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Abstract. This paper introduces an application of the eXtended FiniteElement Method (X-
FEM) to model metal forming processes. The X-FEM is used to account for material interfaces
and reduce the meshing constraints due to the shape of the tools and the evolving configuration
of the structures. Large deformations and non-linear behaviors are also accounted for, but this
contribution focuses in the modeling of frictional conditions on the interface. In X-FEM simu-
lations, the constraint of impenetrability is usually imposed using Lagrange multiplier methods.
For such strategies, stabilisation algorithms are needed to prevent the apparition of instabilities
due to the introduction of dual unknowns. The strategy presented here proposes to manage the
contact using the penalty approach. As it requires no additional variables, it is not submitted to
the same kind of instabilities. The contact problem is modeled using integration sub-elements,
defined on the boundary of the structure, on which the contactconstraints have to be enforced.
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1 INTRODUCTION

Despite the progresses in meshing and remeshing algorithms, metal forming problems are
still very difficult to handle. In fact, realistic tool geometries lead to distorted elements which
reduce the accuracy of the numerical model. To avoid the meshing constraints due to the defor-
mation of the structure, meshless method can be usefull. TheeXtended Finite Element Method
[1] allows to build a numerical model without conforming thefinite element edges with the
structure boundary.

The X-FEM is used for a wide range of applications [2]. For material-void interfaces, the
X-FEM enrichment only consists in multiplying the classical finite element shape functions
with an Heavyside function which vanishes in the void [3]. However, as these enriched shape
functions exhibit infinite gradients on the boundaries, specific integration strategies are needed
(e.g. [4] and references therein).

In the context of contact problems, the relative displacements between the tool and the ma-
terial play an important role on the metal flow and strongly influence the solution of the model,
especially in case of frictional interfaces. In an X-FEM framework, the Lagrange multipliers
method is widely used but requires stabilization strategies [5, 6]. In this contribution, the con-
tact integration is performed using the penalty approach. To this end, an integration element
which conforms to the boundary is created. On this integration element, the local penetration
is computed at integration points and is turned into a contact pressure which will be integrated
afterwards on the extended finite element. The main difficulty consists in finding the optimum
penalty parameters.

The outline of this paper is as follows. In the next section, one reminds the contact formu-
lation and the governing equations for large deformation analysis. Next, the discretization and
the numerical integration within an X-FEM framework is presented. The last part of the paper
presents some numerical two-dimensional simulations thatvalidate the proposed strategy.

2 GOVERNING EQUATIONS IN NON LINEAR QUASI-STATIC ANALYSIS

One considers a body in its initial configurationΩ0 with boundaryΓ0. In this reference
configuration, the position of a material point is denoted bythe vectorX. On timet, the body
occupies a domainΩ with boundaryΓ. The position of the material pointX in the current
configuration is denoted byx. The description of moving rigid tools is denoted byΥ(t).

One considers the problem of plane non-linear elastoplasticity under the quasi-static hypoth-
esis. The unknowns are the displacement fieldu = x−X and the Cauchy stress tensorσ. One
defines the deformation gradientF and the spatial gradient of velocityL as:

F =
∂x

∂X
and: L = ḞF

−1 (1)

in the following, the symmetric partD (strain rate tensor) and the antisymmetric partW

(spin tensor) of the spatial gradient of velocityL will be used to formulate the balance of the
structure. Imposed displacementud and imposed surface tractionst are respectively applied on
the partΓu andΓf of the boundary. One denotes byΓc the complementary part of the boundary
where contact conditions may be active. The governing equations in the current configuration
are the following:
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div
(

σ

)

+ b = 0 in Ω (2)

u = ud onΓu (3)

σ.n = t onΓf (4)

σ.n = f onΓc (5)

σ
∇J = M : D in Ω (6)

whereb, M, D andf represent respectively the body forces, the constitutive material tensor,
the strain rate tensor and the contact forces. In large deformations, the time derivative of the
Cauchy stress tensor in the constitutive law is replaced by the objective Jaumann rateσ∇J :

σ
∇J = σ̇ −W : σ + σ : W (7)

Various approches are available in the literature to compute the contact loadf . The treatment
using the penalty approach will be detailed in the followingsections and requires to compute
the penetration between the tool and the deforming body.

For each pointx on the boundary, one defines asx̄ the projection point onΥ(t). The normal
gapgn between the tool and the structure is defined as:

gn = (x− x̄).n (8)

wheren represents the normal to the tool. The normal gap gives the contact status depending
on its sign. If contact occurs (gn = 0), a normal pressurefn < 0 is induced. In the absence of
contact (gn > 0) the contact load is null. This leads to the so called Kuhn-Tucker conditions:

gn ≥ 0 , fn ≤ 0 , fngn = 0 (9)

If sticking or frictional contact is modeled, the tangential gapgt must be accounted for. It is
defined using the sliding path of the material particle on thetool:

gt =

∫ t

0

‖ġt‖ dt (10)

whereġt is the relative slip velocity.

3 THE DISCRETE PROBLEM

To formulate the discrete problem associated with the previous system of equations, let us
denote asΘ the bounding box of the material domainΩ andΘe a discrete extended finite
element (see figure 1).

Only two-dimensional problems are presently considered. The principles detailed below
should be the same for three-dimensional examples and will be studied as perspectives of the
current contribution.

3.1 Boundary description

The level set method [7] is used to implicitly represent the boundaries of the body and their
evolution. The interface between void and material is described by the iso-zero of a functionΨ
which represents the signed distance to the interface. The material part ofΘ is such thatΨ > 0
while the void part is defined byΨ < 0.
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Figure 1: Subdivision of the bounding boxΘ

In practice, the level set is evaluated at the nodes ofΘ and is interpolated on the mesh using
the finite element shape functions following:

Ψ(X, t) =
n

∑

i=1

ΨI (t) ·NI (X) with: ΨI = ±min‖x− x̄‖ (11)

whereΨI represent the nodal value of the level set on nodeI andNI the corresponding
shape function. The nodal signed distance is computed usingthe projection̄x of x onΥ. For
complex structure geometry, one usually combines different level set corresponding to each
merging interface. In this contribution, only one level setis used to find if a point lies inside
or outside the material part. Later on, the interface position is computed accurately using the
intersections between the curve describing the boundary ofthe structure and the elements edges.

3.2 X-FEM discretization

To manage the discontinuity inside the elements it is necessary to use special shape functions
in the finite element approximation. In the case of discontinuities between void and material,
the X-FEM consists in multiplying the classical finite element approximation with an Heavy-
side functionH(x) with value 1 if the point lies inside the material and0 otherwise. The
displacement fieldU(X, t) is interpolated as:

U(X, t) =

n
∑

I=1

UI (t) ·NI (X)H (X) =

n
∑

I=1

UI (t) · N̂I (X) (12)

whereUI (t) is the nodal value of the displacement. The discrete system of equations is
obtained using the weak form of the equations to be solved:

∫

Ω

∂(δu)

δx
σdΩ =

∫

Ω

δuρbdΩ+

∫

Γf

δu tdS +

∫

Γc

δu fdS (13)

Using the arbitrariness of the virtual test functionδu and the extended finite element dis-
cretisation (12) for both the displacement and the virtual test function, one gets:
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F
i = F

e + F
c (14)

with: F
i =

ne
∑

Θe=1

∫

Θe

∂N̂

∂x
σdΘ (15)

F
e =

nf
∑

Θe=1

∫

Γe
f

N̂ tdS (16)

F
c =

nc
∑

Θe=1

∫

Γe
c

N̂ fdS (17)

whereΓe
f andΓe

c denotes respectively the Neumann and contact parts of the boundary inside
an element. This equation is iteratively solved using a Newton linearization procedure. It
requires the computation of the tangent stiffness matrix associated with all the non-linearities.
The contact problem formulation is detailed in the following subsection. The processing for
other non-linearities will be detailed in a following contribution [8].

3.3 Contact Management

The contact conditions are accounted for using the penalty approach. As the contact is
only weakly enforced, a negative gap (i.e. a penetration) isallowed between the tool and the
structure. Using a contact material law, this gap is turned into a boundary stress which is
integrated over the extended finite element.

The contact contribution is computed on a one-dimensional integration element which con-
forms to the boundary of the structure inside the extended finite element. In this one-dimensional
element, one computes the gaps on each Gauss point using equations (8) and (10). These gaps
are turned into a boundary stress using penalty parameters:

f = fnn+ f tt (18)

with: fn =

{

ǫngn if: gn < 0
0 else

and: ft =

{

ǫtgt if: gn < 0
0 else

(19)

In case of frictional contact, if the tangent stress overestimates the current sliding stress,
depending on the contact material (for example a Coulomb law), one brings the tangential stress
back to its maximum value:

f t =

{

ǫtgt if: |ǫtgt| < |µǫngn|
±µǫngn else

(20)

whereµ denotes the frictional coefficient. The sign of the corrected tangent stress is set to
the sign of the overestimated tangent stress. It is important to notice that contrary to classical
penalty methods generally used in a finite element context, penalty parameters do not turn
the gap into a nodal force but into a boundary traction stress. Then, using equation (17) one
integrates this load over the extended finite element discontinuity. To compute this integral,
one uses a Gaussian quadrature rule on the one-dimensional integration element. The contact
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contribution is given by:

F
c =

nc
∑

Θe=1

nGP
∑

GP=0

wGP N̂ f |JGP | (21)

In equation (21), the weight of the Gauss points and the Jacobian determinant are taken
with respect to the one-dimensional element while the shapefunctions are computed using the
reduced coordinate of the one-dimensional integration point in the two-dimensional extended
finite element space. Using equation (21), even the nodes that lies outside the material (called
phantom nodes) will get a contact load.

For solving the associated non-linear equilibrium, a linearization of the contact contribution
is necessary and the tangent stiffness matrix associated with the contact must be computed. The
material terms are given in the following. To simplify the explanation, the tangent stiffness
matrix calculation is split between the normal and tangential parts. For the normal contribution,
it is defined as:

Kn
ikIJ =

nc
∑

Θe=1

nGP
∑

GP=0

wPGψ
T
iIψjJǫn |JGP | (22)

whereψiI = NIni. Functionψ is computed using the reduce coordinates of the Gauss
points of the integration line in the quadrangular parent configuration. Once more, the jacobian
determinant and the weight of the Gauss points are associated to the one-dimensional element.
The tangent contribution to the stiffness matrix depends onthe contact status and is defined as:

Kcon
ikIJ =

{

∑nc

Θe=1

∑nGP

GP=0
wPGψ̂

T
iIψ̂jJǫt |JGP | sticking contact

∑nc

Θe=1

∑nGP

GP=0
wPGψ̂iIψjJµǫn |JGP | sliding contact

(23)

with ψ̂iI = NIti.

4 NUMERICAL EXAMPLES

Two examples are studied: the contact between a rigid plane with a cylinder and an ironing
test. The first one aims at validating the behavior of the contact integration while the second
one proposes to manage frictional condition in a more realistic example.

4.1 Contact between a cylinder and a plane

4.1.1 Hertz contact

Following the Hertz theory, one considers an elastic cylinder in contact with a plane under
the small perturbation hypothesis. Frictionless contact is assumed. The governing equations of
the Hertz theory are not reminded here (see [9] for details) but one get the following analytical
solution for the contact pressuretN :

tN (x) =
2P

πa2
(

a2 − x2
)

= tN0

(

1−
x2

a2

)1/2

(24)

with: a = 2

√

PR

πE
(25)

6



E. Biotteau, J.P. Ponthot

wherex, E, R, P anda denotes respectively the relative position of the contact point on
the plane, the elastic modulus, the radius of the cylinder, the imposed pressure and the area of
contact. The cylinder has a radius of0.25 m and steel material parameters are assumed. The
external load on the cylinder is such that the maximum normalpressure is1.e3 Pa.

Using symmetry, only a quarter of the cylinder is simulated.The computing mesh is repre-
sented in figure 2. It consists in 200*200 elements. The characteristic length of the elements is
divided by 20 in each direction from the right top side to the left bottom side. The initial po-
sition of the cylinder is represented with a blue line. The boundary of symmetry is discretized
with a conforming mesh for an easy application of the essential boundary conditions.

Figure 2: Mesh with a zoom on the cylindrical contact zone

Figure 3: Contact normal stress as a function of the penalty parameter

Figure 3 presents the computed pressure on the plane as a function of the position. Various
penalty parameters are tested. The contact integration using the penalty method follows the
classical observations made in finite element simulations.If the penalty parameter is too small
fast convergence is achieved and few mechanical iteration are needed but it leads to unphysical
contact area and pressure. On the other hand, a too importantpenalty parameter improves the
quality of the solution but reduce the convergence rate (forexample, penalty parameter of1012

requires three times as many iterations as a1010 parameter for a similar solution).
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4.1.2 Non-linear Hertz contact

The numerical strategy is now used on a large deformation elastoplastic cylinder with fric-
tional contact on the interface. As the Hertz theory is invalid for such a situation, a classical
finite element calculation is taken as a reference solution.The extended finite element mesh
consists in a regular grid of 40*40 elements. The reference FEM calculation is performed using
1800 elements. Isotropic hardening is assumed. The yield stress and the hardening modulus are
respectively set to472MPa and3000MPa. The imposed displacement is equal to12.5% of
the radius. Figure 4 presents the corresponding Von-Mises stress in the structure.

Figure 4: FEM solution (left) and X-FEM solution (right)

One can see that a good correlation between X-FEM and FEM simulations is achieved. The
corresponding normalized forces on the tool are very close (97.4 N for the FEM model and
95.9 N for the X-FEM).

4.2 Ironing test

As a more realistic metal forming example, one considers an ironing (or flattening) test
depicted in figure 5. First, one imposes a vertical displacement of12.5% of the initial height of
the sheet to the tool. Next, an horizontal displacement of66% of the length is imposed.

Figure 5: Ironing test

The material is the same than in the previous section. One assumes a frictional coefficient of
0.3. The length of the structure is0.25m while the height is0.02m. The X-FEM mesh consists
in 40*9 elements (only the upper line of elements is cut). Thereference FEM mesh consists in
40*8 elements. To evaluate the accuracy of the contact integration, one compares the resulting
forces on the tool in figure 6.

These graphics show the horizontal and vertical forces components on the tool (denoted
respectively as FX and FY) for both the FEM and the X-FEM simulation. The right hand figure
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represents the evolution of the forces during the vertical loadUd1. The left hand side represents
the forces during the ironing phaseUd2.

Figure 6: Evolution of the normal and tangential forces on the tool during; left hand: the normal loadUd1, right
hand: the tangent loadUd2

The agreement between the X-FEM simulation and the FEM one isquite good (especially at
the beginning of the simulation). One points out that for both simulations, if no specific strategy
is used to manage the large deformations (e.g. the ArbitraryLagrangian Eulerian formulation
[10]), the mesh distortion becomes very important and even the FEM reference simulation va-
lidity may be questioned. One measures the mesh distortion using the maximum angle between
the element edges (denoted asα) as:

ǫ =
α− π/2

π/2
(26)

Then, a reference quadrangular element has a distortion ofǫ = 0 while an element with two
colinear edges have a distortion ofǫ = 1. In the contact area, on gets a maximum element
distortion of0.991 for the X-FEM simulation and0.982 for the FEM one. Whatever these
distortions, the plastic strain field seems quite similar for both simulation.

Figure 7: Ironing test - FEM solution
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Figure 8: Ironing test - X-FEM solution

In figure 7 and 8, one represents the equivalent plastic strain in the contact zone for the
FEM and the X-FEM simulations (respectively). In figure 8, the phantom nodes are plotted
such that one can see the distortions of the extended finite elements. In future works, the Ar-
bitrary Lagrangian Eulerian formulation should be implemented to improve the capabilities of
the proposed strategy.

5 CONCLUSIONS

In the same way that the internal forces is sometimes computed using integration triangular
sub-cells in the X-FEM [1], the contact loads on the structure may be computed using one-
dimensional integration elements. Their Gauss points are employed within the two-dimensional
quadrangular elements to compute the external contribution on each node and manage the be-
havior of the interface between the structure and the tool.

This strategy is very simple to handle as it is not subject to the same kind of instabilities than
the ones that introduce dual unknowns in the formulation, asLagrange multipliers method. Nev-
ertheless, for contact problem formulations, attention should be paid to the penalty parameter
values as in classical FEM calculations. Adaptive penalty strategies should help for industrial
applications.

Numerical examples show the reliability of the approach to manage frictionless or Coulomb
contact laws in the context of two-dimensional elasto-plastic large deformation analysis. How-
ever, independently of the contact formulation and for large deformations analysis, remeshing or
Arbitrary Lagrangian Eulerian strategies should also be introduced to manage high distortions
of the elements. It will be prospected in future works.

REFERENCES
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