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Kernels and designs for modelling invariant
functions: From group invariance to additivity

David Ginsbourger, Nicolas Durrande, and Olivier Roustant

Abstract We focus on kernels incorporating different kinds of prior knowledge
on functions to be approximated by Kriging. A recent result on random fields with
paths invariant under a group action is generalised to combinations of composition
operators, and a characterisation of kernels leading to random fields with additive
paths is obtained as a corollary. A discussion follows on some implications on de-
sign of experiments, and it is shown in the case of additive kernels that the so-called
class of ”axis designs” outperfoms latin hypercubes in terms of the IMSE criterion.

1 Introduction

Models based on Random Fields (RFs), and especially on Gaussian RFs, have
been increasingly used in the last decades for designing and analysing costly de-
terministic experiments [9, 7]. In most popular implementations of such models, a
constant or linear trend and a stationary covariance kernel are assumed. However,
there seems to be an enormous potential in designing kernels reflecting different
kinds of prior knowledge. Recently, a class of kernels leading to RFs with addi-
tive paths have been considered in [2] and [3]. Calling f ∈ RD (D = ∏

d
i Di where

Di ⊂ R (1 ≤ i ≤ d)) additive when there exists fi ∈ RDi (1 ≤ i ≤ d) such that
∀x = (x1, . . . ,xd) ∈ D, f (x) = ∑

d
i=1 fi(xi), it was shown in [2] that
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Proposition 1. If a centered RF Z possesses a kernel of the form

k(x,x′) =
d

∑
i=1

ki(xi,x′i) (1)

where the ki’s are arbitrary positive definite kernels over the Di’s, then Z is additive
up to a modification, i.e. there exists a random field A which paths are additive
functions such that ∀x ∈ D,P(Zx = Ax) = 1.

Are the kernels of the form k(x,x′) = ∑
d
i=1 ki(xi,x′i) the only ones giving birth to

RFs with additive paths? For a different question, [4] proposed a characterization
of kernels which associated centered RFs have their trajectories invariant under the
action of a finite group. Let G be a finite group acting on D via

Φ : (x,g) ∈ D×G−→Φ(x,g) = g.x ∈ D

Proposition 2. Z has invariant paths under Φ (up to a modification) if and only if
k is argumentwise invariant: ∀x ∈ D,∀g ∈ G,k(g.x, .) = k(x, .).

We show in Section 2 that both Propositions 1 and 2 are subcases of a general result
on RFs invariant under the class of combination of composition operators, defined
above. As a corollary, a characterization of kernels leading to RFs have additive
paths is given in Section 3, and it is shown that having the form of Eq. 1 is not
necessary. Sections 4 and 5 are dedicated to a discussion on designs of experiments
for RF models with invariant kernels, with examples in the additive case.

2 Invariances and combinations of composition operators

2.1 Composition operators and their combinations

Definition 1. Let us consider an arbitrary function v : x∈D−→ v(x)∈D. The com-
position operator Tv with symbol v is defined as follows:

Tv : f ∈RD −→ Tv( f ) := f ◦ v ∈RD

Remark 1. Such operators can be naturally extended to random fields indexed by D:

∀x ∈ D, Tv(Z)x := Zv(x)

Definition 2. We call combination of composition operators with symbols vi ∈ DD

and weights αi ∈R (1≤ i≤ q) the operator

T :=
q

∑
i=1

αiTvi
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2.2 Invariance under a combination of composition operators

Proposition 3. Let Z be a centered RF with kernel k. Then k is T-invariant, i.e.

∀x′ ∈ D, T (k(.,x′)) = k(.,x′) (2)

if and only if Z equals T (Z) up to a modification, i.e.

∀x ∈ D, P(Zx = T (Z)x) = 1

Proof. ⇐: let us fix arbitrary x and x′. Since Zx is a modification of T (Z)x, we have
cov(Zx,Zx′) = cov(T (Z)x,Zx′) = cov(∑q

i=1 αiZvi(x),Zx′), so:

k(x,x′) =
q

∑
i=1

αik(vi(x),x′) = T (k(.,x′))(x)

⇒: Using ∀x′ ∈D T (k(.,x′)) = k(.,x′), var(T (Z)x) = cov(Zx,T (Z)x) = var(Zx), so
var(Zx−T (Z)x) = 0. Since Z is centered, so is T (Z), and hence Zx

a.s.
= T (Z)x.

Example 1 (Case of group-invariance). T ( f )(x) = ∑
#G
i=1

1
#G f (vi(x)) with vi(x) :=

gi.x (1≤ i≤ #G) leads to Z Φ-invariant if and only if k is argumentwise invariant.

3 Kernels characterizing centered fields with additive paths

3.1 Additivity as invariance under a combination of compositions

Proposition 4. Assuming a ∈D, a function f : D→R is additive if and only if f is
invariant under the following combination of composition operators:

∀x ∈ D, T ( f )(x) =
d

∑
i=1

f (vi(x))− (d−1) f (vd+1(x)) (3)

where vi(x) := (a1, . . . ,ai−1, xi︸︷︷︸
ith coordinate

,ai+1, . . . ,ad), and vd+1(x) := a.

Proof. ⇐: from T ( f ) = f , f (x) = ∑
d
j=1 f j(x j) with f j(x j) := f (v j(x))− d−1

d f (a).

⇒: f (x) = ∑
d
j=1 f j(x j) implies f (vi(x)) = fi(xi)+∑

d
j=1, j 6=i f j(a j), and so
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T ( f )(x) =
d

∑
i=1

f (vi(x))− (d−1) f (a)

=
d

∑
i=1

fi(xi)+
d

∑
i=1

d

∑
j=1, j 6=i

f j(a j)− (d−1) f (a)︸ ︷︷ ︸
0

= f (x)

3.2 Kernels characterizing centered fields with additive paths

Corollary 1. A centered RF Z possessing a covariance kernel k has additive paths
(up to a modification) if and only if k is a positive definite kernel of the form

k(x,x′) =
d

∑
i=1

d

∑
j=1

ki j(xi,x′j) (4)

Proof. If Z has additive paths up to a modification, there exists a RF (Ax)x∈D
with additive paths such that ∀x ∈ D P(Zx = Ax) = 1, and so Z and A have the
same covariance kernel. Now, A having additive paths, Proposition 4 implies that
Ax = ∑

d
i=1 Avi(x)−(d−1)Avd+1(x) = ∑

d
i=1 Ai

xi
, where Ai

xi
:= Avi(x)−

(d−1)
d Avd+1(x), so

Equation 4 holds with ki j(xi,x′j) := cov(Ai
xi
,A j

x′j
). Reciprocally, from Proposition 3,

we know that it sufficies for Z to have additive paths that k(.,x′) is additive ∀x′ ∈D.
For a kernel k such as in Eq. 4 and an arbitrary x′ ∈ D, setting

∀xi ∈ Di, k̃i(xi,x′) :=
d

∑
j=1

ki j(xi,x′j) (1≤ i≤ d)

we get ∀x ∈ D, k(x,x′) = ∑
d
i=1 k̃i(xi,x′), and so k(.,x′) is additive.

4 Kriging-equivalent designs: Generalities and invariant case

We now focus on cases where two designs X ∈ Dn,X ′ ∈ Dn′ bring the same infor-
mation on Z. We first give general results, and then specify to invariant RFs.

Definition 3. X ′ and X are said Kriging-equivalent, denoted by X ′ ≡ X , iif the Krig-
ing mean and variance of Z based on {Zx,x ∈ X} or {Zx′ ,x′ ∈ X ′} coincide.

In particular two equivalent designs lead to the same Integrated Mean Squared
Error (IMSE). We now give a sufficient condition for two designs to be equivalent.

Proposition 5. If span(Zx′ ,x′ ∈ X ′) = span(Zx,x ∈ X), then X ′ ≡ X.
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Proof. Kriging is characterized by the linear conditional expectations EL(Zu|Zx,x∈
X) and EL(ZuZv|Zx,x ∈ X) (u,v in D), and hence depends only on span(Zx,x ∈ X).

Remark 2. If Z is also Gaussian, the equality of the two linear spans guarantees
that the whole conditional processes Z|Zx,x ∈ X and Z|Zx′ ,x′ ∈ X ′ have the same
distribution. In particular conditional simulations performed with X or X ′ coincide.

Corollary 2 (An exchangeability condition). Assume that ∃x′ /∈X ,Zx′ =∑x∈X αxZx,
with αx 6= 0,∀x ∈ X. Then ∀x ∈ X ,X−{x}+{x′} ≡ X ≡ X +{x′}.

Remark 3. The condition “αx 6= 0,∀x ∈ X” is one way to guarantee that the dimen-
sion of span(Zx,x ∈ X) does not decrease when exchanging one Zx by Zx′ .

Corollary 3 (Invariant kernels). Let us consider a combination of composition op-
erators T =∑

q
j=1 α jTv j , with ∀ j = 1, . . . ,q,α j 6= 0, and assume that k is T -invariant.

For x ∈ D, denote Xv(x) := (v1(x), . . . ,vq(x)). Then for j = 1, . . . ,q, we have:

Xv(x)≡ Xv(x)− v j(x)+{x} ≡ Xv(x)+{x}

Proof. This results from the fact that T (Z) = Z (Proposition 3) and Corollary 2.

Example 2 (Equivalent designs for additive kernels). Let us assume that Z is 2-
dimensional, with an additive kernel k, and consider a rectangle design:

X = {x(1) = (a1,a2),x(2) = (b1,a2),x(3) = (a1,b2),x(4) = (b1,b2)}

with a,b ∈ D,a 6= b. Then, all 3-point designs contained in X are equivalent:

(x(1),x(2),x(3))≡ (x(1),x(2),x(4))≡ (x(1),x(3),x(4))≡ (x(2),x(3),x(4))≡ X

Indeed, consider the operator T defined by T ( f )(x)= f (a1,x2)+ f (x1,a2)− f (a1,a2),
as in Proposition 4 (d = 2). Relying on this proposition, k is T -invariant. The result
follows by applying Corollary 3 with q= 3 (α1 =α2 = 1,α3 =−1) and x=(b1,b2).

Example 3 (Equivalent designs for a group-invariant kernel). The case where Z is
invariant under the action of a group G is degenerate since the condition T (Z)x = Zx
is equivalent to: ∀g ∈ G,Zx = Zg.x. Then it comes directly from Definition 3 that
replacing one point in X by any other point of its orbit gives an equivalent design:

∀g1, . . . ,gn ∈ G, (x(1), . . . ,x(n))≡ (g1.x(1), . . . ,gn.x(n))

5 On choosing designs for RF models with an additive kernel

Example 2 shows that additive kernels can lead to points with zero variance out-
side of the design. For LHS designs, such configuration cannot occur since points of
the design are never aligned vertically nor horizontally. On the other hand, designs
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where points are distributed parallel to the axis with a shared point at the inter-
section, hereafter called “axis designs”, take advantage of this property since they
imply zero variance on a whole grid. This property is illustrated on Figure 1.
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(a) 9 points LHS design
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(b) 9 points axis design

Fig. 1 MSE for two 9-point designs. The univariate kernels are Matérn 5/2 with parameters σ2 = 1,
θ = 0.2. For the (scrambled) LHS, the IMSE is I = 0.196 wheras for the axis design I = 0.116.

Figure 2 compares, for different values of the number of points n, the IMSE of
all possible LHS compared to the one of an axis design. In all cases, the space is
divided in an appropriate number of square cells (n2 for the LHS and ( n−1

2 +1)2 for
the axis design) and the design points are located in the center of some cells. It ap-
pears that, except for n = 3, the tested configurations are always in favour of the axis
design. As the total number of possible LHS is n! for d = 2, it was practically un-
feasible to run the exhaustive comparison for more than 9 points. However, the right
panel of Figure 2 shows the comparison between 100 maximin LHS generated with
the lhs R package [1] and the axis designs for various values of the dimension d.
As advocated in [6], the number of points is taken equal to 10 times the dimension:
n = 10× d + 1. This graph suggests that the axis designs are more and more su-
perior to LHS when the dimension increases. These numerical investigations show
that axis designs seem particularly adapted for fitting additive Kriging models.

However, axis designs are likely to perform poorly for non additive functions since
they do not fill the space. Fortunately, a direct application of Corollary 2 shows that
any design point can be moved to any other point where it induces a zero variance
without introducing any change in the resulting Kriging equations. A straightfor-
ward application of this property is that the points distributed over one axis can be
scattered in a LHS fashion without modifying the IMSE. This approach is illus-
trated on Figure 3. If the function to approximate has an additive component but
also some interaction terms, the design presented on the right panel may allow to
capture efficiently not only the additive component but also the interaction terms.
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Fig. 2 Comparisons of the IMSE of LH designs (black) and axis designs (red). On the left panel,
all possible LHS are enumerated and the integral in the IMSE expression is approximated by a
Riemann sum based on 512 points. On the right panel, 100 maximin-LHS are compared with the
axis design. The variability in the IMSE of axis designs is due to the use of Monte Carlo methods
for integration. In both cases, the settings of the covariance are the same as in Figure 1.
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Fig. 3 Example of Kriging-equivalent modifications of a design in the additive case. The axis
design is transformed into the sum of a 5-point LHS and another 5-point LHS deprived of one
point. These three designs lead to identical Kriging models when using a kernel satisfying Eq. 4.

6 Concluding remarks and perspectives

As (generalized) additive models [5] and related sparsity assumptions for high-
dimensional data seem to have reached a golden age, designing adapted kernels for
high-dimensional Kriging is still at its beginning. Following the recent article [2]
proposing a particular kind of kernels leading to centered RFs with additive paths,
we give here a complete characterization of such kernels. This characterization ap-
pears in fact as a particular case of a property involving so-called combinations of
composition operators. This property also generalizes another recent characteriza-
tion of covariance kernels leading to RFs with paths invariant under the action of a
finite group on the index set [4].
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Some implications concerning the design of experiments are discussed, and it is il-
lustrated with an empirical study that the so-called class of axis designs outperforms
latin hypercubes in terms of IMSE for most configurations (for n > 3) in the case of
an additive kernel. Furthermore, thanks to a proven exchangeability property in the
case of Kriging modelling with an invariant kernel, such designs can be modified so
as to lead to better performances when interactions exist while preserving exactly
the same features as the axis design in the additive case.

Future work include an extended study of optimal designs for Kriging with an invari-
ant kernel. In addition, further generalisations of the present result on combination
of composition operators may be worth looking at for understanding better what
kind of prior knowledge can (or can’t) be injected in a RF model (in the Gaussian
or in the general case), and how to practically implement kernels [8] incorporating
given functional properties, with adapted parameter estimation procedures.
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