distances L between the centers of the fibers: (a) L 3r 0 and (b) L 5r 0 ; V 4.16, Δ 10 -3 , r 0 10λ He-Ne .