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A local Rayleigh model with spatial scale
selection for ultrasound image segmentation

Djamal Boukerroui Université de Technologie de
http://www.hds.utc.fr/~dboukerr Compiégne
Heudiasyc UMR CNRS 7253
BP 20529 - 60205 Compiegne Cedex,
France.

Abstract

Ultrasound images are very noisy, with poor contrast and the attenuation of the acous-
tic wave in the depth of the observed medium leads to strong inhomogeneities in the
image. Segmentation methods using global image statistics give unsatisfactory results.
The use of local image statistics can solve effectively the problem of attenuation. The
contribution of this paper is two folds. First, we propose the study of the adaptation of
the global model proposed by Sarti et al. [28]. We kept the variational framework and
the Rayleigh model of the observed image statistics. Second, we propose an interesting
and generic adaptive scale selection algorithm based on the Intersection of Confidence
Interval rule. The latter is also applied to the local Gaussian segmentation model of Brox
and Cremers. Results on realistic simulations of ultrasound images show the robustness
and the superiority of the local Rayleigh model. The efficiency and the genericity of the
proposed scale selection strategy is also demonstrated.

1 Introduction

In medical imaging, the ultrasonic wave is modelled as a progressive plane mechanical wave.
When this wave encounters an interface between two tissues with different acoustic char-
acteristics, a part of the incident wave is reflected (specular echoes) in the direction of the
probe. Along with these specular echoes, backscattered echoes are added by the microscopic
structure of the medium. Backscattering is the origin of the speckle phenomenon, which
characterizes ultrasound imaging with a granular appearance. The speckle is a multiplicative
noise, strongly correlated and more importantly, with non Gaussian statistics. These char-
acteristics differ greatly from the traditional assumption of white additive Gaussian noise,
often taken in ultrasound image segmentation, which leads to reduction of the effectiveness
of the methods. Thus, several researchers have studied the statistics of the envelope image of
the received echo signal in order to obtain processing algorithms specific to ultrasonic data
[24, 25]. Several distribution families have been proposed in the literature: specific models
such as the Rayleigh [6, 32], Rice [14, 32], Nakagami [30], K-distribution [15, 29, 30] and
more general models, the Homodyne K-distribution [9] and the more recently RIIG [10, 11].
Notice the large variability of the proposed models, which is due to the strong dependence
of the observed statistics on the density of scatters and on their spatial distribution (uniform
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or random) in the analysed tissue [32]. All these models are for the envelope of the received
echo signal (i.e before interpolation, log-compression and Time-Gain-Compensation). Thus,
the validity of such models on ultrasound images acquired under clinical conditions is ques-
tionable [22, 31, 36].

Image segmentation in general is an ill-posed problem in the sense of Hadamard and
difficult to solve. This problem is especially difficult when the data to be processed are
medical in nature. The literature on the subject is abundant and the performances of the
proposed techniques are highly dependent on the quality of data [25, 34]. Ultrasound data
are very noisy, with poor contrast, and often presents missing boundaries of the object of
interest due to problems of specular reflection, shadows, signal dropout and attenuation. As
a consequence, conventional intensity gradient-based methods have had limited success on
typical clinical images [25]. Solutions using the phase information, theoretically invariant
to image contrast, are successfully used in [2, 23]. Note also that segmentation methods
based on global statistical models, regardless of the used framework, fail on this type of
data, mainly because of the attenuation problem. Adaptive solutions robust to attenuation
exist in the literature [1, 3, 4, 25]. Local image statistics were used for the estimation of the
segmentation model’s parameters.

Recently, there has been a reinvestigation of the use of local statistics by the image seg-
mentation community, but in a variational framework [5, 19, 21, 27]. For instance, the
adaptation of the binary model of Chan and Vese [8] is presented in [21]. A comprehensive
formalization of generic local segmentation models is proposed in [19], with examples of
local energies derived from global ones. Also, a statistical interpretation of the piecewise
smooth segmentation model of Mumford-Shah using local Gaussian models has been pro-
posed in [5]. An interesting alternative with local Gaussian distributions is also proposed
in [33]. These recent studies show a better behavior of these local models on images with
strong intensity inhomogeneities. This contribution falls under this context. We propose
the study of adaptation of the model proposed by Sarti et al. [28]. The latter assumes a
global Rayleigh model envelope image statistics. The reader is also referred to [20] for a
generalisation to the exponential family.

2 Segmentation model

Let/:Q — IR™ denote a given observed image and C be a closed contour represented as the
zero level set of a signed distance function ¢, i.e., C = {x|¢(x) =0, x € Q}. The interior Q;
and the exterior Q, of C are defined by a smooth approximation of the Heaviside function
respectively by: H;(¢) = H(¢) and H,(¢) = 1 — H(¢). Image intensities are supposed to be
independent realisation of random variables with a certain probability density function (pdf)
p(I). We seek the partition of Q that maximizes the likelihood function of the observed data.
Given the independence assumption, this leads to the minimization of the following energy
function [28]

E@)== T [ Hlo)ogp)dx-a [ S(@)Volax. M)

where the first two terms are the data terms and the last one is a length regularisation term,
added in order to keep the curve smooth, with a positive weight penalty A. We will further
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assume that the random intensity /(x) follows a Rayleigh pdf with a parameter ¢

pI(x)) = @exp (—I(X)2> and o2y = fQ I(x)°d , 2)

c? 202 2 er dx

where 62y is a Maximum Likelihood estimates under the assumption that all the observed
pixels in the domain €, are identically distributed. In the work of Sarti et al. [28], only two
global domains were used, Q; for the inside and €, for the outside pixels. Therefore the
hypothesis of identically distributed observations is generally false for ultrasound images
because of the presence of strong intensity inhomogeneities due to attenuation and other
factors. However, the assumption remains true if the estimate is made locally in a region
centered around each pixel of the domain Q. Thus the energy corresponding to the inside
term of (1) is given by:

“4)

<)2
Ei(¢)=/QH(¢) [ZICEZEX) +log(c2(x)) | dx N
and o7 (x) = JoH(9)K(x—&E)I(E)*dE

2[oH(9)K(x—5)ds

here K(-) is any given kernel defining the spatial locality around the position x. In this work
a Gaussian kernel with a standard deviation o is used. For computing the Euler-Lagrange
equation of (3), we employ the Giteaux derivative. Following [5], for any point x and for
any perturbation y(x) we have:

0 i X 2
w -0 :/ 5(¢(x)) {21(522 )—Hog( (X))} y(x)dx
—I(x)2
+/H { §G)4( I)( ) ]cq%(x)dx ; (5)

Ja3((E)K(x— E)(I(E)* = o2(x)) w(£)de
2 JoH(9(2))K (x—2)dz '

(6)

where  o5(x 2(x) =

Using the following notations:
x) = [ Kx=y)H(@m)dy = (K<H(0)) () |
.y 2_p2
R(x) = (K(‘”ffﬂ”) A= (£ TS ) )

where K is the mirror version of K and * is the convolution operation. The Euler-Lagrange
equation for the minimization of the energy E;, given in (3), obtained from (5) simplifies
then as follows:

I(x)?
207 (x)

1

0=8(0) | 13 +low(G(6) +  (10PRx) - ().

and can be implemented very efficiently using recursive gaussian filtering [12]. The deriva-
tion of the Euler-Lagrange equation corresponding to the energy in , (second term in the
sum in (1)) is obtained by analogy to the above equation. The gradient of the length term
can be found in [8, 28].
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3 Spatial scale selection

Local region-based segmentation models are surely a better alternative to global ones in the
presence of intensity inhomogeneities. Such models however may be more sensitive to ini-
tialisation if the chosen local spatial scale is not appropriate. A decrease of robustness to
noise is also observed when small scales are used. To our knowledge, two pixel dependent
scale selection methods have been introduced recently. Piovano and Papadopoulo defined
the local scale as “the smallest one inducing an evolution speed superior to a given thresh-
old” [27]. Yang and Boukerroui proposed that the optimal scale is “in the sense of the mean-
square error minimisation of a Local Polynomials Approximation (LPA) of the observed
image conditional on the current segmentation” [35]. The former is a generic approach and
the latter is based on an Intersection of Confidence Intervals (ICI) algorithm, which finds
the optimal LPA estimate of the image. Since, the LPA assumes an additive gaussian noise
model, the performances of this method may decrease when the noise model is not additive
gaussian. In this section, we first recall Piovano and Papadopoulo’s methods and then in-
troduce a new generic ICI rule for the spatial scale selection. Both methods can estimate
continuous scales but for efficiency reasons, the search is generally limited to a finite set of
ordered scale values h = {h; < hy < ... <hy}.

3.1 Evolution speed threshold based approach

In [27], the idea is to find the most salient scale to make the contour locally evolve. It is
defined as the smallest one inducing an evolution speed superior to a given threshold &:

h*(x) :}irelg{h: |0:¢(x)| >¢€ and ox=h} . @)

Thus, at each iteration of the level set evolution, the optimal scale is found for every image
pixel along the zero level set function, by increasing ok (x) from the minimum #; to the
maximum /;, until the absolute value of the evolution speed is superior to €. It is unclear
how to fix the positive constant €.

3.2 ICIrule

In the following section, we introduce a new alternative approach in order to choose a good
value for the spatial scale at every pixel location along the contour. Our approach is based on
the idea of choosing the largest scale that gives the best estimate of the segmentation model
parameters. The approach is generic and can be applied to any parametric pdf. For the sake
of clarity, we detail the development for the Rayleigh case only and we give the main results
for the Gaussian case.

3.2.1 The Rayleigh case

It can be shown that the ML estimator of 62 given in eq. (2) is efficient. It is therefore
unbiased and has the lowest possible variance defined by the Cramer-Rao bound. It is also

asymptotically Gaussian as it is a ML estimator: for n — o 62 — N(0?,6%/n) where
n= [o, dx in our context. Therefore we can estimates a Confidence Interval on the estimates
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of 6% by :

o’ o’
P|o*e ——= ~l—a . ®)
1+ —o/2 1— 1-0/2
vn vn
where u, is the o™ percentile of the standard Gaussian distribution A(0,1). Equivalently,
the confidence interval for the the estimator 67(x) given in eq. (4) is given by eq. (8) with

S o UaHOK&-E)E)
0% =il and n = K (x—E))dE

Therefore in an ideal situation, where the observed data is identically distributed, the
bigger n is, the better is the estimates of 62. Bear in mind that the hypothesis of identically
distributed data in the local window will become less and less valid as the scale of the kernel
K grows and will lead to an increasingly biased estimations. This means that there exists a
bias-variance balance that gives the ideal scale. We can make use of the ICI algorithm to
search for the largest local window (minin/lising variance) that gives us the best estimate of

o (minimising bias). First, the estimates 62, and their corresponding Cls are calculated for
all 4 € h. Then, the ICI rule identifies the best scale 4* as the largest in h that has a non
empty intersection of CIs with all scales in {A; € h,h; < h*}. The ICI algorithm is defined
by the following steps [13, 18]:

1. Define a sequence of confidence intervals Q; = Q(h;) with their lower L; and upper
bounds U; using eq. 8.
2. Fori=1,2,...,J—1,let

Liy1 =max{L;,Liy1}, Li=L;,
Uiy =min{U;, Ui}, U =0 .

According to these formulas, L;; | and U, are respectively non-decreasing and non-
increasing sequences.
3. The ICI rule is finding the largest i, when L; <U,, i=1,2,...,J ,is still satisfied.

3.2.2 The Gaussian case

When the observed image intensities /(x) are supposed to follow local Gaussian distribu-
tions [5], we can base our scale estimation on the confidence intervals of the local means.
Recall that if X ~ A (u,0?) and given an independent and identically distributed sample of
size n then:

—_ S Y
p (# € [X— ﬁtn—l,l—a/Z ; X+\/ﬁln1,la/2:|) =l-a. ©)

where S is the unbiased estimate of the variance and In.q 1S the oth percentile of a Student’s
t-distribution of n degrees of freedom [26]. Thus, Eq. 9 gives us a set of CIs that can be
utilised in an ICI algorithm in order to select the best scale for the estimation of the local
means. Note that eq. 9 is exact V n. By use of the Central Limit Theorem, eq. 9 can be used
as an approximation of the CIs by replacing Student’s percentiles by the Gaussian one in the
general non gaussian case.
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3.2.3 The scale selection procedure

The above proposed ICI rule is used to estimate the best spatial kernel at every pixel location
along the contour. Note however that the ICI rule will produce two scale values, 4} and /)
corresponding for the inside region Q; and the outside region Q, respectively. In [35] the
used scale corresponds to the maximum between the two values. In this work we followed
the same procedure as in [35] until converges, we ran few iterations by replacing the maxi-
mum by an average filtering and then by using directly the estimated scales: 4 for the inside
energy term and /2, for the outside energy term.

O = 20 O = 40 O = 55 O = 70 O = 200

Figure 1: Illustrative segmentation results of the local Rayleigh model on simulated US im-
ages with different: tissues characteristics, attenuation level and log compression parameters.
Thin lines show the (4 different) initialisations. For better contrast, the images are displayed
after the logarithmic compression of the envelope but the image segmentation algorithm uses
the data before compression.
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Figure 2: Illustrative segmentation results of the proposed local Rayleigh model with spatial
scale selection. First line: scale selection method of [27] with € = 0.5. Second line: the
proposed ICI based approach with & = 0.05. These results are to be compared to the one
shown in Fig.1. The used set h = {5, 10, 15,20,25, 30, 35,40,45,50,60, 70,80} for an image
size of 256 x 256.

4 Results

In order to demonstrate the usefulness of the proposed approach and quantify its perfor-
mances, we chose to test it on realistic US simulations. To this end, we have used the sim-
ulation program Field-II [16, 17], to synthesize phantom data with known ground truth. A
linear scan of a first phantom (PH1) was done with a 290 elements transducer using 64 active
elements. The scatterers in the phantom were randomly distributed within the phantom of
80 x 80 x 15 mm cube size. 128 lines were simulated at 5 Mhz. The second phantom (PH2)
of size 100 x 100 x 15 mm cube was placed at 10 mm depth from the transducer surface, and
was scanned with a 7 MHz 128 elements phased array transducer. The images consist of 128
lines with 0.7 degrees between lines. Hanning apodization in transmit and receive was used
in all experiments. Two scatterers amplitudes with three levels of tissue attenuations were
simulated for both phantoms. We also used several dB ranges for the envelope logarithmic
compression to simulate different image contrasts. Some typical images are shown in Fig. 1.

The first experiment demonstrates the behaviour of the proposed local Rayleigh approach
when different sizes of the local spatial kernel and different initialisations were used (see.
Fig. 1). Small local scales generally decrease the capture range of the active contour and
also increase the number of local minima. Big scale values lead to unsatisfactory results in
the presence of intensity inhomogeneities. Figure 2 shows the corresponding results to the
one shown in Fig. 1, when an automatic scale selection procedure is used. Observe that the
proposed ICI rule based approach outperform the method in [27].

In order to understand better the behaviour of the two automatic scale selection algo-
rithms, Fig. 3 shows the contour evolution and the estimated scale maps for the two ap-
proaches on the image of Fig. 2(middle column). Although, the interpretation of the scale
maps estimated by the proposed ICI rule is possible, it is difficult to understand the ones
obtained with Piovano and Papadopoulo’s method. Indeed, our approach is driven by a bias-
variance tradeoff for the local estimation of the segmentation model parameter, conditional
on the current segmentation map. This is why for example we get higher scales when the al-
gorithm converges (except the last iteration where we deliberately reduce the scales in order
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to increase accuracy, see sec.3.2.3). Furthermore, it is easier to set the value of o, because
it is more interpretable, then the threshold €. For this example, the segmentation fail, with
Piovano and Papadopoulo’s scale selection method, because the estimated scales are too big
in the upper part of the image.

The quantitative evaluation of the proposed approach compared to ground truth are sum-
marized in Table 1. It shows statistics of the Dice similarity Coefficient DSC (S, S;gear) =

% and the Mean Absolute Distance (MAD) [7] of segmentation results of the 60
simulated images of the two phantoms with 4 different initialisations (60 x 4 = 240 results).
The closer the DSC and the MAD values to 1 and 0O respectively, the better is the segmenta-
tion. The table shows the minimum, the three Quartiles, the maximum and the interquartile
range (IQR) of the measurements, for six sizes of the spatial kernel K(-). This table clearly
shows that local image statistics should be used in the presence of intensity inhomogeneities.
The minimum and the Q; values of DSC and the maximum and the Q3 values of MAD (in-
dicating the worst cases) are very informative. Notice also the IQR values, a robust measure
of dispersion. The worst results are for very large values of ox. In this case the algorithm’s
behaviour is similar to the global method of Sarti et al. [28]. Notice that both scale selec-
tion methods performed pretty well. These measurements indicates a superiority of the new
proposed scale section methodology on Piovano and Papadopoulo’s approach. The inter-
pretation of these data suggests the use of local statistics for the segmentation of ultrasound
images.

Figure 3: Behaviour of the two automatic scale selection algorithms. 1 and 3™ lines:
contour evolution of the local Rayleigh segmentation model for iterations 1, 10, 25, 50, 75
and 120, respectively when using the scales shown in the 2" (estimated with Piovano and
Papadopoulo’s method. see sec.3.1) and the 4" (obtained with the proposed ICI rule) lines.
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DSCx 100 MAD (in pixels)
min  Q Q> Q; max IQR | min Qi Q2 Q3 max IQR
ox=20 || 564 835 892 935 96,5 100 | 1.10 133 209 3.87 2051 254
ox=30 || 60.2 90.3 958 960 96,5 58 | 1.1l 129 138 195 2370 0.66
ox=40 || 463 954 959 96.1 96,5 0.7 | 1.11 125 138 148 2339 0.23
ox =55 542 954 957 960 96,5 0.6 | 1.10 129 139 153 2476 0.23
ox=70 || 62.7 93.7 951 957 964 20 |1.06 137 153 174 2419 0.37
ox =200 || 46.1 545 793 856 951 31.1|129 226 406 19.76 6539 17.50

ox=h* || 624 93.6 959 962 965 26 |1.11 121 131 190 2427 0.69
ok =hj || 682 955 961 962 965 0.7 | 1.09 129 136 147 2154 0.17

Table 1: Statistics of the DSC and the MAD measures obtained on 60 images with 4 different initial-
isations. ok is the standard deviation of the spatial gaussian kernel. A* is the proposed segmentation
approach with the scale selection in [27]. A, is the proposed approach with the proposed ICI scale
selection procedure. og = 200 is equivalent to the method in Sarti et al. [28].

DSCx100 MAD (in pixels)
min  Q Q2 Q3 max IQR | min Q Q2 Q3 max IQR
ox =10 625 720 90.5 946 96.1 227|111 386 1506 1793 3450 14.07
ox=20 || 659 884 948 958 963 75 | 1.14 1.61 7.78 19.80 30.33 18.19
oxk=30 || 494 939 956 959 965 19 | 1.12 143 194 12,61 2749 11.18
ok =40 58.8 89.8 948 957 964 59 | 1.15 148 202 1078 2520 9.31
ok =55 540 809 933 954 96.0 145|126 1.51 2.02 10.08 2743 8.56
ox =70 503 723 91.7 951 958 228 | 126 1.64 239 1510 5142 13.46
ox =200 || 420 50.6 645 809 950 303 | 1.51 1043 2026 41.01 7296 30.58

ox=h" || 656 795 957 96.0 96.6 165|099 144 1244 2232 3459 20.87
ox =hj; || 66.1 944 958 960 965 1.6 | 1.14 134 155 11.67 27.57 10.33

Table 2: Results on the same data set with the local Gaussian approach proposed in [5]. Note that the
last two lines make use of the scale section methods detailed in sec. 3.

For the sake of completeness and comparison, we present the performance of the ap-
proach presented in [5], which also use local image statistics modelled, however, by local
Gaussian pdfs. Figure 4 and Table 2 show results for the local Gaussian case respectively
equivalent to the one in Fig. 2 and Table 1 for the local Rayleigh. Although the DSC measure
is not very discriminative between the two models, the MAD shows clearly that the Gaussian
model is less competitive in comparison to the local Rayleigh one. This observation is also
demonstrated by Fig. 4. Here too, the used of an automatic scale selection strategy improves
significantly the segmentation results over the single scale segmentation algorithm. Finally,
it is important to mention that in the Gaussian case there was a need to increase the contri-
bution of the regularisation of the length term (in comparison to the Rayleigh case) in order
to obtain acceptable results.

5 Conclusion

This paper presents the adaptation of the global model proposed by Sarti et al. [28], in order
to use local image statistics. We kept the variational framework and the Rayleigh pdf to
model the observe intensities of the ultrasound envelope image. We have also proposed an
interesting adaptive scale selection procedure based on the ICI rule. Results on realistic
simulations of ultrasound images show the robustness and the superiority of the proposed
segmentation approach in comparison to [5, 28]. The efficiency and the genericity of the
proposed scale selection strategy is also demonstrated.
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Figure 4: Same results as in Fig.2 but for the local Gaussian model. First line: scale selection
of [27] with € = 0.5. Second line: with the proposed ICI based approach with ¢ = 0.01.
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