
HAL Id: hal-00731766
https://hal.science/hal-00731766

Submitted on 13 Sep 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the Fly PSO Inspired Algorithm For Graph
Distribution

Djamel Eddine Saïdouni, Ahmed Chawki Chaouche, Jean-Michel Ilié

To cite this version:
Djamel Eddine Saïdouni, Ahmed Chawki Chaouche, Jean-Michel Ilié. On the Fly PSO Inspired
Algorithm For Graph Distribution. 2nd International Symposium on Modelling and Implementation
of Complex Systems, May 2012, Constantine, Algeria. pp.156-163, �10.1016/j.procs.2013.09.022�. �hal-
00731766�

https://hal.science/hal-00731766
https://hal.archives-ouvertes.fr

Proceedings of MISC 2012 - 2
nd

 International Symposium on Modelling and Implementation of Complex Systems

Constantine, Algeria, May 20-21, 2012

On the fly PSO inspired algorithm

for graph distribution
SAIDOUNI Djamel Eddine

#1
, CHAOUCHE Ahmed Chawki

#2
, ILIE Jean-Michel

*3

#
MISC Laboratory, Mentouri University

Constantine, Algeria
1
saidouni@misc-umc.org

2
ac.chaouche@misc-umc.org

*
LIP6, Pierre and Marie Curie University - Paris 6

Paris, France
3
jean-michel.ilie@upmc.fr

Abstract— This paper deals with clustering applications, it

proposes an on the fly algorithm for distributing graphs. The

proposed algorithm is based on the meta-heuristic "Particle

Swarm Optimization (PSO)". For the sake of presentation, the

idea of adapting the PSO algorithm for graphs distribution is

developed firstly by assuming that the graph is already

generated. After that a distributed algorithm is proposed for

concurrently generating and distributing graphs. This

distribution should ensure the workload balancing property and

the minimization of the number of distributed inter-site edges.

Keywords— Distributed system; Distributed algorithms; Graphs

distribution; PSO;

I. INTRODUCTION

Nowadays networks communications are more and more

used in almost domains. In particular, they are used for

improving the performance of applications. In fact, distributed

versions of several applications are proposed for augmenting

the storage capacity and accelerating the computing. As an

example of such applications, e.g. this is often the case formal

verification of systems. The main problem of this application

is the combinatorial explosion of state space graph and the

related computing. One solution consists in the distribution of

the graph.

The graph distribution in the several sites is not an easy

task because several factors should be taken into account to

have a good distribution. Among the most important of them

are the workload balancing of sites in terms of the sub-graphs

sizes, and minimization of the distributed inter-site edges

belonging distinct sites. This last factor directly contributes to

the reduction of the inter-site messages during the distributed

verification operation. Hence saving network communication

capacity and also time computations.

Among the distribution approaches, the hash coding

function MD5 (MD5: cryptographic hash function that

produces a 128-bit, it has been employed in a wide variety of

security application) is largely used over cluster (Cluster:

group of linked computers, working together closely thus in

many respects forming a single computer). In practice, it

offers a good compromise between power calculation, used

memory and workload [2], [3], [10], [11].

As an important drawback, it generates an excessively rate of

the edges linking sub-graphs being distributed. This is due to

the distribution function which is generally insensitive with

guarding to this parameter. This generates a considerable

slowdown of verification stages over the distributed graph. In

addition, practical experiment showed that both the workload

balancing and reduction distributed inter-site edges [14], [16].

In this paper, we propose an on the fly algorithm based on

the distribution the system state. We propose to use the meta-

heuristic "Particle Swarm Optimization PSO" as an adaptive

technique. The aim is to compare with the MD5 algorithm

while reducing the number of inter-site edges.

The PSO approach is a well-known approach in

optimization areas, that to knowledge, its use for graph

distribution is a premier experience.

The paper is scheduled as follows. In section II, the PSO

meta-heuristic is reviewed. The section III introduces our

formalization of distributed graphs. In Section IV, we show

how to re-express the PSO concepts in the context of graph

distribution. For the sake of clarity, centralized approach is

used first. In section V, we propose an on the fly distributed

algorithm for graph distribution. Section VI is dedicated to

comparisons again the MD5-based approach. The last section

is our conclusion and perspectives.

II. PARTICLE SWARM OPTIMIZATION (PSO)

The particle swarm optimization (PSO) is a class of

algorithms inspired from social behavior of animals evolving

on swarm, such as migratory birds or fishes. The particles of

one same swarm communicate directly together in order to

search the best solution. The search process is based on their

collective experience [1], [5], [7], [9], [17].

At the initialization step of the algorithm, a swarm is

randomly distributed in the search space. Each particle has a

random speed too [5]. Then, at each process step:

• Each particle is able to valuing the quality of its

position and to remember its best performance, i.e. the

best position that it has achieved so far (that can in fact

be sometimes the current position) and its quality (the

D.E. SAIDOUNI et al.

104

function value in this position). In what follows, these

behaviors can be classified [6], [8]:

• The “adventurous trend”, consists to continue

according the current speed,

• The “conservative trend”, bringing more or less to

the best position already found,

• Each particle is able to ask a certain number of its own

kind (its neighbors, including itself) and to obtain for

each of them its own best performance (the related

quality), it is called “panurgian trend”.

• At each computing step, each particle chooses the best

between best’s performances of its neighborhood

modify its speed according to this information and its

own data and move consequently.

Fig. 1. Particle movement diagram

Neighborhood The neighborhood can be defined according

by different topologies relating the particles, such that ring,

star and beam topologies (Figure 2).

A. PSO algorithm

1) Notation: In the algorithm, the dimension of search

space is �. The current position of a particle at the moment �
is given by a vector ����, of � components. Its current speed

is ����. The best position found until now by this particle is

given by a vector ����. Finally, the best of those found by the

neighbors of the particle is referred by using a vector ����
(when � is known by the context, we denote �	 �	 � and �).

The d
th
 component of any of these vectors is indicated by the

index A (for example �B). With these notations, the movement

equations of a particle are, for each dimension A:

• �B�� C D� EF E ���B��� EC E���A��	 �������B �E�B���� EC
E���A��	 �������B � �B����E

• �B�� C D� EF E�B��� EC E�B�� C D�E
For improving the convergence, the values of �� and ����

must not be chosen independently. In practice, the first must

be slightly less than D and the second can be calculated by the

equation ���� � ��E�E������ � E! E��� The more �� is closed

to D, the good is the exploration of the search space (generally

we take �D � ���) [7].

Fig. 2. Particles neighborhood topologies

2) The algorithm: [12]

Algorithm 1 "�#$�E%&'

1: �E F E� ;

2: for Particle � do

3: for Dimension A do

4: Initialize �B���;
5: Initialize �B���;
6: end for

7: end for

8: repeat

9: Select the particle �B��� that has the best fitness in

the current iteration;

10: for Particle � do

11: for Dimension A do

12: Calculate the speed �B�� C D�;
13: Update the vector position �B�� C D�;
14: Calculate the value of fitness (��B����;
15: If (��B����) (�%B����then

16: %B�� C D� EF E%B���;
17: end if

18: end for

19: end for

20: �E F � C DE;
21: until (termination criteria verified)

Termination criteria if the following two conditions are

verified:

• �E � E ���� EEE
• *+,-�+E-.#�E�.�(� -.#�E�.�(E,(E% / E������D�.�#�

3) Algorithm parameters:

• The problem dimension �,

• The number of particles 0,

• The size of neighborhood 1,

• The values of coefficients 2�,2���,

• The search space interval 34�56E	 4���78,

• The fitness function (�

III. DISTRIBUTED GRAPHS

Definition 1: An directed graph * is defined by * � 9:	 ;<
such that:

• : : a finite set of nodes.

• ; : a finite set of edges connecting the nodes such that :

• ; = E:>.

• ? and @ are two applications of ; in : such that

every edge . � ��	 �A� denotes: ?�.� � � , is the

origin of the edge and @�.� � �A its starget.

Notice 3.1: The nodes � and �A of : are said adjacent iff

��	 �B� C ; or ��B	 �� C ;.

Let D � EDFGFH���I be 0 sites, a distributed graph (namely

DiG), is a graph associated with a partial distribution function

(F.

�$* � 9*	 (F<FH���IE
(a) Star (b) Ring (c) Beam

On the fly PSO inspired algorithm for graph distribution

105

such that :

• J � 9K	 L< is an directed graph.

• (F M * NE*F is an application of * in *F , such that

*F E� 9:F 	 ;F<.

Notation 3.1: E*FG�OEFOEI is a set of subsets called

fragments *F, such that P :F � : and P ;F � ;.

Definition 2: A fragment *F is defined by *F � 9:F 	 ;F< such

that :

• :F = E: M E:F is a fragment of nodes of : in the site DF.

• ;F � ;F
Q RE;F

S such that ;F
Q TE;F

S � U is the set of

intra-site and inter-site edges with :

• ;F
Q =E:F

> is the set of edges between nodes

belonged in the same site DF (Local edges).

• ;F
S = :F ! �: V :F� � E��F 	 �AF�such that �F C E:FE

and �F
B W E:FEG is the set of edges whose the origins

are in the local sites and the stargets are in the

remote sites (Remote edges).

• ?F et @F are two applications of ;F in : such that

for every edges . � ��	 �B� C E; :

• ?F�.� � � C E:F indicates the origin of the edge

..

• @F�.� � �B C E:F if . C E;F
Q and @F�.� � �B W

E:AF else.

IV. GRAPHS DISTRIBUTION BASED ON PSO

A naive application of the PSO algorithm for the optimal

distribution of graphs assumes the existence of all the possible

solutions (the set of possible distributions of the graph). Thus,

a solution can be defined by the set of sites each one with a

sub-graph, the optimal solution will be denoted by the set

E�DF	 *F
XY�	 Z � D� � 0G (Figure 3). In our context a particle

will be defined by a site and a sub-graph that it contains. The

movement of particles of the swarm begin from the initial

state defined by E�DF 	 U�	 Z � D� � 0G . The moving of a

particle %F (%F � �DF	 *F�) hence result in the nodes of added

to its sub-graph *F. After this movement the particle is so in

the state �DF	 *FBE� such that *F � *F C �.[E�,A.#.

Fig. 3. The algorithm evolution

The adaptation of the PSO algorithm to graph distribution

problem requires the definition of the current speed of particle

moving as well as its new speed.

Definition 3: The current speed of a particle %F (%F �
�DF	 *F�) is defined by the more suitable adjacent node in

term of connectivity with the sub-graph. This node constitutes

its best performance.

In Figure 4, the current speed of the particle %> � �D>	 *>�
is the adjacent node �\. Assuming that this node is attributed

to D> , its new speed will be the node �> . The dynamic

evolution of the algorithm is explained through the example of

the section IV-A.

Notation 4.1: Let a particle %F � �DF 	 *F�:
•]A^�%F� : adjacent nodes of %F,

•]A^_�%F� : current speed of %F,

• 0_��	 %F� : defines the particle %̀ to which the node �

will be added. The computation of this particle is started

by the particle %F (%̀ can be %F).

In the example of Figure 4:

•]A^�%>� E� E��	 �>	 �\G,
•]A^_�%>� E� E�\G,
• 0_��\	 %>� E� %>,

Fig. 4. Particles speeds

A. Illustrative example

By considering centralized treatment, the particles of the

swarm are assimilated to sites. Each one DF with sub-graph

*F.

The next example illustrates the different steps of the

algorithm for the distribution of a graph. We have 5 particles

in the nets (E�D�	 *��	 a 	 �Db	 *b�G). The initiator site of

calculation is D� (Figure 5.b). The graph to be distributed is

composed of DcE�,A.# (: � E��	 �>	 a 	 ��dEG) (Figure 5.a).

Fig. 5. Initial state

In the initial state, the particles are defined by ED5 	 *5
e	 $ �

D� � 0G such that *5
e � U.

All the sites are idle with the exception of the initiator site

D� that ensures the computing (centralized execution of the

algorithm). Thus, D� defines the structure of E#f-����g#

(*�	 a 	 *b) that will be associated to sites (D�	 a 	Db) which

constitute the final states of particles (%�	 a 	 %b). Indeed, at

each iteration, it chooses the E best nodes in term of

connectivity with the others nodes of the graph. The selected

nodes are attributed respectively to the Eparticles (the Esub-

graphsE*F) (Figure 6.a). The initialization phase is followed

(a) (b)

D.E. SAIDOUNI et al.

106

by the creation of local and remote edges related to each

particle (%F). The selected nodes are removed from the set of

remaining nodes h in D�(Figure 6.b).

Fig. 6. Initialization step

As a result of the initialization step, the cardinality of *F
� is

similarly to one. The initiator site D� treats the remaining

nodes according to the order defined by the circulation of the

token in the virtual ring linking the particles (%�	 a 	 %b)

(Figure 7).

For each E*F , the initiator site calculates]A^�*F� (whatever

incoming or outgoing edges) (Figure 9.a), and chooses the

best node defined by]A^_�*F�. In case of equality between

nodes, the choice is arbitrary (Figure 9.b). At the last step, the

selected node is attributed to the most convenient sub-graph

according to the adjacency degree implied by the sub-graphs

nodes (the related sub-graphs are *F and its two neighbors)

(see Figure 9.c).

Fig. 9. 1st iteration of the algorithm according to Figure 5

The addition of a node to a sub-graph *F changes the

adjacence relation of *F (Figure 10).

The distributed graph is given by Figure 11.a. So that sub-

graphs can be distinguished. Figure 11.b illustrates the

repartition of the graph on the different sites. The expected

result relates to the workload balancing and the minimization

of the inter-site edges. These can be through the example.

Fig. 10. Updating after the add of a node on %�

Fig. 11. Distributed graph representation

B. PSOGD algorithm

PSOGD: PSO inspired Graph Distribution

1) Hypotheses :

H1. D � EDFG�OEFOEI : is a finite set of 0 sites,

H2. Di C ED : is the initiator site,

H3. j&j k E jDj: is the number of nodes to distribute (the

number of graph nodes is assumed to be high w.r.t.

the number of sites),

H4. E*FG�OEFOEI : is the set of graph fragments in the sites

DF. At first, the graph fragments are empty,

H5. The graph * is generated and initially stored at the

site Di.

Algorithm 2 %&'*��*	D�
Constants : 0E � jDj : number of sites;

Variables : h : set of remaining nodes not attributed;

1: Initialization();

2: repeat

3: for Z � D� � 0 do

4: �F F E]A^_�*F�;
5: *̀ F E0_��F 	 *F�;
6: lmm�no	 pq�;
7: h F Eh V E�FG;
8: rnd for

9: Until (0% � U)

10: Stock *F to DF;

V. ON THE FLY GRAPH DISTRIBUTION

In this section, we propose an on the fly algorithm which

distributes graphs during their generations. This solution

includes two components: on the one hand, the PSOGD

algorithm is used for the initialization. At this step s nodes

are assigned to each site as seen in section IV. On the other

(a) (b)

Fig. 7. %F Neighbourhood Fig. 8. Virtual ring

(b) (c) (a)

(a) (b)

(a) (b)

On the fly PSO inspired algorithm for graph distribution

107

hand, the on the fly algorithm run concurrently over each site

(Figure 12.b).

Initialization()

1: Select 0 nodes E�FGFH���I C E:;

2: for Z � D� � 0 do

3: :F FE E�FG;
4: ;F

Q EF E��F 	 �F�G if ��F 	 �F� C E;;

5: ;F
S F E��F 	 �̀ �G if t�F 	 �̀ u C ;Eet �̀ C E �: V :F�;

6: h F E: V E�FGFH���I;

7: end for

lmm�no	 pq�
1: :F FE:F R E�G;
2: vE. C E;Esuch thatE�. � ��	 �B� w E. � ��A	 ���	
3: if �B C E:F then

4: ;F
Q FE;F

Q R E.G;
5: else

6: if �B C E :̀ such that ^ x EZ then

7: ;F
S FE;F

S R E.G;
8: end if

9: end if

Fig.12. Initialization phase

A. PSOFGD algorithm

PSOFGD : PSO inspired on the Fly Graph Distribution

1) Hypotheses: Assume that H1, H2, H3 and H4 (section

IV-B1) are maintained moreover consider the hypotheses H5

and H6:

H5. A part of * with s ! E0 nodes is generated and

distributed by the initiator site Di using the PSOGD

algorithm 2 (0 is the sites number while s is the

average nodes number in each site after the

initialisation step).

H6. A generation process &f����� is associated to each

site.

Notice 5.1: &f����� is a function implemented in each site

DF such that &f�����yE: z E%�:�
For a node �5, &f����5� � E�5

�	 �5
> 	 a 	 �5

`G: is the finite set

of successor nodes of �5.

Algorithm 3 %&'{*��*	D�
Constants :

|E � jDj : number of sites;

} : average number of nodes put over each site after the

initialisation step;

Variables :

|~ � E� such that #f����� C E: � UG : the remaining nodes

to be explored;

|~o : the subset of 0; in the site DF;

� : array of 3�7 Boolean; % neighbors responses

|lo � E��	 �A	 "�G : the set of remaining nodes such that �A
is the remaining node, � is its predecessor and " is the

neighbours responses;

1: Initialization();

2: for DF C ED do

3: for � C E0;F do

4: 0;F F E0;F V E�G;
5: for �B C E#f����� do

6: if �B C E:F then

7: ;F
Q FE;F

Q RE�E��	 �A�G;
8: else

9: 0]F F E0]F R E��	 �A	 U�G
10: Send ��������nA	 o�to DF_�; %left neighbor

11: Send ��������nB	 o�to DF��; %right neighbor

12: end if

13: end for

14: end for

15: end for

Initialization()

1: Di generates and distributes a graph parts such that
j&j � s ! E0, using the algorithm 2;

2: Assign each sub-graph *F to DF;

3: 0;F F E0; TE:F;

At the reception of ��������nA	 q�
1: if ��E�BBsuch thatE�B � E�BB �E�BB C E:F�E then

�y Send �������������	 nA	 o� to ��;E
�y elseE
4: ����E��������������	 nB	 o� toED̀ �
5: end if

At the reception of ��������������	 nA	 q�
6: for ��	 �B 	 "� C E0]FE do

7: " F E" R E.�$#�G;
8: if �.�$#� � ��f.� then

9: ;F
S FE;F

S REE��	 �A	 D̀ �G;
D�y 0;F F E0;F V E�AG;E
11: end if

12: if (j"j � � � �vE- C E"	 - � (�+#.�� then

13: ;F
Q FE;F

Q R E��	 �A�G;
14: 0;F F E0;F V E�AG;
15: end if

16: end for

(a) (b)

D.E. SAIDOUNI et al.

108

2) Algorithm illustration

Initially, Di generates a sub graph composed of s ! E0

nodes. These nodes are distributed on the 0 sites according to

the algorithm 2. The initialization step is followed by the

exploration of nodes successors. This task is done

concurrently by the network sites using the distributed

&f����� function. The variable 0; denotes the set of non

explored nodes. This set is distributed on the network sites.

E0;FGFH���I denotes the non explored nodes stored at site DF

(Figure 12.b).

After the initialization phase, which is fully centralized and

executed on Di, the computing is distributed on the network.

All sites DF computes each remaining nodes to be explored

sequentially � C E0;F . Given a node � in site DF , its

successors are &f����� (Figure 13). Let �B C E&f����� ; the

site verifies the existence of the node locally, if it is the case a

local edge is created. Otherwise DF queries its neighbours

(DF�� and DF_�) for the existence of �A in their nodes sets

(respectively :F�� and :F_�), by sending a request (which

contains the node sought �A and the index of the interrogator

site Z).

Fig. 13. On the fly generation of a remaining node

At the reception of h.�f.#���A	 ^� by DF, it checks if there

is a node equivalent to �A in :F and it returns a positive or

negative response to the interrogator site D̀ .

At the reception of h.#�,�#.�.�$#�	 �A	 ^� by DF, the boolean

.�$#� equals ��f. means that the node �A exists in D̀ . Hence

DF creates the edge linking the predecessor � to the

equivalent of �A (Figure 14).

Fig. 14. Nodes affectation

Otherwise, after the reception of two negative responses

from the two neighbors concerning �B (.�$#� � (�+#. and

j"j � �), then �A is located neither on DF nor on its

neighbors, it is assigned to DF.

VI. RESULTS

To show the advantages of the proposed approach, we

compare it to the hash function (MD5) based algorithm. From

study examples treated in the literature in order to approach

more closely to the combinatorial explosion problem in the

formal verification applications. As an example, let us

consider the paradigm resources allocation by studying the

problem of the philosophers dinner. The specification and the

graph generation is made under the platform FrameKit [13],

[18] (FrameKit: software platform for the systems modeling

and the formal verification). More examples may be found in

[15].

TABLE I

RESULTS ACCORDING TO 6 PHILOSOPHERS

5 sites j:j �� ��� j;Qj j;Sj ¡� Time

Centralized ���E �E �E �¢��E �E �E ��E ¢E
MD5 ���E �¢E �	��E c�DE ����E �¢�E ��E E
PSOGD ���E D�E D	£�E ��¢¢E D� £E c��E ��E D��E
PSOFGD £�cE DcE �	��E D�¢DE D� £E D�E ���E � E

Table I illustrates the various results for 6 philosophers

knowing that the states graph is distributed on 5 sites. Such as

�� represents the standard deviation of the nodes number

(j:Fj) on each site, ��� � ¤¥
j¥j . is the rate of local edges

compared to all the edges, � ¦§

j¦j and ¡� is the rate of

replicated nodes compared to all the nodes, ¡� � j¥¨©ª«¬­Æ¯Ej

j¥j .

Table I shows that the standard deviation (��E) of

distributed nodes on the various sites is tiny, this means that

the network sites are well balanced.

For the rate of the local edges compared to all the edges, we

notice that PSOGD and PSOFGD algorithms are very higher

than that of the function MD5. This result is a consequence of

the PSO based graph distribution.

Nevertheless, we see that the rate of replication nodes

compared to all the nodes of PSOFGD algorithm is

considerable. This result is caused by the used neighborhood

topology.

The reader may remark that the computing time of the

proposed algorithm is more grater that the computing time of

the MD5 based algorithm. This is due to the communication

cost and additional calculation during the attribution of each

node.

VII. CONCLUSION

In this paper, we proposed an on the fly algorithm based on

the meta-heuristic PSO for distributing graphs. For that, we

showed on the one hand, how to translate the ingredients

constituting the meta-heuristic PSO such that swarms, speed,

direction and neighborhood may be adapted to a platform

made up of 0 distributed sites and their progressions in time

for distributing graphs. On the other hand, integrating the on

the fly algorithm in each site to compute concurrently graph

states.

The results showed that the proposed algorithm is very

powerful in terms of workload balancing and minimization of

distributed inter-site edges. Nevertheless, the computing time

is grater than MD5 based distribution algorithm, also nodes

are replicated on several sites. This replication problem may

be studied in future works.

REFERENCES

[1] G. Berthiau and P. Siarry. Etat de l’art des méthodes d’optimisation

globale. RAIRO-Operations Research, 35(3):329–365, 2001.

[2] Zine El-Abidine Bouneb. Vérification Symbolique des Systèmes

Critiques: Approche Distribuée. PhD thesis, Université de Mentouri,

Constantine, Algérie, 2011.

(a) (b)

(a) (b)

On the fly PSO inspired algorithm for graph distribution

109

[3] Zine El-Abidine Bouneb and Djamel Eddine Saïdouni. Parallel state

space construction for a model checking based on maximality

semantics.CISA, 2009.

[4] Gary Chhartrand and Ping Zhang. Chromatic graph theory. Kenneth H.

Rosen. Taylor & Francis Group, LLC, 2009.

[5] M. Clerc and James Kennedy. The particle swarm: Explosion, stability,

and convergence in a multidimensional complex space. In Proceedings

of the IEEE Transactions on Evolutionary Computation, 6:58–73,

2002.

[6] Maurice Clerc. L’optimisation par essaim particulaire, france télécom

r&d. Tutoriel pour OEP 2003, 2003.

[7] Maurice Clerc and Patrick Siarry. Une nouvelle métaheuristique pour

l’optimisation difficile : la méthode des essaims particulaires, october

2003.

[8] Philippe Collard, Manuel Clergue, and Sébastien Vérel. Introduction

aux systèmes complexes : Optimisation par essaims particulaires. April

2009.

[9] Antoine Dutot and Damien Olivier. Optimisation par essaim de

particules: Application au problème des n-reines. 2004.

[10] Hubert Garavel, Radu Mateescu, and Irina Smarandache. Parallel state

space construction for model-checking. tome 2057, 2001.

springerlink.com/openurl.asp?genre=article&id=63D7C9EN4BJKAY

QW.

[11] Alexandre Hamez. Génération éfficace de grands espaces d’états. PhD

thesis, Université Pierre & Marie Curie Paris 6, Paris, France,

december 2009.

[12] James Kennedy. Small worlds and mega-minds: Effects of

neighborhood topology on particle swarm performance. In IEEE

Congress on Evolutionary Computation, 3:1932–1938, 1999.

[13] Fabrice Kordon. Framekit version 1.4 : Manuel de référence.

http://www.lip6.fr/framekit.

[14] Flavio Lerda and Riccardo Sisto. Distributed-memory model checking

with spin. In Proc. of the 5th International SPINWorkshop, tome 1680

de LNCS, Springer-Verlag, 1999.

[15] Djamel Eddine Saïdouni, Ahmed Chawki Chaouche, and Jean-Michel

Ilié. Algorithme de distribution de graphes basée sur pso (version

étendue). 2012. http://misc-umc.org/documents/4.pdf.

[16] Ulrich Stern and David L. Dill. Parallelizing the mur ° verifier.

Computer Aided Verification, pages 256–278, 1997.

http://citeseer.ist.psu.edu/stern97parallelizing.html.

[17] Abida Toumi, Abdelmalik Taleb-Ahmed, Khier Benmahammed, and

Naima Rechid. Optimisation par essaim de particules : Application à la

restauration supervisée d’image. 2003.

[18] Jean-Baptiste Voron. Projet coloane: environnement graphique de la

plate-forme framekit (plug-in eclipse). http://coloane.lip6.fr.

