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Abstract— This paper deals with clustering applications, it 

proposes an on the fly algorithm for distributing graphs. The 

proposed algorithm is based on the meta-heuristic "Particle 

Swarm Optimization (PSO)". For the sake of presentation, the 

idea of adapting the PSO algorithm for graphs distribution is 

developed firstly by assuming that the graph is already 

generated. After that a distributed algorithm is proposed for 

concurrently generating and distributing graphs. This 

distribution should ensure the workload balancing property and 

the minimization of the number of distributed inter-site edges.  

 

Keywords— Distributed system; Distributed algorithms; Graphs 

distribution; PSO; 

I. INTRODUCTION 

Nowadays networks communications are more and more 

used in almost domains. In particular, they are used for 

improving the performance of applications. In fact, distributed 

versions of several applications are proposed for augmenting 

the storage capacity and accelerating the computing. As an 

example of such applications, e.g. this is often the case formal 

verification of systems. The main problem of this application 

is the combinatorial explosion of state space graph and the 

related computing. One solution consists in the distribution of 

the graph. 

The graph distribution in the several sites is not an easy 

task because several factors should be taken into account to 

have a good distribution. Among the most important of them 

are the workload balancing of sites in terms of the sub-graphs 

sizes, and minimization of the distributed inter-site edges 

belonging distinct sites. This last factor directly contributes to 

the reduction of the inter-site messages during the distributed 

verification operation. Hence saving network communication 

capacity and also time computations. 

Among the distribution approaches, the hash coding 

function MD5 (MD5: cryptographic hash function that 

produces a 128-bit, it has been employed in a wide variety of 

security application) is largely used over cluster (Cluster: 

group of linked computers, working together closely thus in 

many respects forming a single computer). In practice, it 

offers a good compromise between power calculation, used 

memory and workload [2], [3], [10], [11]. 

As an important drawback, it generates an excessively rate of 

the edges linking sub-graphs being distributed. This is due to 

the distribution function which is generally insensitive with 

guarding to this parameter. This generates a considerable 

slowdown of verification stages over the distributed graph. In 

addition, practical experiment showed that both the workload 

balancing and reduction distributed inter-site edges [14], [16]. 

In this paper, we propose an on the fly algorithm based on 

the distribution the system state. We propose to use the meta-

heuristic "Particle Swarm Optimization PSO" as an adaptive 

technique. The aim is to compare with the MD5 algorithm 

while reducing the number of inter-site edges. 

The PSO approach is a well-known approach in 

optimization areas, that to knowledge, its use for graph 

distribution is a premier experience. 

The paper is scheduled as follows. In section II, the PSO 

meta-heuristic is reviewed. The section III introduces our 

formalization of distributed graphs. In Section IV, we show 

how to re-express the PSO concepts in the context of graph 

distribution. For the sake of clarity, centralized approach is 

used first. In section V, we propose an on the fly distributed 

algorithm for graph distribution. Section VI is dedicated to 

comparisons again the MD5-based approach. The last section 

is our conclusion and perspectives.  

 

II. PARTICLE SWARM OPTIMIZATION (PSO) 

The particle swarm optimization (PSO) is a class of 

algorithms inspired from social behavior of animals evolving 

on swarm, such as migratory birds or fishes. The particles of 

one same swarm communicate directly together in order to 

search the best solution. The search process is based on their 

collective experience [1], [5], [7], [9], [17]. 

At the initialization step of the algorithm, a swarm is 

randomly distributed in the search space. Each particle has a 

random speed too [5]. Then, at each process step: 

• Each particle is able to valuing the quality of its 

position and to remember its best performance, i.e. the 

best position that it has achieved so far (that can in fact 

be sometimes the current position) and its quality (the 
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function value in this position). In what follows, these 

behaviors can be classified [6], [8]: 

• The “adventurous trend”, consists to continue 

according the current speed, 

• The “conservative trend”, bringing more or less to 

the best position already found, 

• Each particle is able to ask a certain number of its own 

kind (its neighbors, including itself) and to obtain for 

each of them its own best performance (the related 

quality), it is called “panurgian trend”. 

• At each computing step, each particle chooses the best 

between best’s performances of its neighborhood 

modify its speed according to this information and its 

own data and move consequently. 

 

 
Fig. 1. Particle movement diagram 

 

Neighborhood The neighborhood can be defined according 

by different topologies relating the particles, such that ring, 

star and beam topologies (Figure 2). 

A. PSO algorithm 

1)  Notation: In the algorithm, the dimension of search 

space is �. The current position of a particle at the moment � 
is given by a vector ����, of � components. Its current speed 

is ����. The best position found until now by this particle is 

given by a vector ����. Finally, the best of those found by the 

neighbors of the particle is referred by using a vector ���� 
(when �  is known by the context, we denote �	 �	 �  and �). 

The d
th
 component of any of these vectors is indicated by the 

index A (for example �B). With these notations, the movement 

equations of a particle are, for each dimension A: 

• �B�� C D� EF E ���B��� EC E���A��	 �������B �E�B���� EC
E���A��	 �������B � �B����E

• �B�� C D� EF E�B��� EC E�B�� C D�E
For improving the convergence, the values of �� and ����  

must not be chosen independently. In practice, the first must 

be slightly less than D and the second can be calculated by the 

equation ���� � ��E�E������ � E! E��� The more ��  is closed 

to D, the good is the exploration of the search space (generally 

we take �D � ��� ) [7]. 

 
Fig. 2. Particles neighborhood topologies 

2)  The algorithm: [12] 

Algorithm 1 "�#$�E%&' 

1: �E F E� ; 

2: for Particle � do 

3: for Dimension A do 

4: Initialize �B���; 
5: Initialize �B���; 
6: end for 

7: end for 

8: repeat 

9: Select the particle �B��� that has the best fitness in 

the current iteration; 

10: for Particle � do 

11: for Dimension A do 

12: Calculate the speed �B�� C D�; 
13: Update the vector position �B�� C D�; 
14: Calculate the value of fitness (��B����; 
15: If (��B���� ) (�%B����then 

16: %B�� C D� EF E%B���; 
17: end if 

18: end for  

19: end for 

20: �E F � C DE; 
21: until (termination criteria verified) 

 

Termination criteria if the following two conditions are 

verified: 

• �E � E ���� EEE
• *+,-�+E-.#�E�.�( � -.#�E�.�(E,(E% / E������D�.�#� 

3)  Algorithm parameters: 

• The problem dimension �, 

• The number of particles 0, 

• The size of neighborhood 1, 

• The values of coefficients 2�,2���, 

• The search space interval 34�56E	 4���78, 

• The fitness function (� 

III. DISTRIBUTED GRAPHS 

Definition 1: An directed graph * is defined by * � 9:	 ;< 
such that: 

• : : a finite set of nodes. 

• ; : a finite set of edges connecting the nodes such that : 

• ; = E:>. 

• ? and @ are two applications of ; in : such that 

every edge . � ��	 �A� denotes: ?�.� � � , is the 

origin of the edge and @�.� � �A its starget. 

 

Notice 3.1: The nodes �  and �A of :  are said adjacent iff 

��	 �B� C ; or ��B	 �� C ;. 

 

Let D � EDFGFH���I be 0 sites, a distributed graph (namely 

DiG), is a graph associated with a partial distribution function 

(F. 

 

�$* � 9*	 (F<FH���IE
(a) Star (b) Ring (c) Beam 
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such that : 

• J � 9K	 L< is an directed graph. 

• (F M * NE*F  is an application of *  in *F , such that 

*F E� 9:F 	 ;F<. 
 

Notation 3.1: E*FG�OEFOEI  is a set of subsets called 

fragments *F, such that P :F � : and P ;F � ;. 

 

Definition 2: A fragment *F is defined by *F � 9:F 	 ;F< such 

that : 

• :F = E: M E:F is a fragment of nodes of : in the site DF. 

• ;F � ;F
Q RE;F

S  such that ;F
Q TE;F

S � U  is the set of 

intra-site and inter-site edges with : 

• ;F
Q =E:F

>  is the set of edges between nodes 

belonged in the same site DF (Local edges). 

• ;F
S = :F ! �: V :F� � E��F 	 �AF�such that �F C E:FE 

and �F
B W E:FEG is the set of edges whose the origins 

are in the local sites and the stargets are in the 

remote sites (Remote edges). 

• ?F  et @F  are two applications of ;F  in :  such that 

for every edges . � ��	 �B� C E; : 

• ?F�.� � � C E:F indicates the origin of the edge 

.. 

• @F�.� � �B C E:F if . C E;F
Q  and @F�.� � �B W

E:AF else. 

IV. GRAPHS DISTRIBUTION BASED ON PSO 

A naive application of the PSO algorithm for the optimal 

distribution of graphs assumes the existence of all the possible 

solutions (the set of possible distributions of the graph). Thus, 

a solution can be defined by the set of sites each one with a 

sub-graph, the optimal solution will be denoted by the set 

E�DF	 *F
XY�	 Z � D� � 0G  (Figure 3). In our context a particle 

will be defined by a site and a sub-graph that it contains. The 

movement of particles of the swarm begin from the initial 

state defined by E�DF 	 U�	 Z � D� � 0G . The moving of a 

particle %F (%F � �DF	 *F�) hence result in the nodes of added 

to its sub-graph *F. After this movement the particle is so in 

the state �DF	 *FBE� such that *F � *F C �.[E�,A.#. 

 

 
Fig. 3. The algorithm evolution 

 

The adaptation of the PSO algorithm to graph distribution 

problem requires the definition of the current speed of particle 

moving as well as its new speed. 

Definition 3: The current speed of a particle %F  (%F �
�DF	 *F�) is defined by the more suitable adjacent node in 

term of connectivity with the sub-graph. This node constitutes 

its best performance. 

In Figure 4, the current speed of the particle %> � �D>	 *>� 
is the adjacent node �\. Assuming that this node is attributed 

to D> , its new speed will be the node �> . The dynamic 

evolution of the algorithm is explained through the example of 

the section IV-A. 

Notation 4.1: Let a particle %F � �DF 	 *F�: 
• ]A^�%F� : adjacent nodes of %F, 

• ]A^_�%F� : current speed of %F, 

• 0_��	 %F� : defines the particle %̀  to which the node � 

will be added. The computation of this particle is started 

by the particle %F (%̀  can be %F). 

In the example of Figure 4: 

• ]A^�%>� E� E��	 �>	 �\G, 
• ]A^_�%>� E� E�\G, 
• 0_��\	 %>� E� %>, 

 

 
Fig. 4. Particles speeds 

 

A. Illustrative example 

By considering centralized treatment, the particles of the 

swarm are assimilated to sites. Each one DF  with sub-graph 

*F. 

The next example illustrates the different steps of the 

algorithm for the distribution of a graph. We have 5 particles 

in the nets ( E�D�	 *��	 a 	 �Db	 *b�G ). The initiator site of 

calculation is D�  (Figure 5.b). The graph to be distributed is 

composed of DcE�,A.# (: � E��	 �>	 a 	 ��dEG) (Figure 5.a). 

 

 
Fig. 5. Initial state 

 

In the initial state, the particles are defined by ED5 	 *5
e	 $ �

D� � 0G such that *5
e � U. 

All the sites are idle with the exception of the initiator site 

D� that ensures the computing (centralized execution of the 

algorithm). Thus, D�  defines the structure of  E#f-����g# 

(*�	 a 	 *b) that will be associated to sites (D�	 a 	Db) which 

constitute the final states of particles (%�	 a 	 %b). Indeed, at 

each iteration, it chooses the  E best nodes in term of 

connectivity with the others nodes of the graph. The selected 

nodes are attributed respectively to the  Eparticles (the  Esub-

graphsE*F) (Figure 6.a). The initialization phase is followed 

(a) (b) 
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by the creation of local and remote edges related to each 

particle (%F). The selected nodes are removed from the set of 

remaining nodes h in D�(Figure 6.b). 

 

 
Fig. 6. Initialization step 

 

As a result of the initialization step, the cardinality of *F
� is 

similarly to one. The initiator site D�  treats the remaining 

nodes according to the order defined by the circulation of the 

token in the virtual ring linking the particles (%�	 a 	 %b ) 

(Figure 7). 

 

 
 

For each E*F , the initiator site calculates ]A^�*F�  (whatever 

incoming or outgoing edges) (Figure 9.a), and chooses the 

best node defined by ]A^_�*F�. In case of equality between 

nodes, the choice is arbitrary (Figure 9.b). At the last step, the 

selected node is attributed to the most convenient sub-graph 

according to the adjacency degree implied by the sub-graphs 

nodes (the related sub-graphs are *F  and its two neighbors) 

(see Figure 9.c). 

 

 

 
Fig. 9. 1st iteration of the algorithm according to Figure 5 

 

The addition of a node to a sub-graph *F  changes the 

adjacence relation of *F (Figure 10). 

The distributed graph is given by Figure 11.a. So that sub-

graphs can be distinguished. Figure 11.b illustrates the 

repartition of the graph on the different sites. The expected 

result relates to the workload balancing and the minimization 

of the inter-site edges. These can be through the example. 

 
Fig. 10. Updating after the add of a node on %� 

 

 
Fig. 11. Distributed graph representation 

 

B. PSOGD algorithm 

PSOGD: PSO inspired Graph Distribution 

 

1) Hypotheses : 

H1. D � EDFG�OEFOEI : is a finite set of 0 sites, 

H2. Di C ED : is the initiator site, 

H3. j&j k E jDj: is the number of nodes to distribute (the 

number of graph nodes is assumed to be high w.r.t. 

the number of sites), 

H4. E*FG�OEFOEI : is the set of graph fragments in the sites 

DF. At first, the graph fragments are empty, 

H5. The graph * is generated and initially stored at the 

site Di. 

 

Algorithm 2  %&'*��*	D� 
Constants : 0E � jDj : number of sites; 

Variables : h : set of remaining nodes not attributed; 

 

1: Initialization(); 

2: repeat 

3: for Z � D� � 0 do 

4: �F F E]A^_�*F�; 
5: *̀ F E0_��F 	 *F�; 
6: lmm�no	 pq�; 
7: h F Eh V E�FG; 
8: rnd for 

9: Until (0% � U) 

10: Stock *F to DF; 

V. ON THE FLY GRAPH DISTRIBUTION 

In this section, we propose an on the fly algorithm which 

distributes graphs during their generations. This solution 

includes two components: on the one hand, the PSOGD 

algorithm is used for the initialization. At this step s nodes 

are assigned to each site as seen in section IV. On the other 

(a) (b) 

Fig. 7. %F Neighbourhood Fig. 8. Virtual ring 

(b) (c) (a) 

(a) (b) 

(a) (b) 
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hand, the on the fly algorithm run concurrently over each site 

(Figure 12.b). 

 

Initialization() 

1: Select 0 nodes E�FGFH���I C E:; 

2: for Z � D� � 0 do 

3: :F FE E�FG; 
4: ;F

Q EF E��F 	 �F�G  if  ��F 	 �F� C E;; 

5: ;F
S F E��F 	 �̀ �G if t�F 	 �̀ u C ;Eet �̀ C E �: V :F�; 

6: h F E: V E�FGFH���I; 

7: end for 

 

lmm�no	 pq� 
1: :F FE:F R E�G; 
2: vE. C E;Esuch thatE�. � ��	 �B� w E. � ��A	 ���	 
3: if �B C E:F then 

4: ;F
Q FE;F

Q R E.G; 
5: else 

6: if  �B C E :̀  such that ^ x EZ then 

7: ;F
S FE;F

S R E.G; 
8: end if 

9: end if 

 

 

 
Fig.12. Initialization phase 

 

 

A. PSOFGD algorithm 

PSOFGD : PSO inspired on the Fly Graph Distribution 

 

1) Hypotheses: Assume that H1, H2, H3 and H4 (section 

IV-B1) are maintained moreover consider the hypotheses H5 

and H6: 

 

H5. A part of *  with s ! E0  nodes is generated and 

distributed by the initiator site Di using the PSOGD 

algorithm 2 (0  is the sites number while s  is the 

average nodes number in each site after the 

initialisation step). 

H6. A generation process &f����� is associated to each 

site.  

 

Notice 5.1: &f����� is a function implemented in each site 

DF such that &f�����yE: z E%�:� 
For a node �5, &f����5� � E�5

�	 �5
> 	 a 	 �5

`G: is the finite set 

of successor nodes of  �5. 
 

Algorithm 3  %&'{*��*	D� 
Constants :  

|E � jDj : number of sites; 

} : average number of nodes put over each site after the 

initialisation step; 

Variables :  

|~ � E� such that #f����� C E: � UG : the remaining nodes 

to be explored; 

|~o : the subset of 0; in the site DF; 

� : array of 3�7 Boolean;   % neighbors responses 

|lo � E��	 �A	 "�G : the set of remaining nodes such that �A 
is the remaining node, �  is its predecessor and "  is the 

neighbours responses; 

 

1: Initialization(); 

2: for  DF C ED do 

3: for � C E0;F do 

4: 0;F F E0;F V E�G; 
5: for �B C E#f����� do  

6: if �B C E:F then 

7: ;F
Q FE;F

Q RE�E��	 �A�G; 
8: else 

9: 0]F F E0]F R E��	 �A	 U�G 
10: Send ��������nA	 o�to DF_�; %left neighbor 

11: Send ��������nB	 o�to DF��; %right neighbor 

12: end if 

13: end for 

14: end for 

15: end for 

 

Initialization() 

1: Di  generates and distributes a graph parts such that 
j&j � s ! E0, using the algorithm 2; 

2: Assign each sub-graph *F to DF;  

3: 0;F F E0; TE:F; 

 

At the reception of ��������nA	 q� 
1: if ��E�BBsuch thatE�B � E�BB �E�BB C E:F�E then 

�y Send �������������	 nA	 o� to ��;E
�y elseE
4: ����E��������������	 nB	 o� toED̀ � 
5: end if 

 

At the reception of ��������������	 nA	 q� 
6: for ��	 �B 	 "� C E0]FE do 

7: " F E" R E.�$#�G; 
8: if �.�$#� � ��f.� then 

9: ;F
S FE;F

S REE��	 �A	 D̀ �G; 
D�y 0;F F E0;F V E�AG;E
11: end if 

12: if (j"j � � � �vE- C E"	 - � (�+#.�� then 

13: ;F
Q FE;F

Q R E��	 �A�G; 
14: 0;F F E0;F V E�AG; 
15: end if 

16: end for 

 

(a) (b) 



D.E. SAIDOUNI et al. 

108 

2) Algorithm illustration 

Initially, Di  generates a sub graph composed of s ! E0 

nodes. These nodes are distributed on the 0 sites according to 

the algorithm 2. The initialization step is followed by the 

exploration of nodes successors. This task is done 

concurrently by the network sites using the distributed 

&f�����  function. The variable 0;  denotes the set of non 

explored nodes. This set is distributed on the network sites. 

E0;FGFH���I denotes the non explored nodes stored at site DF 

(Figure 12.b). 

After the initialization phase, which is fully centralized and 

executed on Di, the computing is distributed on the network. 

All sites DF  computes each remaining nodes to be explored 

sequentially � C E0;F . Given a node �  in site DF , its 

successors are &f�����  (Figure 13). Let �B C E&f����� ; the 

site verifies the existence of the node locally, if it is the case a 

local edge is created. Otherwise DF  queries its neighbours 

(DF��  and DF_�) for the existence of �A in their nodes sets 

(respectively :F�� and :F_� ), by sending a request (which 

contains the node sought �A and the index of the interrogator 

site Z).  

 

 
Fig. 13. On the fly generation of a remaining node 

 

At the reception of h.�f.#���A	 ^� by DF, it checks if there 

is a node equivalent to �A in :F  and it returns a positive or 

negative response to the interrogator site D̀ . 

At the reception of h.#�,�#.�.�$#�	 �A	 ^� by DF, the boolean 

.�$#� equals ��f. means that the node �A exists in D̀ . Hence 

DF  creates the edge linking the predecessor �  to the 

equivalent of �A (Figure 14). 

 

 
Fig. 14. Nodes affectation 

 

Otherwise, after the reception of two negative responses 

from the two neighbors concerning �B  (.�$#� � (�+#.  and 

j"j � � ), then �A  is located neither on DF  nor on its 

neighbors, it is assigned to DF. 

VI. RESULTS 

To show the advantages of the proposed approach, we 

compare it to the hash function (MD5) based algorithm. From 

study examples treated in the literature in order to approach 

more closely to the combinatorial explosion problem in the 

formal verification applications. As an example, let us 

consider the paradigm resources allocation by studying the 

problem of the philosophers dinner. The specification and the 

graph generation is made under the platform FrameKit [13], 

[18] (FrameKit: software platform for the systems modeling 

and the formal verification). More examples may be found in 

[15]. 

TABLE I 

RESULTS ACCORDING TO 6 PHILOSOPHERS 

5 sites j:j �� ��� j;Qj j;Sj   ¡� Time 

Centralized ���E �E �E �¢��E �E �E ��E ¢E
MD5 ���E �¢E �	��E c�DE ����E �¢�E ��E  E
PSOGD ���E D�E D	£�E ��¢¢E D� £E c��E ��E D��E
PSOFGD £�cE DcE �	��E D�¢DE D� £E  D�E ���E � E

 

Table I illustrates the various results for 6 philosophers 

knowing that the states graph is distributed on 5 sites. Such as 

��  represents the standard deviation of the nodes number 

(j:Fj) on each site, ��� � ¤¥
j¥j .    is the rate of local edges 

compared to all the edges,   � ¦§

j¦j  and ¡�  is the rate of 

replicated nodes compared to all the nodes, ¡� � j¥¨©ª«¬­Æ¯Ej

j¥j . 

Table I shows that the standard deviation ( ��E ) of 

distributed nodes on the various sites is tiny, this means that 

the network sites are well balanced. 

For the rate of the local edges compared to all the edges, we 

notice that PSOGD and PSOFGD algorithms are very higher 

than that of the function MD5. This result is a consequence of 

the PSO based graph distribution. 

Nevertheless, we see that the rate of replication nodes 

compared to all the nodes of PSOFGD algorithm is 

considerable. This result is caused by the used neighborhood 

topology. 

The reader may remark that the computing time of the 

proposed algorithm is more grater that the computing time of 

the MD5 based algorithm. This is due to the communication 

cost and additional calculation during the attribution of each 

node. 

VII. CONCLUSION 

In this paper, we proposed an on the fly algorithm based on 

the meta-heuristic PSO for distributing graphs. For that, we 

showed on the one hand, how to translate the ingredients 

constituting the meta-heuristic PSO such that swarms, speed, 

direction and neighborhood may be adapted to a platform 

made up of 0 distributed sites and their progressions in time 

for distributing graphs. On the other hand, integrating the on 

the fly algorithm in each site to compute concurrently graph 

states. 

The results showed that the proposed algorithm is very 

powerful in terms of workload balancing and minimization of 

distributed inter-site edges. Nevertheless, the computing time 

is grater than MD5 based distribution algorithm, also nodes 

are replicated on several sites. This replication problem may 

be studied in future works. 
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