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Comparing Expectational Stability
Criteria in Dynamical Models:
a Preparatory Overview

Stéphane Gauthier*  Roger Guesnerie
June 10, 2004

Abstract

This paper compares the most significant expectational stability criteria
that have been used to assess the plausibility of perfect foresight trajectories
in forward-looking dynamical systems: determinacy of trajectories, absence of
neighbour sunspot trajectories, and convergence of ”evolutive” and ”eductive”
learning processes. It examines, within a set of increasingly complex dynamical
models, the robustness of an equivalence principle suggested by the analysis
of the simplest classes of those models.

Résumé

On compare dans ce texte les criteres de stabilité des anticipations les plus
communément utilisés dans les modeles économiques dynamiques & horizon
infini : ”détermination” de I’équilibre, absence d’équilibres a taches solaires
voisins, succes de I’apprentissage ou bien ”évolutif” ou bien ”divinatoire”. On
montre que le principe d’équivalence, suggéré par ’examen des modeles les
plus simples et convenablement réinterprété, vaut, quoique de facon affaiblie,
dans des classes de modeles de complexité croissante.
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1 Introduction

Economists have stressed a variety of viewpoints in order to assess the expectational
stability of perfect-foresight or rational-expectations equilibria. The coexistence of
these various approaches is particularly striking in the case of infinite-horizon dy-
namical models.

Let us review it briefly.

The local determinacy viewpoint stresses equilibria that are locally "isolated” or
locally ”determinate”: if this property does not hold, the strong joint assumptions
that agents know the model, know some neighborhood of the outcome and have
perfect foresight have no predictive power.

A similar argument suggests that an equilibrium is more likely to occur if it
is locally immune to sunspot fluctuations: in a well chosen neighborhood of the
equilibrium, there is no regular enough stochastic equilibria. Finally, the learning
approach relaxes the assumption that agents already know the set of rational expec-
tations equilibria, and try to coordinate their behavior on such an equilibrium. In
the ”evolutive” learning approach, one supposes that agents follow plausible rules of
thumb: the system reacts in real time and possibly (this is the success criterion) con-
verges toward the sought after equilibrium. In the ”eductive” learning approach, the
expectational plausibility of a candidate equilibrium is evaluated through tests that
reflect collective mental processes, and that are successfully passed by Eductively
Stable, or Strongly Rational, equilibria.

It turns out that all these viewpoints are less different from one another than
they appear, at least in the framework of a simple prototype overlapping generations
model (from now OLG) in which Guesnerie (1993) has emphasized an ”equivalence
theorem”. Indeed, in such an OLG model, all the four criteria under scrutiny recom-
mend that the same steady state equilibrium be selected as ”expectationally stable”.

However, many distinct results about determinacy, sunspots and learning have
been obtained in much more complex dynamical systems. It is natural to confront
these results to the questions raised by the ”equivalence theorem”. What are the
connections, outside the simple OLG model alluded above, between determinacy,
sunspot immunity, ”evolutive” and ”eductive” learning viewpoints 7

In order to answer this question, the present paper proceeds as follows.

First, in Section 2, it restates, within the linearized version of a one-dimensional,
one-step forward looking model without memory, the ”equivalence theorem?”.

Then, in Section 3, it turns to the class of one-dimensional, one-step forward
looking, memory-one models, and argues that a weaker version of the ”equivalence
theorem” holds.

In Section 4, the same exercise is repeated for the class of one-dimensional, one-
step forward looking, finite memory models.

In Section 5, we shall consider the class of n-dimensional, one-step forward look-
ing, memory-one models.



A brief conclusion is finally offered.

2 A dynamic equivalence result

2.1 The framework

In this section, we shall consider the simplest abstract economic framework in which
agents’ forecasts influence the actual evolution of the economic system over time.
It is a linear one-step forward system in which the state of the economic system
at date ¢ (¢t > 0) is expressed as a one-dimensional real variable p(t) determined
by the common forecast E [p(t+ 1) | I;] of this variable in the next period. The
corresponding temporary equilibrium relation is written:

YE [p(t+1) | I] 4 p(t) = 0. (1)

For convenience, p(t) is to be thought of as the price of some commodity at ¢. In (1),
the mean operator F stands for the agents’ forecast, I; is the information available
at t, and 7 (7 # 0) is a real parameter that measures the sensitivity of the actual
state of the economy to agents’ forecasts.

In order to close the model, one must now specify how forecasts are formed.
According to the perfect foresight hypothesis, F [p(t + 1) | I;] is equal to the actual
price p(t + 1) at date (¢ + 1). Under this hypothesis, the dynamics (1) becomes

yp(t +1) + p(t) = 0. (2)

A perfect foresight equilibrium is a sequence of prices (p(t),t > 0) which satisfies (2)
in each period. The analysis used to characterize such sequences is straightforward
in the class of models (1). In fact, with respect to laws of motion of the form

p(t) =Y Bip(t - 1), (3)

it is easy to verify that at most one lagged price is relevant in equilibrium, so
that we can focus on the case where L = 1 in (3). If agents a priori believe that
p(t) = Bip(t — 1), then E[p(t+1) | I,] = #?p(t — 1), and the actual current price
p(t) in (1) is equal to —y(32p(t — 1). Perfect foresight obtains if and only if the a
priori guess about the law of motion coincides in every period with the actual law,
for any possible past history of the price, summarized here by p(t — 1). Indeed, it
must be the case that 3, = —y3?.

One can consequently distinguish two types of equilibria within the class of
models under consideration.

The first type obtains if §; = 0. Then, the current price is not linked to the past
in equilibrium; actually, it remains constant over time. Provided that the regularity



assumption v # —1 is satisfied, the steady state sequence (p(t) = 0,¢ > 0) is the
only solution of this type.

In the second type of equilibria, the price evolves over time according to the first
order law p(t) = —p(t — 1)/7. Since there is no restriction on the initial agents’
forecasts, there are infinitely many equilibria of this kind. Each one is associated
with an arbitrary forecast E [p(1) | Iy] = p(1) formed at ¢ = 0, or equivalently with
an initial price p(0) for the trajectory.

All this may look like a useless detour for a simple conclusion, but the exercise
allows us to introduce a terminology reminiscent of that used by McCallum (1983).
A solution along which the current price depends on a minimal number of lagged
prices is said to be of minimal order (hereafter an MO solution). The solution is a
bubble otherwise. Thus, the steady state sequence is the only MO solution to (2),
whereas the first order solutions are bubbles.!

2.2 Expectational plausibility of the steady state

We introduce now the criteria evoked in the introduction in a formal way. These
criteria provide different assessments about the likelihood that agents collectively
succeed to coordinate on some self-fulfilling forecast. Here, we focus attention on
the steady state, and the case of bubbles will be examined in Appendix 1.

The first criterion reflects the idea that selecting a locally determinate equilib-
rium is easier. Indeed, provided that agents restrict their attention to the set of
perfect foresight equilibria, a locally unique equilibrium can be thought of as a focal
point for the process of beliefs coordination.

Formally, an equilibrium (p(t),t > 0) is determinate, in a terminology advocated
for example by Woodford (1984), if there exists no other equilibrium (p'(t),¢ > 0)
such that |p(t) — p'(t)] < ¢ in each period, where ¢ > 0 is any arbitrarily small
real number. The equilibrium is indeterminate otherwise. If |y| < 1, any perfect
foresight sequence (p(t),t > 0) with p(0) # 0 is pulled away the vicinity of the
steady state. If, on the contrary, |y| > 1, there are infinitely many first order
solutions (p(t),t > 0) such that p(¢) remains arbitrarily close to 0 in each period.
Hence, the steady state is determinate if |y| < 1, and it is indeterminate if || > 1.

The second criterion assumes that agents focus attention on the whole set of ra-
tional expectations equilibria, which includes not only the perfect foresight equilib-
ria, but also the stochastic equilibrium trajectories along which stationary sunspots
matter. According to this criterion, an equilibrium is more likely to obtain whenever
it is immune to sunspots.

LAn Mo-solution corresponds to a MSv-solution in Evans and Honkapohja’s (2001) terminol-
ogy. The McCallum’s (1983) Msv-solution (Minimum State Variable) is actually a particular
MO-solution. In the present model, in which there is an unique MO-solution, both concepts coin-
cide.



Formally, assume that agents observe a 2-state Markovian sunspot process de-
fined by a 2 x 2 Markov matrix IT, with 7 (s, s") standing for the probability that
sunspot event be s’ tomorrow if it is s today (s,s’ = 1,2). Assume also that
they believe that the price is perfectly correlated with sunspots, that is that p(¢)
should equal p(s) if the sunspot event is s at date ¢. Their common price fore-
cast E [p(t+ 1) | s] is consequently 7(s,1)p(1) + 7(s,2)p(2) if the sunspot event is
s at date t. The actual price p(t) is finally obtained by introducing this forecast
into the temporary equilibrium map (1). In a sunspot equilibrium, beliefs must be

self-fulfilling:

p(s) = =7 [r(s, p(1) + 7 (s, 2)p(2)] (4)
whatever s is (s = 1,2). Moreover, it must be the case that p(1) # p(2) for the price
to be subject to endogenous stochastic fluctuations in equilibrium.

In this model, and in line with more general results of, for example, Chiappori
and Guesnerie (1989), reprinted in Guesnerie (2001), it is straightforward to show
that sunspot equilibria exist if and only if the steady state is indeterminate. One
can also refer, both for a proof and an intuition of the existence property to the
so-called invariant set argument (see Guesnerie and Woodford (1992)).2

Unlike the previous criteria, the next one does not rule out beliefs that would not
a priori fit the rational expectations hypothesis. In an ” evolutive” learning process,
agents make forecasts errors and revise their falsified beliefs in the light of these
errors. A learnable equilibrium is then seen as more expectationally plausible than
an equilibrium that would be unstable in such learning dynamics. As an example,
under the simplistic myopic learning rule, agents merely expect the next price to
equal the last price they have observed:

Elp(t+1) | L] = p(t = 1). (5)

With this forecast rule, the current price p(t) at date ¢, obtained from (1), is

p(t) = —yp(t —1). (6)

Thus, agents eventually learn the steady state if and only if |y| < 1, or equivalently
the steady state equilibrium is determinate in (2).

We now come to the “eductive” learning process. Let us refer first to the concept
of Iterative Expectational Stability (hereafter IE-stability). The starting point of
the learning process under consideration consists to assume that agents have a guess
p (1) about the steady state at some step 7 (7 > 0) of a mental reasoning. If they

2If |y| > 1, then [p(1),p(2)] is an invariant set in the sense that every stochastic belief regarding
the next price whose support lies in [p(1), p(2)] triggers a current state in this set.

3The relationship between determinacy and stability in some dynamics with learning belongs
to the folklore of the overlapping generations model (an early reference is Stiglitz (1973)). The
intuition hinges on the fact that the dynamics with perfect foresight and the learning dynamics
are time mirror, at least for myopic learning processes.



all know the structure of the economy, summarized by the temporary equilibrium
relation (1), then they all know that if they expect the next price to be p(7), it
is actually —yp (1) today. This should urge agents to revise their guess about the
steady state as p(7 +1) = —yp(7).* Thus, for 7 large enough, they eventually
convince that p(7) = 0 if and only if |y| < 1, in which case the steady state is
determinate.

It is worth recalling here that TE-stability is equivalent to eductive stability of the
steady state whenever ”eductive” stability is explicitly defined in a setting in which
individual and collective reactions to expectations are weakly compatible. When
the alluded conditions do not hold, IE-stability becomes a necessary condition of
eductive stability.®

The analysis of this section is summarized by the following proposition.

Proposition 1. Equivalence principle in one-step forward, one-dimensional linear
systems.

Consider a one-step forward looking model (1) with v # 0. Then, the following
three statements are equivalent:

1. The steady state is determinate.

2. The steady state is immune to (stationary) sunspots.

3. For a given "reasonable” learning rule, the steady state in asymptotically
stable.

4. The steady state is IE-stable.

Statement 3 of Proposition 1 follows from Guesnerie (1993). It is in fact much
stronger than what consideration of the myopic learning rule, introduced here would
allow to be inferred. Actually, "reasonable” refers to a wider class of learning pro-
cesses examined in Guesnerie and Woodford (1991): adaptive learning rules that
detect cycles of order 2. Statement 3 is particularly strong; it says that if one takes
any given reasonable learning rule and fixes it, its asymptotic stability obtains if
and only if the other statements are true.

The present paper will demonstrate that the equivalence result given in Propo-
sition 1 above, though it is established in a simple class of models, has broader
implications.

4Note that the IE dynamics is here the same as the myopic learning dynamics.

5To see this point most clearly, we may assume that all traders believe at date ¢ that the state

value of the price will be in some interval of possible prices PT = [Piff,PS:ﬁp], with PL, < 0 <

PT . at any period T' > t. Provided that this fact is Common Knowledge, they can infer that

sup?

E[p(T)| I7_1] will be in PT at date (t — 1). Now, if they all know (1), and if their reaction
functions to expectations have the same monotonicity properties, they infer that the state value of
the price p(T' — 1) in period T — 1 > t is in PT=!' = [PI7', PT-1], with PT' = —yPT, and

inf 7~ sup inf

PIS!t = —yPL (note that we have set 7 < 0 for convenience). If T is arbitrarily large, then all

the traders know in the current period that E[p(t+ 1) | I] = 0 if and only if |y| < 1, in which
case the price is equal to its steady state value 0 from ¢ onwards.



3 The effect of memory

3.1 The framework

The class of models examined in the previous section has no predetermined variables
in the temporary equilibrium map. This is restrictive since the past matter in many
economic situations: it is the case in widely studied models with capital accumula-
tion in which the current stock depends both on the future (through expected future
demand) and on the past (through the accumulated capital stock).

Let us accordingly consider the following temporary equilibrium map:

VE[k(t+1) | L] + k(t) + 0k(t — 1) = 0, (7)

where 7 and d are real parameters (v, # 0). Such dynamics obtain from linearized
versions of overlapping generations models with production, at least for particular
technologies (Reichlin (1986)), or infinite horizon models with a cash-in-advance
constraint (Woodford (1986)).

A perfect foresight equilibrium is now a sequence (k(t),¢ > —1) such that
Yk(t+1) + k() +0k(t—1)=0 (8)

in any period ¢ > 0, given the initial condition k£(—1). As in the previous section,
the entire set of these equilibria can be analyzed by appealing to the method of un-
determined coefficients. One can show that it is enough to consider lagged solutions
of the form:

k(t) = gik(t — 1) + g2k(t — 2), (9)

where g; and g» are two real parameters to be determined. Then, it is easy to show
(and left to the reader) that perfect foresight obtains if and only if

g1=—[v (9 +g2) +6] (10)

and
g2 = —Y9192- (11)

Lagged solutions are consequently of two kinds. If g, = 0, then (11) is satisfied. In
this case, in equilibrium, the current stock of capital only relates to the previous one,
and g, is the solution of the equation g, = —yg? — ¢. If the two solutions, denoted
A and Ay, are complex valued, there is no equilibrium along which the capital stock
is linearly related to the previous capital stock. If they are real, then there is either
one or two solutions of this form, depending on whether \; and A, are identical or
different, respectively.

Subsequently, we shall assume that A; and Ay are real (which arises if and only
if 1 — dy > 0) and that they have different moduli (with |[A;| < |A2| by definition).



Therefore, in the considered class, given the initial condition k(—1), there are two
perfect foresight solutions:

k() = Mkt — 1), (12)

and
E(t) = Aak(t —1). (13)

Both laws are defined for any ¢ > 0.° Since, along these solutions, the number
of lagged variables that influence the current state is equal to the number of pre-
determined variable, the set of MO solutions comprises only these two first order
equilibria.

If go # 0 in (11), it must be the case that ¢y = —1/v and ¢go = —§/v. The
evolution is then driven by the law

1 )
k(t)=——k(t —1) — —k(t — 2), 14
(2) S (t—1) S (t—2) (14)
for any ¢ > 1. In the initial period t = 0, there is one degree of freedom in the
agents’ forecasts, unlike the two laws (12) and (13). It follows that, for a given
initial state k(—1), there are infinitely many equilibrium paths of the second order
type. They are all bubble solutions.

In the literature, an often privileged object of scrutiny is the steady state se-
quence (k(t) =0,t > —1) of (8). Such a sequence is a perfect foresight equilibrium
if and only the initial state k(—1) equals 0. Of course, the determinacy criteria that
will be introduced later might be applied to the steady state as well. Still, we prefer
to use a related, but different terminology: the steady state is a sink if |A\s| < 1, a
saddle if [A\;| < 1 < |Ag|, or a source if |A\;| > 1.

There is actually a widespread opinion in the literature that the so-called ”equiv-
alence theorem” fails in the presence of memory. This seems supported by a number
of facts. For instance, as shown by Davila (1997), whatever the properties of the
steady state are, there do not exist sunspot equilibria with a finite support in the
state space, in which agents would base their forecasts on the current sunspot event
only (although stochastic fluctuations a la Broze-Szafars (1991) or a la Benhabib-
Farmer (1997) do occur). If, however, agents use both the current and the previous
sunspot events, then Davila (1997) has shown that the fact that the steady state is
a sink is a necessary, but not sufficient condition for existence of Markovian sunspot
equilibria. Moreover, agents do no longer necessarily learn a determinate steady
state, even if they use a standard learning scheme (Grandmont and Laroque (1990),
(1991)).7

6Note that, as defined, g; is a root of the characteristic polynomial associated with (8). This
shows that the solutions under scrutiny determine trajectories in some one-dimensional invari-
ant subspace of the dynamical system in IR? describing the evolution over time of the vector
(k(t —1),k(t)) in the class of models (8)

"Grandmont and Laroque (1990) show that, in the class of models under scrutiny in this section,



Still, the conclusion of a failure in the dynamic equivalence principle is based on
a superficial understanding of the direction of generalization. As argued by Gauthier
(2002) and Desgranges and Gauthier (2003), this principle must first be conveniently
reconsidered.

3.2 Determinacy of growth rates

First, for such a reconsideration, determinacy has to be viewed as a property of tra-
jectories (and not, as the literature sometimes suggests, of their limit points). Hence,
applying our four criteria to the steady state level of capital would be erroneous in
general, that is as soon as k(—1) differs from 0.

The second ingredient of such a reconsideration hinges on a reflection about the
notion of proximity of trajectories in the new setting. Recalling that a trajectory
(k(t),t > —1) is determinate if there is no other trajectory (k'(t),t > —1) that is
close to it, we have now to delineate an appropriate topology. Yet the choice of the
suitable topology, which was unambiguous in the previous section, is now open.

The most natural candidate is the CO topology, used in the previous section,
according to which two different trajectories (k(t),t > —1) and (k'(¢),t > —1) are
said to be close whenever |k(t) — k'(t)| < e, for any € > 0 arbitrarily small, and any
date £ > —1. Then, a MO solution driven by a root JA; is locally determinate as soon
as |\;| > 1. In fact, with such a concept of determinacy, the saddle-path solution,
along which k(t) = A\ k(t—1) when || < 1 < |Az],is the only non-explosive solution
to be locally determinate in the CO topology.

In the simple class of models without memory analyzed in the previous section,
the unique MO solution was defined by a constant level of the state variable, and
the dynamic equivalence principle was applied in terms of the CO topology.

In the context of models (7), with memory, a MO solution is characterized by a
constant growth rate of the state variable, and not by a constant level of the state
variable (if both A; and A, differ from 1). This suggests that determinacy should
be applied in terms of growth rates, in which case closedness of two trajectories
(k(t),t > —1) and (k'(t),t > —1) would require that the ratio k(t)/k(t — 1) be close
to k'(t)/k'(t —1) in each period ¢ > 0. This is an ingredient of a kind of C1 topology,
as advocated by Evans and Guesnerie (2003a). In this topology, two trajectories
(k(t),t > —1) and (k'(t),t > —1) are said to be close whenever both the levels k(t)
and k'(t) are close, and the ratios k(t)/k(t — 1) and k'(t)/k'(t — 1) are close, in any
period.

As stressed by Gauthier (2002), the examination of proximity in terms of growth
rates leads consideration of the dynamics with perfect foresight (8) in terms of

if the steady state is locally stable for a learning rule that enables agents to detect cycles of period
2, then it is necessarily a saddle point. The reciprocal does not hold in general, however.



growth rates ¢g(t) = k(t)/k(t — 1), or equivalently
k(t) =g (t) k(t —1). (15)
If (15) holds for any k(¢ — 1) and any ¢ > 0, then
kt+1)=gt+1)k(t)=9g(t+1)g () k(t—1).
It follows that, from the dynamics (8), we have
k(t) = —=[vg (t+1) g (t) + ] k(t — 1), (16)
Hence, consistency between (15) and (16) requires that

g(t)=—lgt+1)g(t)+4]. (17)

Associated with the initial perfect foresight dynamics, is then a perfect foresight
dynamics of growth rates. This new dynamics is non-linear, and it has a one-step
forward looking structure, without predetermined variable. Namely, in (17) the
growth factor g (t) is determined at date ¢ by the correct forecast of the next growth
factor ¢ (t + 1).

Let us sum up: with any given perfect foresight trajectory of states (k(t),t > —1)
is associated by (15) a unique sequence of growth rates satisfying (17). If the tra-
jectory is an MO solution, then the growth rates trajectory (g (¢),¢ > 0) is a steady
growth rate whose value, from (17), equals one perfect foresight root A; If it is a
bubble solution, then the growth rates induced by (17) fluctuates over time. Re-
ciprocally, given any sequence meeting (17), and given k(—1), there exists a unique
perfect foresight trajectory (k(t),t> —1) solution to (8), since (8) and (17) are
consistent by construction.

This first discussion suggests that as soon as determinacy is under examination,
the problem can be reassessed, in terms reminiscent of those of Section 2, when
growth factors, rather than levels are considered. We are going to pursue this
line of thought and argue that it provides the appropriate way to generalize of the
equivalence principle.

3.3 Sunspots on growth rates

Maintaining the focus on growth rates, let us now define a concept of sunspot equi-
librium, in the neighborhood of MO solutions. Suppose that agents a priori believe
that the growth factor of capital, and not the level of capital, is to be perfectly
correlated with sunspots. Namely, if the sunspot event is s at date ¢, they a priori
believe that g(t) = g(s), that is

k(t) = g(s)k(t = 1). (18)

10



Thus, their common forecast is
Elk(t+1) | I] = m(s,1)g(1)k(t) + m(s,2)g(2)k(?),

where 7(s,1) and 7(s,2) are the transition probabilities used in Section 2 and (4).
Given this forecast, the current stock, obtained from (7), expresses as

k(t) = = [y[r(s, 1)g(1) + 7(s,2)g(2)] g(s) + ] k(t — 1). (19)

In a sunspot equilibrium, the a priori belief (18) coincides with (19), whatever
k(t—1) is. As shown by Desgranges and Gauthier (2003), this consistency condition
is written

9(s) = = [vIr(s,1)g(1) + m(s,2)9(2)] g(s) + 4] . (20)

For the growth rate to fluctuate, one must also impose that g(1) # ¢(2) in (20).

Comparing with (17), we observe that (20) can be seen as defining directly a
sunspot equilibrium on the growth rate, as soon as the stochastic dynamics of growth
rates is extended as g (t) = —vE [g(t + 1) | I;] g (t) — . Yet the equivalence of the
two definitions of the concept of sunspot equilibrium on growth rates suggested here
relies on special assumptions about linearity and certainty equivalence.

3.4 Eductive learning of growth rates

Assume finally that agents are not aware of steady growth factors, and try to discover
a MO solution. The discussion of the basic viewpoint of eductive learning would
require that some game theoretical flesh be given to the dynamical model under
scrutiny, as in Evans and Guesnerie (2003a,b). Here, we shall instead refer to the
more informal IE-stability criterion. Let agents a priori believe that the law of motion
of the economy is given by

k(t) = g(T)k(t — 1), (21)

where ¢(7) denotes the conjectured growth rate at step 7 in some mental reasoning
process. Given (21), they expect the next stock of capital to be g(7)k(t), so that the
actual stock is k(t) = —0k(t—1)/(vg(7)+1). Assume that all the agents understand
that the actual growth factor is —§/(yg(7) +1) when their initial guess is g(7), they
should revise their guess as

)
v9(T) +1
This is the IE-stability criterion. By definition, [E-stability obtains whenever the
sequence (g(7),7 > 0) converges in (22) toward one of its fixed point, a fact that is

interpreted as reflecting the success of some mental process of learning.® Since this
dynamics is the time mirror of the perfect foresight dynamics of growth rate, a fixed

g(t+1)=— (22)

8Note that, here as in the previous section, a steady growth rate is locally stable in a myopic
learning dynamics bearing on growth rates if and only if it is locally IE-stable in (22). Indeed, let the

11



point A; or A, is locally IE-stable if and only if it is locally unstable in (17), that is
locally determinate.

IE-stability is a necessary condition of eductive stability. As underlined in Evans
and Guesnerie (2003a), the hypothetical Common Knowledge of growth rates trig-
gers a mental process that, in successful case, progressively reinforces the initial
restriction and converges toward the solution. The mental process takes into ac-
count the variety of beliefs associated with the initial restriction: common beliefs
with point expectations is then a particular case, and it is intuitively plausible that
convergence of the general mental process under consideration implies convergence
of the special process under examination when studying IE-stability.

3.5 An equivalence in models with one memory

Following previous discussions and definitions, we are now in a position to make
explicit the connections between the different viewpoints introduced.

Proposition 2. Equivalence principle in one-step forward, memory one, one-
dimensional linear systems.

Consider a one-step forward looking model (7) with one lagged predetermined
variable, where v, # 0. Assume that both MO solutions exist, that is, Ay and Ay are
real. Assume finally that they have different stability properties, that is, |A\1] < |Aal.
Then the following four statements are equivalent:

1. A constant growth rate MO solution is locally determinate in the perfect fore-
sight growth rate dynamics.

2. A constant growth rate MO solution is locally immune to (stationary) sunspots
on growth rates.

3. For any a priori given "reasonable” learning rules bearing on growth rates, a
constant growth rate MO solution is locally asymptotically stable.

4. A constant growth rate MO solution s locally IE stable.

Moreover, there is only one MO solution satisfying 1 to 4, the one along which
the constant growth rate is equal to the perfect foresight root A1 of smallest modulus.

If this MO solution defines a converging trajectory (|\1| < 1), then conditions 1
to 4 are equivalent to the fact that this trajectory is determinate in the C1 topology
of trajectories.

Proof. The paper does not normally reproduce existing proofs. However, we
give the proof of Statement 1 proposed by Gauthier (2002) in Appendix 2.

agents’ estimate of the growth rate be g(t) at outset of period ¢. Their forecast about the next state
is consequently g(t)k(t), so that the current capital stock is such that yg(¢)k(t)+k(t)+dk(t—1) = 0.
In other words, if the estimate of the growth rate at date t is g(¢), the actual growth rate is
—3d/(vg(t) +1). The myopic learning rule coincides with (22), after replacing virtual time 7 by real
time ¢.

Note, however, that his simple relationship between myopic and IE learning no longer obtains
in next sections.
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Statement 2 comes from Desgranges and Gauthier (2003), where it is shown that
the MO solution corresponding to the perfect foresight root A; of lowest modulus is
the only one to be locally immune to sunspots. This is also in line with Statement
1, given the existing results on susnspot equilibria; see Chiappori, Geoffard and
Guesnerie (1992).

Finally, Statement 3 is a consequence of statement 3 in proposition 1, since the
“evolutive” learning of growth rates takes place in the one-step forward looking
framework of Section 2.

The analysis of IE-stability leading to Statement 4 is provided in Evans and
Guesnerie (2003a); see in particular Lemma 1 for a direct proof.” It should also
be noted that this dynamics is the one obtained by reversing time in the perfect
foresight dynamics given in Gauthier (2002).

The fact that for MO converging solutions, the C1 topology on trajectories and
the CO topology on growth rates are equivalent follows for example from Evans and
Guesnerie (2003a).

This, together with previous findings, terminates the proof and establishes the
present version of then dynamic equivalence principle. B

This result deserves a number of comments

1. With respect to the model of the previous section, without predetermined vari-
ables, statements 1 to 4 are weaker since they all hold locally, and not globally
(as all, but Statement 3 of Proposition 1, held before). This comes from the
non-linearities that both the perfect foresight dynamics and the learning dy-
namics on growth rates display.

2. Statement 3 deserves to be emphasized for its strength. The class of "reason-
able” learning rules is the same as in Proposition 1, once the state variable
of the learning process is reinterpreted as a growth rate, and not a capital
level. Naturally, as documented in Evans and Honkapohja (2001), other learn-
ing rules, that either are not adaptive or do not detect cycles, may be locally
stable. In particular, Evans (1986) shows that the conditions for stability as-
sociated with Differential E-Stability, when applied to MO solutions of (7),
are weaker than those for IE-stability. This has two consequences: first, many
learning rules involving a slow response to new information, the behavior of
which is captured by the Differential E-Stability criterion, converge toward
the solution we select here, and second, the convergence of these learning
rules, viewed as a selection device, selects many more solutions than we do in
Proposition 2.

9According to this lemma, if at period ¢ all agents conjecture that the growth rate between
today and tomorrow is between A — ¢ and A + & (with A = A; or A = \y), then the actual growth
rate is between A — (63/(1 — BA)%e + o(e®) and XA + (3/(1 — BA)%e + o' (€2), where o(e?) and o' (¢?)
tends to zero with 2.
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3. The study of eductive stability in Evans and Guesnerie (2003a) shows that TE-
stability is a necessary condition of "eductive” stability. But the heterogeneity
of agents’ behavior and expectations destabilizes learning in a more serious and
complex way in the present model (see Proposition 2 of Evans and Guesnerie
(2003a)). Also, the fact that agents form their forecasts conditionally on the
current stock of capital has strong implications for both ”eductive” and IE-
stability.

4. This version of the dynamic equivalence principle leads to the selection of a
unique stable trajectory in the saddle-point configuration. It also leads the
selection of a unique MO solution, even if there exist infinitely many stable
trajectories, that is, in the sink configuration. At first sight, this may seem
somewhat surprising and worth comments. The reason why \; is the only one
to be locally determinate in (17) is that

k(t) . Oél)\'i + Oég)\é

im ———— = lim =\,
t—+o0 k(t — 1) tt00 051)\?1 + Oég)\t{l 2

where a; and a5 are two constants determined by the initial condition k(—1)
and an arbitrary initial forecast. In other words, as time passes, the growth
factor approaches the root of highest modulus along any second order solution,
thus making A; locally determinate and A, locally indeterminate in the perfect
foresight dynamics of growth rates. Equivalently the A;-trajectory is the only
one to be determinate in C1 topology of trajectories.

4 Introducing additional lagged variables

4.1 The framework

In this section, we shall extend our analysis to the class of linear univariate models
in which there is still only one lead in expectations, but there is now an arbitrary
finite number L > 1 of predetermined lagged variables in each period. The current
state of the economic system is then determined by the temporary equilibrium map:

NYE (z(t+1) | L) + z (t +251xt—l (23)

A perfect foresight equilibrium trajectory is a sequence of levels of the state vari-
able (x(t),t > —L) associated with a given initial condition (xz (—1),...,z(—L)),
and such that the forecast F (z (t 4+ 1) | I;) formed at date ¢ about the next state
coincides with the actual state z(¢ + 1) in period (¢ + 1), that is

v (t41) + (¢ Zélx (t—1) (24)
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for t > 0. In this class of models, the equilibrium law of motion of the level of
the state variable can be described by a linear recursive equation that links x(¢)
to the past history of the system. If, at date ¢, the current state z(t) depends
on the L previous states (z(t — 1),...,z(t — L)), the equilibrium corresponds to an
MO solution. If, on the other hand, it depends on the (L + 1) previous states
(x(t —1),...,2(t — L —1)), then the equilibrium is a bubble solution. Indeed,
in this case, the evolution of the economy is determined by the initial condition
(x(=1),...,z(—L)) and some arbitrary initial forecast F(z(1) | Iy) = z(1).

As in the previous sections, we shall continue to focus our attention on the class
of MO solutions. The law of motion of the level of the state variable is then described
by a linear recursive equation of order L,

w(t)=) Bur(t-1), (25)

in which the vector of coefficients 3 = (By,...,3;) is to be called a stationary
extended growth rate of order L, hereafter denoted stationary EGR(L). As expected
the eigenvalues (A1,..., A1) of the characteristic polynomial associated with (23)
play a key role in the understanding of a stationary EGR(L). Indeed, as shown by
Gauthier (2002), the dynamics induced by an MO solution is driven by L of these
eigenvalues (and the corresponding eigenvectors of the associated dynamical system).
Namely, the coefficient 3, in (25) is equal to (—1)"*'o;(£), where oy(£) represents
the [th symmetric polynomial, that is the sum over all the different products of [
distinct elements in a set £ of L eigenvalues in (Aq, ..., Apy1).

Subsequently, we shall apply the dynamic equivalence principle to any MO so-
lution, or more exactly to the vector of coefficients (3 associated with the solution.
The remaining of this section briefly describes how one can apply the above three
criteria to a stationary EGR(L).

4.2 Determinacy of extended growth rates

The determinacy device hinges on a new dynamics over vectors of extended growth
rates 3(t) = (B1(t),...,0r(t)), derived from the usual dynamics with perfect fore-
sight (24), and whose fixed points are the stationary extended growth rates ™
(m=1,...,L+1). In this dynamics, 5™ is locally determinate if and only if there
is no induced sequence of extended growth rates such that (;(¢) remains arbitrarily
close to 3™ for any [ = 1,..., L and any period ¢ > 0. Following Gauthier (2002),
the extended growth rate perfect foresight dynamics can be obtained by assuming
that the law of motion of the level of the state variable satisfies (24), and by imposing
in addition the restriction that

w(t) =D mt)a(t = 1), (26)
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whatever the past history of the state variable (z(t—1),l = —L,...,t—1)and ¢ >0
are. Since, by assumption, the law (26) is satisfied in any period ¢ > 0, we have in
particular

Zﬁztﬂ (t+1-1). (27)
For this value of z(t + 1), the state of period ¢ defined by (24) is
VB (t+1) + 0
t—1), 28
Z L+96 (t+1) w(t=1) (28)

with the convention that (1, (t +1) = 0. For (24) and (28) to coincide whatever
the past history of the state variable is, it must be the case that

B,(t) = _’Ylﬂz“ (t+1)+ 51,
+yB (t+1)
for I = 1,...,L, and with the convention that (7, (¢t + 1) = 0. This is the dy-
namics we are looking for. It is of the one-step forward looking type, and it has no
predetermined variable, that is, it relates (¢) to S(¢t + 1) at date ¢. It is shown in
Gauthier (2002) that the fixed points of this dynamics are the (L + 1) stationary

EGR(L).

(29)

4.3 Sunspots on extended growth rates

Let us now turn our attention to the construction of sunspot equilibria over extended
growth rates. In such equilibria, the vector of extended growth rates is perfectly
correlated with sunspots, i.e. (81(t),...,0.(t)) = (Bi(s),...,BL(s)) if sunspot is s
(s =1,2) at date ¢ (¢ > 0). In other words, if agents observe at date ¢ the sunspot
signal s, they expect the next extended growth rate to be (£1(s'), ..., 8.(s")) with
probability (s, s"), and this belief is self-fulfilling in equilibrium. Actually, if the
sunspot signal is s at date , before observing the actual current state of the economy,
they a priori believe that

Z Bi(s)x (t—1), (30)

and they form their forecast about the next level of the state variable conditionally
on the current sunspot event:

2
E(x(t+1)| 1) = st Zﬁl z(t+1-1).

=1

Let §i(s) = n(s,1)3(1) + 7(s,2)3/(2) for [ = 1,..., L. Then, the actual current
state is obtained by introducing this forecast into (29):

x(t):—z%x(t—l% (31)
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with the convention that 31(s) = 0 whatever s is. The actual law (31) cothncides
with the perceived law (30) for any past history (x(t—1),l = —L,...,t—1) and any
t > 0 if and only if

3 J
L+ 5i(s)
for { = 1,...,L. A local sunspot equilibrium is an array of S vectors ((s)

(B1(8),...,0L(s)) of extended growth rates (s = 1,2) such that 3(s) solves (32),
B(s) # B(s") for some s, s, and finally 3(s) stands arbitrarily close to 3™ for any s
(and a given m).

4.4 Learning extended growth rates

Consider the case of a learning scheme in which agents try to discover a stationary
EGR(L) through the IE-stability criterion. At time ¢ (¢ > 0), their estimate of this
vector is (31(7),..., (7)) at outset of step 7 (7 > 0) of some mental reasoning
process. That is, agents a priori believe that the law of motion of the economy is to
be given by

Zﬁl w(t —1). (33)

Given this conjectured law, agents expect the next state to be

E(x(t+1) 1) = Zﬁl z(t+1-1). (34)

If agents know how the current state is related to the price forecast and the past
history of the system, as summarized by (23), they can deduce that if they form
their forecast according to (34), then the current price will be in fact such that

Z B (7 (t —), (35)

1+’Yﬁ1

with the convention that (§;,1(7) = 0 whatever 7 is. They should accordingly revise
their initial guess (51(7),..., (7)) as follows:

Biyi(T) = 6
L+yBi(r)”

forl =1,..., L. This dynamics is the time mirror of (29), the dynamics with perfect
foresight over extended growth rates. The learning dynamics consequently admits
the same fixed points as (29): the (L+1) stationary EGR(L). Moreover, a stationary
EGR(L) is locally stable if and only if it is locally determinate in (29).'°

Bi(r+1)=— (36)

19Here, there is no longer an equivalence between IE-stability and myopic learning. In fact, at
date t, given a past history (z(t — 1),...,2z(t — L)), agents are not able to infer the actual vector
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4.5 The equivalence principle in models with memory

In Gauthier (2002), it is shown that the stationary EGR(L) corresponding to the
MO solution driven by (A, ..., Az) is the only one to be locally determinate in (29).
Moreover, Desgranges and Gauthier (2003) show that it is also the only one to be
locally immune to sunspots. Finally, since the dynamics with perfect foresight (29)
is the time mirror of the learning dynamics (36), it is also the only one to be locally
[E-stable.

We have the following result.

Proposition 3. Equivalence principle in one-step forward, memory L, one-dimensional
linear systems.

Consider a one-step forward looking model (7) with L lagged predetermined vari-
able, where 7,0, # 0 for some | > 0. Assume that \; is real (i = 1,..., L+ 1).
Then, MO solutions exist. Assume also that |\ < --- < |Ap41]. The following three
statements are equivalent:

1. A stationary EGR(L) MO solution is locally determinate in the perfect foresight
dynamics of extended growth rates.

2. A stationary EGR(L) MO solution is locally immune to (stationary) sunspots.

3. A stationary EGR(L) MO solution is locally IE-stable.

Moreover, there is only one MO solution satisfying 1 to 3, the one along which
the stationary EGR(L) is driven by the L perfect foresight roots of smallest modulus

(Mseens Ar).

Thus, the dynamic equivalence principle is satisfied in a more general setting
than the one considered in the previous section, provided that it is suitably applied
to the stationary EGR(L), and not to the level, or even the mere growth rate of the
level of the state variable. Some additional comments are made.

First, the reader will have noted that this result is weaker than the preceding
ones:

1. Previous results about ”evolutive” learning do not generalize easily, which may
explain why the literature is almost silent on this subject in the context of the
present model.

2. We make no statement, although it would be possible to do so, on the rela-
tionship between CO topology on extended growth rates and C1 topology on
trajectories.

of extended growth rates (831 (t),...,0r(t)) from the mere observation of the current state x(t);
there is only one (linear) equation, with L unknowns. This highlights that IE-stability is feasible
because all the agents are assumed to know the structure of the model, i.e. the precise relation
between their forecast and the actual state of the economy.
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3. Finally, although we may safely conjecture that [E-stability is a necessary
condition of "eductive” stability, we have no results on ”eductive” stability in
this model.

Second, Statement 1 can be extended in several directions.

1. First, it is shown in Gauthier (2004) that statement 1 holds true in the general
configuration where there are H > 1 leads and L > 1 lags. Second, it is not
required that all the perfect foresight roots be real valued, but only that they
have different moduli when they are real. Then, if the MO solution driven by
(M1, ..., Az) does not exist, which is the case in particular if A; is complex
valued and its conjugate is Az 1, so that o (£771) = A\ + -+ + A is complex
valued, there is no locally determinate stationary EGR(L). If, on the other
hand, this MO solution does exist, it is the only one to be locally determinate.

2. Concerning the existence of sunspots, some insights about the case where the
temporary equilibrium map (23) embodies H > 1 leads in expectations, but
L =1 lag in predetermined variable are given in Gauthier (2003). In this case,
the solution along which z(¢) = A\jz(t — 1) is again the only one to be locally
immune to sunspots. This, together with Statement 2 of the propositiion,
suggests that a more general equivalence encompassing Statements 1 and 2
should hold true. However, at this stage, the case in which H, L > 1 is still
open to question.

5 Multidimensional one-step forward looking lin-
ear models with memory one

5.1 The framework

We shall consider, (see, for example, Kehoe-Levine (1985) for motivation) a multidi-
mensional linear one-step forward looking economy with one predetermined variable:

GE (x(t+1) | I;) +x(t) + Dx(t — 1) = o, (37)

where x is a n X 1 dimensional vector, G and D are two n x n matrices, and o is
the n x 1 zero vector. Under the perfect foresight hypothesis:

Gx(t+1)+x(t)+Dx(t—1) =o. (38)

A perfect foresight equilibrium is a sequence (x(t),¢ > 0) associated with the initial
condition x(—1), and such that (38) holds in each period. The dynamics with perfect
foresight is governed by the 2n eigenvalues \; (i = 1,...,2n) of the following matrix
(the companion matrix associated with the recursive equation (38)):

~G' —G™'D
%)
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where 0 is the n-dimensional zero matrix. In what follows, we shall be interested
in the perfect foresight dynamics restricted to a n-dimensional eigensubspace, and
especially in the one spanned by the eigenvectors associated with the n roots of
lowest modulus. Let by definition |A;| < |\;| whenever ¢ < j (i,j = 1,...,2n). Let
u; denote the eigenvector associated with \; (i = 1,...,2n). Since all the eigenvalues
are distinct, the n eigenvectors (uy, ..., u,) form a basis of the subspace associated

with Ay, ..., \,. Let:
( \7 )
u; =
V;

where v; and v; are of dimension n. It is straightforward to check that if u; is an
eigenvector, then v; = \;v;. Let us consider the 2n-dimensional vector z(t + 1) =
(x(t+1),x(t))" belonging to the n-dimensional eigensubspace spanned by uy, ..., u,,.
Its coordinates in the basis are of the following form:

z(t+1):<z>

where a is a n-dimensional vector of coordinates. Therefore, in the canonical basis,

we have:
a
P < o ) =z(t+1)

where:

AV D v %

o 1V11 2Vay V1A1 VoA,
B Vi V,

Vin
where Vi = (vq,...,v,), Vo = (Vpi1, oo, Vo), &

A Ant1 0

A= , A= T
0 A 0 Aoy,

so that x(t + 1) = V1A (V) 'x(t). Hence, if we pick up some x(0), then if the n-
dimensional subspace is in general position, we can find a single x(1) in the subspace
and generate a sequence (x(t),t > 0) following the just defined dynamics. This
generates, according to the terminology of Section 2, a MO solution. Of course,
there is no a unique MO solution, since each one of them is associated with a different
collection of n different eigenvalues.

The methodology proposed in Sections 2 and 3 can be replicated to obtain MO
solutions. Assume that

x(t) = Bx(t — 1) (39)

in every period ¢, and for any n-dimensional vector x(t — 1) (B is an n.n matrix).
Also, x(t + 1) = Bx(t). Thus, it must be the case that B = —(GB + 1,,) " 'D, or
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equivalently (GB+1I,)B+D = 0. A matrix B satisfying this equation is a stationary
extended growth rate. Given law (39), it defines a MO solution. It is shown in Evans
and Guesnerie (2003b) that B = VAV ', where A is a n x n diagonal matrix whose
itth entry is \; (¢ = 1,...,n) and V is the associated matrix of eigenvectors. In
what follows, we focus attention on the saddle-point case, where |\,| <1 < |A,41]-

5.1.1 The expectational plausibility of MO solutions

Our criteria are the same as before. We will however concentrate on three of them:
determinacy, immunity to sunspots, and I[E-stability.

Determinacy is viewed through a dynamics of perfect foresight extended growth
rates that we analyze first. To this aim, consider

x(t) = B(t)x(t — 1) (40)

where B(?) is a n-dimensional matrix whose ijth entry is equal to §;;(¢). If (40) is
satisfied whatever t is, it must be the case that

x(t+1) =B(t+ 1)x(t). (41)

The dynamics with perfect foresight of the endogenous state variable x(¢) induces a
dynamics with perfect foresight of extended growth rates B(¢) that is obtained by
introducing (41) into (38):

GB(t+ 1)x(t) +x(t)+ Dx(t—1) =0

& x(t) = —(GB(t+1) +1,) 'Dx(t — 1), (42)

provided that GB(t + 1) + I, is a n-dimensional regular matrix. Given that (40)
must be satisfied whatever x(¢ — 1) is, the EGR perfect foresight dynamics is defined
by a sequence of matrices (B(¢),¢ > 0) such that (40) and (42) coincide, that is:

B(t)=—(GB(t+1)+1,)"'D< (GB(t+1)+1,)B(t) + D=0.  (43)

This defines the extended growth rates perfect foresight dynamics. Its fixed point
are the stationary EGR matrices B such that B(¢) = B in (43) whatever ¢ is.

A sunspot equilibrium on extended growth rates, in the spirit of Section 3, is
a situation in which the whole matrix B(¢) that links x(¢) to x(¢ — 1) is perfectly
correlated with sunspots. If sunspot event is s (s = 1,2) at date ¢, then

E(x(t+1)]s)=[nr(s,1)B(1)+ n(s,2)B(2)] B(s)x(t — 1).

If so,
x(t) = = [G[r(s,1)B(1) + 7(s,2)B(2)] B(s) + D] x(t — 1).
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In a sunspot equilibrium, the a priori belief that B(t) = B(s) coincides with (19)
whatever k(t — 1) is, that is,

B(s) = — [G [r(s,1)B(1) + (s, 2)B(2)] B(s) + D] .

It remains for us to examine the stability properties of the dynamics with learning
according to the IE-stability criterion. At virtual time 7 of the learning process,
agents believe that, whatever ¢:

x(t) = B(r)x(t — 1),

where B(7) is the 7th estimate of the n-dimensional matrix B. Their forecasts are
accordingly:
E (Xt—l—l | [t) = B(’T)Xt.

The actual dynamics is obtained by reintroducing forecasts into the temporary equi-
librium map (37):

GB(T)Xt + X + DXt_l =0 <= X, = —(GB(T) + In)_lDXT_l.
As a result, the dynamics with learning is written:
B(r +1) = —(GB(r) +1,)7'D. (44)

A stationary EGR B is locally IE-stable if and only if the above dynamics is con-
verging when B(0) is close enough to B.

5.1.2 The dynamic equivalence principle

We can state the following proposition:

Proposition 4. Equivalence principle in one-step forward, memory one, multi-
dimensional linear systems.

Consider a stationary EGR saddle-path like solution (the n smallest eigenvalues
have modulus less than 1, the (n + 1)th has modulus greater than 1).

The following three statements are equivalent:

1. The EGR solution is determinate in the perfect foresight growth rates dynam-
1C8.

2. The EGR solution is immune to sunspots, that is, there are no neighbour local
sunspot equilibria on extended growth rates with finite support, as defined above.

3. The EGR solution is locally I[E-stable.

Proof. The equivalence between statements 1 and 3 is proved in Evans and
Guesnerie (2003b). It follows, as above, from a time reversion argument.

The equivalence between statements 1 and 2 depends on the development of an
argument that relies on Chiappori, Geoffard and Guesnerie (1993). B

Note that this proposition is still weaker than the previous one.
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1. It is concerned with properties of the saddle-path solution, but does not show
whether these criteria would select another trajectory in other configurations.

2. In fact, it can be shown that there is only one EGR solution that is determi-
nate, independently of the configuration of the perfect foresight dynamics (see
Appendix 3). This solution also satisfies statement 3 and we conjecture that
it satisfies in addition statement 2. Obviously, this solution coincides with the
saddle-path solution, when the saddle-path solution exists.

3. As previously, Proposition 4 is silent on ”evolutive” learning rules, and on
the possible connections between topologies on extended growth rates and on
trajectories.!!

Contrarily to the previous case, here a detailed analysis of ”eductive” stability,
which highlights the destabilizing effects of heterogeneity, is available in Evans
and Guesnerie (2003b) . Still, IE-stability appears as a necessary condition of
“eductive” stability.

6 Conclusion

This paper suggests that the so-called ”equivalence principle” that stresses the con-
nections among determinacy properties of trajectories, sunspot immunity, ”evolu-
tive” and ”eductive” learning has a much broader relevance than what a superficial
inspection suggests. Still, the generalisation of the principle leads to to shift in its
emphasis (the extended growth rates becoming the appropriate reference), a recon-
sideration of its interpretation (sunspot equilibria relate to extended growth rates)
and some degree of weakening of its scope (the connections between ”evolutive”
learning and other criteria are more difficult to assess). On these grounds, the task
undertaken here should be pursued.

Let us finally note that the investigation of the similarities and differences among
expectational criteria puts the ”"eductive” stability viewpoint in an appropriate per-
spective by showing how it exploits the lines of the standard understanding of ”ex-
pectational coordination” in dynamical models, and how it allows it to be prolonged
and improved upon.

7 Appendix

7.1 Dynamic Equivalence and Bubbles

So far, the dynamic equivalence principle has been applied to the particular class of
MO-solutions. It is actually often argued that this class of solutions is the only one
to be of economic relevance, in view of the fact that, within this class of solutions,

HEvans and Guesnerie’s proof (2003b) does however explore some of these relationships
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the whole equilibrium trajectory is then determined by the initial conditions. On
the contrary, the actual evolution of the system along some bubble solution relies
in part on arbitrary forecasts formed in the initial periods, and it is not reasonable
to assume that all the agents should succeed in focusing on one particular forecast
among infinitely many candidates. In this section, we shall briefly examine whether
such bubble solutions would be ruled out the four four criteria under scrutiny in
the present paper. We shall use the same methodology as in the previous sections.
That is, we shall apply the dynamic equivalence principle to the vector of extended
growth rates corresponding to bubble solutions. It should be emphasized, however,
that there is no longer a one-to-one correspondence between extended growth rates
and perfect foresight solutions. In fact, one EGR now covers a full class of solutions.

For simplicity, the discussion is limited to the simple framework, analyzed in
section 3, in which the model embodies one lead in forecasts and one lagged prede-
termined one-dimensional variable. Recall that the equilibrium law of motion along
a bubble solution is described by a second order linear recursive equation

k() = —%k(t 1) %k(t _9) (45)

for t > 1. The vector (—1/v,—4d/v) is a stationary EGR of order 2. In order to
derive a perfect foresight dynamics of which it is a fixed point, assume that the
capital stock is bound to satisfy, in addition to (45),

k() = g (8)k(t — 1) + ga()k(¢ — 2). (46)

It is straighforward!'? to verify that (45) and (46) are consistent in each period, and
for any past history of economic system, if and only if

g1(t)=—[vo1 (t+1) g1 (t) + 792 (t + 1) + 6] (48)

and

92(t) = =791 (t+1) g2 () - (49)
The two-dimensional dynamics (48)-(49) is not well-defined in the immediate vicinity
of (=1/~,—4d/v). Still, one might argue that (—1/v,—3/7) is locally indeterminate
in this dynamics since there are infinitely many values of ¢ (t) that are consis-
tent with go () = —d/~ in (48) and (49); indeed, in this case, g, (t +1) = —1/v
independently of g; (t).

2imposes intertemporal restrictions on the evolution of (g;(t), g2(t)). Such restrictions obtain

as in the previous section. Namely, it follows from (46) that
Et+1)=[g(t+1) g1 () +g2(t+ 1]kt —1)+ g1 (t+1) g2 (t) k(t — 2).
Thus, (??) rewrites
k(t) ==y (t+ 1) g1 (1) + 792 (t+ 1) + 0] k(E = 1) —vg1 (E+ 1) g2 () k(t = 2),  (47)

which coincides with (46), for any pair (k(t — 1), k(t — 2)) and any ¢ > 1, if and only if
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In the same way, in a Markovian sunspot equilibrium, (g;(¢), g2(¢)) is equal to
(g1(s), g2(s)) if the sunspot event is s at date t. Some components of these vectors
must differ according to sunspot events for sunspots to matter. One can verify that
the conditions under which agents’ beliefs are self-fulfilling can be written, in this
case, as:

gi(s) = =7 | D m(s,8)g1(Nga(s) + D w(s,8)g2(s') | — 6 (50)
and  go(s) = = [m(5,1)g1 (1) +7(5,2)91(2)] ga(5). (51)

Suppose now that ¢;(1) = ¢;(2) = —1/7 in (50)-(51), and consider any 2 x 2 singular
Markov matrix IT. Then, (50) can be rewritten

mg2(1) + (1 = 7m)g2(2) = =0/, (52)

where 7 is any given real number in [0,1], and (51) is always satisfied. It is
then easy to show that there exist (g1(1), g1(2), g2(1),92(2)) arbitrarily close to
(—=1/7v,—1/7v,—8/v,—06/v) and satisfying (50). Indeed, simply notice that (50) holds
if go(1) = —0/y + 0/7 and ¢g2(2) = —0/y — 0/(1 — 7), whatever 6 arbitrarily close
to 0 is.

To establish the dynamic equivalence principle, it remains to study the prop-
erties of myopic and eductive learning. Let us concentrate on the second type of
learning scheme. If agents believe that time ¢ (¢ > 1) that (g;(¢), g2(¢)) should equal
(91(7), g2(7)) at some mental step 7 (7 > 1), then their forecast is

Elk(t+1) | 1] = g1 (1) g1 (7) + g2 (T)] k(t = 1) + 91 (7) g2 (7) k(t — 2),

and the corresponding actual state of the state variable becomes

k(t) ==y (1) g1 (1) + 792 (7) + 6] k(t — 1) — vg1 (7) ga (7) k(t — 2). (53)

If agents take into account the feedback effect of their guess (g;(7), g2(7)) onto the
actual evolution (53), then they should revise their guess as

g(m+1) = =[791(7) 1 (7) + 792 (1) + ], (54)

go(t+1) = =791 (1) g2 (7). (55)
The time reversion argument applies, since the dynamics (48)-(49) is the time mirror
of (54)-(55). Thus, although the eductive learning dynamics is not well defined in the
neighborhood of (—1/v,—4§/v), one may say that this pair of parameters is locally
unstable in the dynamics with learning in the sense that there are infinitely many
revised beliefs (g1(7 + 1), go(7 + 1)) consistent with (54)-(55) when (g1(7), g2(7))
does not coincide with (—1/v, —3§/7). Hence, there is no reason why agents would
revise their guess into (—1/v, —§/7) when they make forecast errors.
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7.2 Local determinacy of growth rates

The local dynamics of growth rates around a steady growth rate \; obtains by
linearization of (17) at point ¢ (t) = g(t+1) = \; ( = 1,2). One gets, for an
arbitrarily small difference dg (t) = g(t) — \;,

Ai

Ai +1)dg (¢ Nidg(t+1)=0=dg(t) = —————
(YAi +1) dg (t) +yAidg (t + 1) g (1) paym

dg(t+1).
Since A; + Ay = —1/7, we have finally
Ai
dg (t) = +dg (t +1)
Aj

in the immediate vicinity of A; (i = 1,2). A constant growth rate \; is locally
determinate if and only if |A;/\;| < 1 (with i # j, j = 1,2). This is the case if i =1,
but not if 7 = 2.

7.3 The Equivalence in the multidimensional model
7.3.1 Local Perfect foresight dynamics of Extended growth rates

Recall that we consider the dynamics (43), namely:
GB(t+1)B(t)+B(t)+ D=0

Let dB(t) = B(t) — B, be arbitrarily small. Then, we have, (see Magnus-Neudecker
(1988)):
GdB(t+1)B+ (GB +1,)dB(t)= 0

& vec [GdB(t + 1)B] + vec [(GB +1,,)dB(t)] = 0
& (B'® G)vecdB(t + 1) + [I, ® (GB +1,,)] vecdB(t)= 0
s veedB(t+1) = —(B'® G) ' [I, ® (GB +1,,)] vecdB(%)
& veedB(t+1) = — [(B) '@ G7'] [(I, ® GB)+(1, ® I,)] vecdB(t)
& veedB(t+1) = — [(B) '@ G ) (I, ® GB) + (B) ' ® G )(I, ® L,)] vecdB(t)
& veedB(t+1)=—[((B)'@B)+ ((B') ' ® G )] vecdB(t)
& veedB(t+ 1) = — [(B') ' @ (B+ G )] vecdB(t)

Thus, the EGR perfect foresight dynamics (43) in the neighborhood of a given sta-
tionary EGR B is given by vecdB(t+1) = — [(B') ' @ (B + G !)] vecdB(t), where
dB(?) is the n-dimensional matrix whose entries are those of B(¢)—B for each com-
ponent of B(t) close to the corresponding component of B (3;;(¢) is close to 3;;).
The notation vec represents the vectorization of the corresponding matrix and the
symbol ® denotes the Kronecker (tensorial) product.
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7.3.2 Stationary Extended Growth rates

By definition, B = VAV ™', The eigenvalues of B are the roots of the following

characteristic polynomial det(B—6I,) = 0. Observe now that:
VAV~ — 01, = V(AV ' — V741,

S VAV 01, =V(AV ' -V ) = V(A —61,) V!
& det (VAV ' —01,) = det V det (A — 0L,) det V'

& det (VAV ™! = 01,) = det V det (A — 0L,) = det (A — 0L,

1
detV
Note now that (B+G™!) = VAV ' since VAV™'+ VAV ' = —G~!. This shows
that the eigenvalues of B are the ones of VAV ™!, namely n eigenvalues of A among
2n. We denote such eigenvalues . The eigenvalues of (B + G~!) are the ones of
\7./_\\7_1, namely the n remaining of A among 2n. We denote such eigenvalues \.
Let 6 an eigenvalue of [(B')™' ® (B4 G ')]. Then we have § = \/\, where A is
any eigenvalue of A and A is any eigenvalue of A.

The EGR perfect foresight dynamics displays a one-step forward looking structure
without predetermined variable. A fixed point of this dynamics, that is a stationary
EGR, is accordingly locally determinate if and only if all the n? eigenvalues 6 (pre-
viously defined) have modulus greater than 1. By definition of the eigenvalues A of
A, it must be the case that B is associated with the n-dimensional matrix A whose
entries are the n eigenvalues of A of lowest modulus, namely Aq,..., A,. Hence, as
announced, the stationary EGR corresponding to the n eigenvalues Ay, ..., A, of low-
est modulus is the unique stationary EGR that is locally determinate in the extended
growth rate perfect foresight dynamics (43).1?

13We do not examine here the connections with the C1 topology of trajectories viewpoint, al-
though the insights of Section should generalize.
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