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We have studied the tunneling of a circularly polarized optical vortex (OV) in parallel strongly spun el 
liptical fibers. In this case it is possible to route the OV in a pure state from one of the fibers to another. We 
have determined the power efficiency of this process and have shown that such a directional coupler can 
serve for inversion of the topological charge of the incoming vortex.

OCIS codes: 060.1810, 060.1155, 260.6042.

1. Introduction

Among numerous promising applications of optical
vortices (OVs)—singularities of phase fronts [1–3]
—one can single out the application connected with
their use as information carriers [4–7]. The possibi-
lity to store in an OV a greater amount of informa-
tion closely relates to the fact that OVs are the
eigenstates of orbital angular momentum (OAM) op-
erators and in this way allow more degrees of free-
dom in encoding information [8–10]. This explains
the interest in the topics concerned with OV trans-
mission via optical fibers. In our recent paper we
have studied the question of OV tunneling in parallel
ideal fibers [11], where we have demonstrated that
the problem of OV routing in such a system may en-
counter essential difficulties of the fundamental nat-
ure. Because of the complicated structure of hybrid
modes, no tunneling of a pure OV is possible in
coupled ideal fibers. This may essentially handicap
routing the OV in a directional coupler. Meanwhile,
the ability to route the streams of information en-
coded in OVs is desirable and can be considered as
one of the key features of the optical network based
on information encoding in OAM states.

In the present paper we address the problem of
OV routing in coupled spun elliptical fibers. The
aim of our paper is to study the tunneling of a
circularly polarized OV (CV) from one of a couple
of spun fibers to the other and find out whether it
is possible for the OV to tunnel into the adjacent
fiber in a pure OAM eigenstate. We show that, in-
deed, this process is possible and determine the tun-
neling length and effectiveness of OV transfer.

2. Hybrid Modes of Coupled Spun Fibers

As has been established by earlier studies, propaga-
tion of OVs in ideal fibers [12] is very sensitive to ex-
ternal perturbations such as induced ellipticity of the
cross section [13] and material anisotropy [14]. In
general, perturbations make OVs decompose into
other fields, which leads to conversion of polarization
and topological charge of the initial vortex [15,16].
This situation can be mended by introducing strong
periodic perturbation into the system. Technically,
this can be made by twisting anisotropic or elliptical
fiber. As has been theoretically demonstrated, this
leads to stabilization of OVs in fibers [17–19]. Sup-
pression of the spin-orbit interaction (SOI) results
in establishing a novel mode structure in the fiber,
at which the modes are given by CVs (in spun ellip-
tical fibers) or linearly polarized OVs (in spun aniso-
tropic fibers). As has been shown in those papers, to
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overcome the influence of the SOI the pitch of the
grating induced in the spun fiber should be on a sub-
millimeter scale. Such orders of twist pitch have been
reported for spun monomode fibers in [20–22]. For
example, [21] reports fabrication of chiral fiber grat-
ing with approximately 20 μm pitch.

It is worth recalling that in ideal fibers, modes with
orbital number l � 1 are given by TE, TMmodes and
(in an alternative classification, see [12]) two CVs.
Modes with l > 1 can be represented by four CVs.
It should be emphasized that the spectrum of propa-
gation constants in ideal fibers is partially degener-
ate, which is the reason for instability of OVs in ideal
fibers. Since the mode structure in twisted fibers is
simpler, it is natural to suppose that the tunneling
of OVs in such fibers may prove to be more pro-
nounced than in ideal ones. To study the evolution
of OVs in coupled twisted fibers, let us consider
the case of parallel elliptical spun fibers. Here and
throughout, the term “spun” means that no elastic
stresses arise in the fiber while drawing it from a ro-
tating preform. Also in the context of the cited pa-
pers, the twisted fiber is equivalent to the spun
fiber. To allow for mechanical stresses in twisted fi-
bers, one has to use more elaborate techniques (see,
e.g., [23]). The fibers are supposed to be identical
(see Fig. 1).

Prior to studying the system of two parallel fibers,
one should specify the mode regime in which the fi-
bers operate. As is known [17], if the influence of
twisting prevails over the influence of ellipticity,
the l � 1 modes of spun elliptical fibers are repre-
sented by four CVs. Mathematically, the condition
of strong spinning is expressed as q~β ≫ D1, where

~β is the scalar propagation constant, q � 2π∕H; H
is the pitch of the fiber; and D1 is some constant that
characterizes the influence of ellipticity. In this case
one can speak of the strongly spun fiber. The mode
structure of such fibers is very simple: it consists
of four CVs. In the basis of linear polarizations
jei � j exeyi, where it is implied that the standard
representation of the electric field → E�x; y; z� �
→ e�x; y� exp�iβz� is used, their fields can be ex-
pressed as

jσ; li �
�
1
iσ

�
eilφFl�r�: (1)

Here σ � �1, Fl satisfies the standard equation in
the radial function [24], and the axial-polar coordi-
nates �r;φ� are implied. For l � 1, the spectra of these
modes are

β�j1; 1i� � β�j − 1; 1i�≡ β� � ~β� D1

4q~β
·
D1

2~β
;

β�j1;−1i� � β�j − 1;−1i�≡ β � ~β − D1

4q~β
·
D1

2~β
: (2)

The last expression conveys the idea of suppression
of mode dispersion. Indeed, as follows from the cor-
responding results of [13], D1∕2~β is the intermodal
dispersion caused by ellipticity of a straight fiber.
Since D1∕4q~β ≪ 1 the splitting of propagation con-
stants in Eq. (2) is strongly reduced by spinning the
fiber—a fact well known for fundamental modes [25].

In this way, for strongly spun elliptical fibers one
has a simple effective description. One can disregard
the spinning and treat the fiber as some effective
waveguiding optical system whose modes and propa-
gation constants are given by Eqs. (1) and (2) Of
course, the effective Hamiltonian H0;eff of such a no-
tional fiber on the basis of modes, numbered as

j1i≡ j1; 1i; j2i≡ j1;−1i; j3i≡ j − 1;−1i;
j4i≡ j − 1; 1i;

(3)

is represented by a diagonal matrix,
diag

�
β2�; β2 ; β2 ; β2�

�
.

This notion of an effective fiber essentially simplifies
the problem. Indeed, as has been pointed out in [26],
the propagation in coupled fibers is governed by the
equation

�∇2
t � Vl � Vr�→ et � β2→ et; (4)

where ∇t � �∂∕∂x; ∂∕∂y� and t is the transverse com-
ponent of the electric field. Here Vl�r� are created by
left (right) fibers taken separately. In our case, opera-
tor ∇2

t � Vl should be identified with the effective
Hamiltonian H0;eff of the left fiber, whereas the
perturbation operator should be taken in the form

Fig. 1. (Color online) Geometry of coupled fibers: (a) general
configuration of the system and its main parameters: pitch H
and spacing L and (b) axial polar coordinates for individual fibers
in the transverse cross section.
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Vr � 2k2n2
coΔθ�1 − r∕r0�: (5)

Here k � 2π∕λ, λ is the wavelength in vacuum, Δ is
the height of the refractive index profile, r0 is the
core’s radius, θ is the unity step, and nco is the core’s
refractive index.

To implement the perturbation theory approach
suggested in [26], one has to expand the basis
Eq. (3) over left- and right-localized OVs. Then each
vector in Eq. (3) should acquire an additional index
—L or R—depending on localization of the functions.
For example, j1; 1;Li≡ �1i� exp �iφL�Fl�rL�, where φL,
rL are axial-polar coordinates in the frame associated
with the left fiber (see Fig. 1). Then the basis for our
problem will be

j1; 1;L�R�i; j1;−1;L�R�i;
j − 1;−1;L�R�i; j − 1; 1;L�R�i: (6)

Following the scheme used in quantum mechanics
[27], to obtain the modes of identical interacting sys-
tems one has to use perturbation theory with degen-
eracy. The presence of degeneracy is evident because
for separated fibers, each propagation constant will
correspond to two waves associated with the left or
right fiber; that is, there will be two eigenfunctions
that belong to the same eigenvalue. The matrix ele-
ments are calculated as

hijĤjji �
ZZ

S

�
ψ�
i ;φ�

i

�
Ĥ
�
ψ i
φi

�
dS; (7)

where S is the total cross section and jii � col�ψ i;φi�.
Although in the basis Eq. (6) the dimension of the

matrix of the total Hamiltonian is 8, actually this
matrix can be represented as a Cartesian sum of
two matrices of lesser dimensions. Indeed, since per-
turbation operators Vl�r� are scalar, that is, they
are proportional to the unity matrix, they do not
couple the states with orthogonal polarizations:
hσ; l;FjVl�r�j − σ; l0;F0i � 0, where F, F0 are either L
or R. Therefore, it is sufficient to build the matrix
of the total Hamiltonian in the subspace of, say, right
circularly polarized (RCP) OVs:

fj1; 1;Li; j1;−1;Li; j1;−1;Ri; j1; 1;Rig:
(8)

Further, for convenience we will use the shortened
notation: j1; l;L�R�i≡ jl;L�R�i, indicating only the
orbital number and localization. The other subspace
is obtained from Eq. (8) by changing σ → −σ.
Using the corresponding results of [11], one can

bring the matrix H of the total Hamiltonian to the
form:

H �

0
BB@
β2� 0 c1 d1

0 β2 d1 c1
c1 d1 β2� 0
d1 c1 0 β2

1
CCA; (9)

where the coupling constants are given by overlap
integrals

cl � 2k2n2
cor20ΔN 1

l

Xn�l

n�0

Cn
l Λl n

×
Z

2π

0
cos ��l − n�φ��dφ

Z
1

0

Rn�1

~Rl
Kl�~R�Jl�R�dR;

(10)

dl � 2k2n2
cor20ΔN 1

l

Xn�l

n�0

Cn
l Λn

×
Z

2π

0
cos ��2l − n�φ�dφ

Z
1

0

Rl n�1

~Rl
Kl�~R�Jl�R�dR:

(11)

Here ~R2 � R2 �Λ2 � 2RΛ cos φ, Λ � L∕r0, R �
r∕r0, L is the distance between fiber centers and
Cn

l are the binomial coefficients. The normalization
factor Nl � 2πr20

R
∞
0 RF2

l �R�dR, Kl is the modified
Bessel function, Jl is the Bessel function. Then the
solution of the eigenvalue problem H→ x � β→ x
gives the spectrum β2 of modes and their decomposi-
tion over the basis Eq. (8) by the rule:

→ x�x1; x2; x3; x4� → jψi � x1j1;Li � x2j − 1;Li
� x3j1;Ri � x4j − 1;Ri:

If one assumes that spinning is strong enough,
that is β2� − β2 ≪ c1, d1, then one can set in Eq. (9)
β2� ≈ ~β2, which leads to essential simplification of
the eigenvalue problem. In this case the eigenvectors
are easily found and the corresponding modes are

jψ1i � j1;Li � j − 1;Li � j1;Ri � j − 1;Ri;
jψ2i � j1;Li � j − 1;Li − j1;Ri − j − 1;Ri;
jψ3i � −j1;Li � j − 1;Li − j1;Ri � j − 1;Ri;
jψ4i � −j1;Li � j − 1;Li � j1;Ri − j − 1;Ri: (12)

The propagation constants of these hybrid modes are

β1 � ~β� c1 � d1

2~β
; β2 � ~β − c1 � d1

2~β
;

β3 � ~β� c1 − d1

2~β
; β4 � ~β − c1 − d1

2~β
; (13)

where we have allowed for δβ ≈ Δβ2∕2~β [24]. The
other set of hybrid modes has the same structure,
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save for the fact that in Eq. (12) all the basis vectors
jl;L�R�i should be replaced with the corresponding
vectors with the opposite circular polarization. The
spectra in Eq. (13) show that initial degeneracy
caused by suppression of mode dispersion by spin-
ning the fiber is lifted by the perturbation introduced
by the other fiber. As follows from Eq. (12), this si-
multaneously leads to destruction of a vortex-mode
regime in individual spun fibers. The fields of hybrid
modes in individual fibers are given by RCP fields
j1;L�R�i � j − 1;L�R�i, which are equivalent to
Hermite–Gaussian-like fields ∝ cos φ, sin φ. In this
way the OV ceases to be the eigenmode in individual
fibers and would decay upon propagation. The de-
tails of its evolution will be studied next.

3. Tunneling of Optical Vortices

Consider the evolution of a CV excited at the input
end of a coupled spun elliptical fiber. Since this field
is no longer an eigenmode of the system, it should be
decomposed over the set of modes in Eq. (12):
jCV�z � 0�;Li≡P

kakjψki. The decomposition coeffi-
cients ak then should be used to obtain the field pro-
duced by the left-localized CVj1;Li in the fibers:
jCV;Li≡P

kakjψki exp�iβkz�. These problems are
readily solved; and after a little algebra, one arrives
at the following expression for the field:

j1;L�z�i � fcos�zΔβ��cos�zΔβ�j1;Li � i sin�zΔβ�j1;Ri�
− sin�zΔβ��sin�zΔβ�j − 1;Li
− i cos�zΔβ�j − 1;Ri�g exp�i~βz�; (14)

where Δβ � d1∕2~β, Δβ � c1∕2~β.
To study the tunneling of the vortex into the other

fiber, one has to study the field jRi in the right fiber:

jRi � i�sin�zΔβ� cos�zΔβ�j1;Ri � cos�zΔβ� sin�zΔβ�j
− 1;Ri� exp�i~βz�: (15)

As is evident, the field of the right waveguide is re-
presented by the pure OV j1;Ri at such z0, where
cos�z0Δβ� sin�z0Δβ� � 0. The amplitude A of the

vortex then is given by sin�z0Δβ� cos�z0Δβ�. From
this condition, one obtains two sets of coordinates
of cross sections where the left-localized vortex goes
over into the right-localized vortex of the same
charge without any impurities:

z�1�k � �2k� 1�π
2Δβ ; z�2�k � �k� 1�π

Δβ : (16)

The plots of characteristic lengths Z1≡ π
Δβ and Z2≡

π
Δβ as functions of the distance between the fibers are
given in Fig. 2.

The amplitudes A�i�
k of the tunneled vortex are

A�1�
k � sin

�2k�1�πd1

2c1
; A�1�

k � cos
�k�1�πc1

2d1
; (17)

where k � 0; 1; 2…. Effectiveness of energy transfer
is determined by jAkj2. The plots of successions in
Eq. (17) for two values of parameter Λ are given
in Fig. 3. As is seen in the figure, at certain k one
can achieve rather effective tunneling of the vortex
in a pure state. The same problem can be solved
for a given k by changing the distance between the
fibers. Figure 4 shows the dependence of tunneling
efficiency as a function of Λ for k � 0, 1.

Fig. 2. Dependence of characteristic lengths Z1 and Z2 on re
duced length L∕r0. Fiber parameters: waveguide parameter
V 4.16, Δ 10−3, r0 10λHe-Ne.

Fig. 3. Dependence of squared modules jA�i�
k j2 of tunneled l 1

OV on k at fixed distances L between the centers of the fibers:
(a) L 3r0 and (b) L 5r0; V 4.16, Δ 10−3, r0 10λHe-Ne.
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It the case of l ≥ 2 modes, ellipticity does not affect
the mode structure essentially, and the modes of se-
parated fibers are given by l ≥ 2modes of ideal fibers.
This is why one can use for the description of coupled
spun fibers the results for tunneling of l ≥ 2 vortices
in parallel ideal waveguides [11]. A simple analysis
of the corresponding results shows that for l ≥ 2 at
negligible spin-orbit coupling, the field in the right
fiber will be given by

jRi ∝ sin�zΔβl� cos�zΔβl�jl;Ri
� cos�zΔβl� sin�zΔβl�j − l;Ri; (18)

whereΔβl � dl∕2~β andΔβl � cl∕2~β. This leads to the
same expressions for the amplitudes of the tunneled
OV A�i�

k as in Eq. (17), save for the only difference: d1
and c1 should be replaced with dl and cl.

Naturally, along with the process of OV tunneling
into the same OAM state, there may take place the
tunneling into the state with the inverse topological
charge. As follows from Eq. (15), this occurs when-
ever sin�zΔβ� cos�zΔβ� � 0. From this condition,
one can easily obtain the equations analogous to
Eqs. (16) and (17) in positions of such cross-sections
and in amplitudes of j − 1;Ri OV. In this way, such
types of directional couplers can perform changing
the sign of the topological charge of the incoming OV.

4. Conclusion

In this paper, we have studied the tunneling of a cir-
cularly polarized OV in the system of two parallel
spun elliptical fibers. We have shown that in the case
of strong twisting, where the fiber maintains propa-
gation of circular OVs, it is possible to route the OV in
a pure state from one of the fibers to another. We
have determined the power efficiency of this process
for the set of couplers’ length, at which the vortex ex-
cited at the input end of one arm tunnels into the
pure state in the other arm of the coupler. We have
also shown that such directional couplers can serve
as inverters of topological charge.
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