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J.P. Boufflet∗, M. Dambrine†, G. Dupire‡, P. Villon§

September 2, 2011

Abstract

The aim of this article is to explore the possibility of using a family of fixed finite ele-
ments shape functions that does not match the domain to solve a boundary value problem with
Dirichlet boundary condition. The domain is embedded in a bounding box and the finite ele-
ment approximation is associated to a regular structured mesh of the box. The shape of the
domain is independent of the discretization mesh. In these conditions, a meshing tool is never
required. This may be especially useful in the case of evolving domains, for examples shape
optimization or moving interfaces. Nitsche method has been intensively applied. However,
Nitsche is weighted with the mesh size h and therefore is a purely discrete point of view with no
interpretation in terms of a continuous variational approach associated with a boundary value
problem. In this manuscript, we introduce an alternative to Nitsche method which is associated
with a continuous bilinear form. This extension has strong restrictions: it needs more regularity
on the data than the usual method. We prove the well-posedness of our formulation and error
estimates. We provide numerical comparisons with Nitsche method.

1 Introduction

The use of non matching regular grids for solving PDE has been explored since a long time. In the
case of variational techniques, the main difficulty is to answer at this fundamental question: how
to take account of the essential boundary conditions ? One of the first ideas is to use Lagrange
multipliers [3, 4] or penalty method [5] . This can be coupled with Nitsche method [18, 15] to obtain
error estimators [22]. This has been successfully applied to domain decomposition [23, 17] and to
introduce the fictitious domain method [14]. The drawback of this approach is the ill-conditioning
of the optimality system. More recently, combining the X-FEM approximation [24] and the level
set technique [20, 21] some new approaches have been developed. There are applications in the
domain of shape optimization [7], fluid interfaces [8, 9, 10] and stochastic mechanics [19]. What we
propose in this article is an alternative way based on a modified bilinear form.
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One of the question posed by Nitsche formulation is that it has no sense in a continuous setting:
the regularization term depends on the mesh size. In [12], a meshfree method has been introduced
that is roughly speaking a unregularized Nitsche method. Let us precise the model problem we will
work on. Let Ω be a domain of R

d (d ≥ 1) with a smooth boundary ∂Ω. We consider the following
model boundary value problem of Dirichlet type

{

−∆u = f in Ω,
u = g on ∂Ω,

(1.1)

where f ∈ L2 (Ω) and g ∈ H1/2 (∂Ω). The idea introduced by Dumont and al in [12] and explored
here consists in the introduction of the variational problem:



















Find v in an appropriate space H such that

B(v, ϕ) = L2(ϕ) for all ϕ ∈ H where

B(v, ϕ) =

∫

Ω
∇u · ∇ϕ−

∫

∂Ω
(ϕ∂nu+ u∂nϕ) and L2(ϕ) =

∫

Ω
fϕ−

∫

∂Ω
g∂nϕ.

(1.2)

Roughly speaking, this formulation can be seen as a continuous version of a Nitsche method without
penalization. Since one should give a sense to the normal derivative, the form B is not defined on
H1(Ω) but only on H1

∆(Ω) =
{

u ∈ H1 (Ω) /∆u ∈ L2 (Ω)
}

. Endowed with the norm ‖.‖H1

∆
(Ω) defined

by
‖u‖2

H1

∆
(Ω) = ‖u‖2

L2(Ω) + ‖∇u‖2
L2(Ω) + ‖∆u‖2

L2(Ω),

it is an Hilbert space.

A notable point about B is that this form is not coercive. Elementary computations show that
B(1, 1) = 0 and that for any harmonic function u, B(u, u) ≤ 0. Following Brezzi-Babuska-
Ladyzhenskaya’s theory ([2, 3]), an inf sup argument is used in [12] to prove the well posedness on
the continuous level. The former variational problem leads to a discrete method based on a Galerkin
approximation built on a grid that does not have to match the domain. A discrete inf sup condi-
tion should hold uniformly in order to obtain a robust numerical method, otherwise penalization is
mandatory.

In the first part of this work [13], we have discussed this method: convergence is proved in dimension
one, the limitations of the method are explored by numerical experiments. In dimension two, these
experiments show that the method is unstable on complex geometries and that regularization is
then needed. We considered Nitsche method in [13]. Let us briefly recall its basics: the interested
reader can find more details in [6]. On the discrete space Vh, consider the bilinear form ah and the
linear form lh defined as

aN
h (uh, uh) =

∫

Ω
∇uh · ∇vh −

∫

∂Ω
(uh∂nvh + vh∂nuh) +

β

h

∫

∂Ω
uhvh, (1.3)

bNh (vh) =

∫

Ω
fvh −

∫

∂Ω
g∂nvh +

β

h

∫

∂Ω
gvh. (1.4)

The number β is a parameter called Nitsche parameter. Nitsche problem can be written as follows:

{

Find uh in Vh such that

aN
h (uh, vh) = bNh (vh) for all vh ∈ Vh

(1.5)
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When β is large enough, the bilinear form aN
h is coercive in the weighted norm ‖.‖h defined as

‖uh‖2
h = ‖∇uh‖2

L2(Ω) +
1

h
‖uh‖2

L2(∂Ω) + h‖∇uh‖2
L2(∂Ω).

In the context of non matching grid, we introduced in [13] a second regularization of geometrical
type: a compatibility condition between the geometry and the computational mesh has to be
satisfied to obtain good approximation properties. This condition expresses that a uniform lower
bound on the size of intersection between the geometries and the regular mesh should hold. Not
every domain satisfies this condition. This is nevertheless the case after a small modification of the
domain.

In this work, we introduce an alternative way to deal with the essential boundary condition. Our
point of view is the following: instead of looking to

u = g on ∂Ω, (1.6)

we consider it after two differentiations

∆τu = ∆τg on ∂Ω, (1.7)

where ∆τ is the Laplace-Beltrami operator on the manifold ∂Ω . This is only possible if g is regular
enough to give a sense to ∆τg. We shall make the assumption that g ∈ H1(∂Ω) such that ∆τg is
defined in H−1(∂Ω).

The manuscript is organized as follows. In Section 2, we first introduce the new formulation based
on this idea, then we prove that any solution of this variational problem also solves the original
boundary value problem (2.11). In Section 3, we adapt the study of Nitsche method to justify
our approach, we obtain existence and uniqueness of the solution to the discretized version of
our variational formulation and we obtain error estimates. Finally, in Section 4, we present some
numerical experiments to illustrate the proposed method and we provide a numerical comparison
of our method with Nitsche method.

2 A new variational formulation.

2.1 Definitions and setting of the problem.

Let us fix the notations and the variational space. Let Ω be an open, bounded and smooth subset
of R

d (d ≥ 1) with a smooth boundary ∂Ω. We first recall some facts of differential calculus on
surfaces that will be of great use in the following, the reader can find more details in [16]. The unit
outwards normal to ∂Ω is denoted by n. For u ∈ C∞(Ω), the tangential gradient of u on ∂Ω is the
function defined as

∇τu = ∇u− (∇u · n)n. (2.8)

Then, if u is defined only on ∂Ω, ∇τu is is defined as ∇τ ũ, where ũ is an arbitrary extension of
u since this quantity is independent of the choice of the extension. In particular, the tangential
gradient ∇τu of a function u ∈ H1(∂Ω) belongs to L2(∂Ω). Then, the tangential divergence of a
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vector field v defined on ∂Ω is the L2(∂Ω)-adjoint operator of the tangential gradient. Therefore,
it is defined by the relation: for all u ∈ C1(∂Ω),

∫

∂Ω
∇τu · v = −

∫

∂Ω
udivτv (2.9)

Finally, the Laplace-Beltrami operator ∆τ is defined by ∆τu = divτ (∇τu) so that we have the
following integration by parts formula

∫

∂Ω
∆τu v = −

∫

∂Ω
∇τu · ∇τv (2.10)

for a smooth function.Then, this formula extended by density, gives a sense to ∆τu as a element
of H−1(∂Ω) for all u ∈ H1(∂Ω).

A fundamental remark is that no boundary term appears in the former formula (2.10) as long as
∂Ω is a manifold with no boundary. Formula (2.10) is the keystone of our method. Therefore, the
approach we will develop in the following is restricted to the case when the Dirichlet boundary
condition is asked on a manifold ΓD with no border. This assumption excludes the case of mixed
boundary conditions except when the Neumann and Dirichlet conditions are applied on parts ΓN

and ΓD with disjoint closures ΓD ∩ ΓN = ∅ .

We consider the following model boundary value problem of Dirichlet type

{

−∆u = f in Ω,
u = g on ∂Ω,

(2.11)

where f ∈ L2 (Ω) and g ∈ H1 (∂Ω). We consider the space H(Ω) defined by

H(Ω) = {u ∈ H1(Ω) such that ∆u ∈ L2(Ω) and u|∂Ω ∈ H1(∂Ω)}, (2.12)

where u|∂Ω denotes the usual trace in H1/2(∂Ω) of u. Endowed with the norm

‖u‖2
H(Ω) = ‖u‖2

L2(Ω) + ‖∇u‖2
L2(Ω) + ‖∆u‖2

L2(Ω) + ‖u‖2
L2(∂Ω) + ‖∇τu‖2

L2(∂Ω), (2.13)

the space H(Ω) is hilbertian with scalar product

〈u, v〉H =

∫

Ω
(u v + ∇u · ∇v + ∆u∆v) +

∫

∂Ω
(u v + ∇τu · ∇τv) .

2.2 Derivation of the variational formulation

Assume that u is the solution of (2.11). Then, multiplying it by a function ϕ ∈ H(Ω) and integrating
by parts leads to

∫

Ω
∇u · ∇ϕ−

∫

∂Ω
∂nuϕ =

∫

Ω
f ϕ. (2.14)

Now, we use the boundary condition u = g on ∂Ω to notice that
∫

∂Ω
uϕ =

∫

∂Ω
g ϕ. (2.15)
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Then, we use again the boundary condition u = g on ∂Ω under the form (1.7) to see that

〈∆τu, ϕ〉H−1(∂Ω)×H1(∂Ω) = 〈∆τg, ϕ〉H−1(∂Ω)×H1(∂Ω).

Applying integration by parts formula (2.10), we get

∫

∂Ω
∇τu · ∇τϕ =

∫

∂Ω
∇τg · ∇τϕ. (2.16)

Therefore, combining Equations (2.14)-(2.15) and (2.16), u is a solution to

(P)































Find u in H(Ω) such thatAγ(u, ϕ) = Lγ(ϕ) for all ϕ ∈ H(Ω) where

Aγ(u, ϕ) =

∫

Ω
∇u · ∇ϕ −

∫

∂Ω
(ϕ∂nu+ u∂nϕ) + γ

∫

∂Ω
∇τu · ∇τϕ ;

Lγ(ϕ) =

∫

Ω
f ϕ −

∫

∂Ω
g ∂nϕ + γ

∫

∂Ω
∇τg · ∇τϕ.

(2.17)

Here, γ > 0 is a parameter to be chosen later.

Remark 2.1 The quadratic form associated to Aγ is not coercive: one checks Aγ(1, 1) = 0 for
any value of γ. Parameter γ plays the same role than Nitsche parameter β in Nitsche formulation
(1.5). Like the weighted tangential mass term

1

h

∫

∂Ω
uhvh

in Nitsche method, the tangential rigidity term

∫

∂Ω
∇τu · ∇τϕ

is added to compensate, after discretization, the fact that B defined in (1.2) is not coercive in H(Ω).
Like Nitsche parameter β, the parameter γ is to be chosen large enough to assure some positivity
of the bilinear form Aγ but only once discretized. Like for Nitsche method, the key of the proof that
validates this method will be an inverse inequality that provides an upper bound for ‖∂nuh‖L2(∂Ω)

in terms of ‖∇uh‖L2(Ω). We will state it in Lemma 3.2.

2.3 Equivalence with the boundary value problem.

Now, we assume that u ∈ H(Ω) solves variational Problem (2.17). We want to characterize u as
the solution of a boundary value problem.

Theorem 2.1 If γ > 0, there is equivalence between u solves the variational problem (2.17) and u
solves the boundary value problem (2.11).
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Proof: By construction of the variational problem, any solution of boundary value problem
(2.11) also solves (2.17). Therefore, it remains to prove that any solution of variational Problem
(2.17) also solves boundary value problem (2.11).

We first take any ϕ ∈ D(Ω) as test function in (2.17). Then, by cancellation of ϕ and its derivatives
in the neighborhood of ∂Ω, we have

∫

Ω
∇u.∇ϕ =

∫

Ω
f ϕ.

After an integration by parts on Ω, we check that −∆u = f in Ω. It remains to check the boundary
condition. A reverse integration by parts gives that for any ϕ ∈ H(Ω)

∫

Ω
∇u · ∇ϕ −

∫

∂Ω
∂nuϕ =

∫

Ω
f ϕ. (2.18)

Now, for any ψ ∈ C∞(∂Ω), take an extension Ψ ∈ H(Ω) such that ∂nΨ = 0 on ∂Ω. Such an
extension can by defined by extending ψ as a constant along the orbits of the gradient of the signed
distance function to ∂Ω then multiply it by a cutoff function with respect to the distance to ∂Ω.
Then,

Aγ(u,Ψ) =

∫

Ω
∇u · ∇Ψ −

∫

∂Ω
ψ ∂nu + γ

∫

∂Ω
∇τu · ∇τψ and Lγ(Ψ) =

∫

Ω
f Ψ + γ

∫

∂Ω
∇τg.∇τψ.

Therefore, since γ 6= 0, we have for any ψ ∈ C∞(∂Ω)

∫

∂Ω
∇τu · ∇τψ =

∫

∂Ω
∇τg · ∇τψ. (2.19)

By integration by parts on ∂Ω, we get by density −∆τu = −∆τg in H−1(∂Ω) and that (2.19) also
holds for ψ ∈ H1(∂Ω). Then, u − g is constant on any connected component of ∂Ω with Hd−1

measure defined as Hd−1(Γ) =
∫

Γ 1.

Fix Γ a connected component of ∂Ω. To determine the constant CΓ such that u − g = CΓ on
Γ, we localize around Γ: set vΓ = dΓ χ with dΓ the signed distance to Γ (seen from Ω) and χ a
cutoff function with χ(x) = 1 in the neighborhood of Γ and χ(x) = 0 in the neighborhood of the
complement of Γ in ∂Ω. The function vΓ lays in H(Ω) and satisfies vΓ = ∂nvΓ = 0 on ∂Ω\Γ. Then,
Aγ(u, vΓ) = Lγ(vΓ) reduces by cancellation on the other components of ∂Ω to

∫

Ω
∇u ·∇vΓ −

∫

Γ
(vΓ ∂nu+ u∂nvΓ) + γ

∫

Γ
∇τu ·∇τvΓ =

∫

Ω
f vΓ −

∫

Γ
g ∂nvΓ + γ

∫

Γ
∇τg ·∇τvΓ.

Taking into account (2.18) and (2.19), this leads to

0 =

∫

Γ
(u− g)∂nvΓ = CΓ

∫

Γ
1 = CΓHd−1(Γ).

Since Hd−1(Γ) 6= 0, CΓ = 0 and u = g on Γ. This can be done connected component by connected
component to check u = g on ∂Ω.
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3 The associated discrete method.

The computational discretized domain Ωh is obtained by considering a regular grid (with a square
of size h as elementary cell) overlapping Ω (see Figure 1). Then, ∂Ωh is a polygonal line connecting
vertices defined as the intersection points of the boundary ∂Ω with the grid (see Figure 2).

Figure 1: The domain Ω and the grid.
Figure 2: Computational domain Ωh and orig-
inal domain Ω.

The regularity properties assumed on ∂Ω provide upper bounds on the curvature on ∂Ω (except on
possible vertices of ∂Ω) so that there exists a constant C > 0 such that

|∂Ω ∩ C| ≤ Ch,

for each cell C of size h. In the simulations we will present in the sequel, the domain, Ω is represented
as a level line of a function that is discretized on the grid. The vertices of ∂Ωh are then computed
by linear interpolation. As a consequence, Ωh ∩ C is a polygon as shown on Figure 2. We choose

V k
h =

{

u ∈ C0(Ω)/u|K∩Ω ∈ P
k(K ∩ Ω), for all K ∈ Th

}

, (3.20)

where Th denotes the set of the squares of the regular grid and P
k(K) denotes the polynomial’s

space with degrees less than k. To simplify the notations, we will omit the dependency with respect
to the degree of approximation k and simply write Vh instead of V k

h . Let us emphasize that Vh is
not a subset of H(Ω): this comes from the assumption made on the laplacian of function of H(Ω).
As usually in Nitsche’s method, we consider the weighted norm ‖.‖h defined on Vh as

‖uh‖2
h = ‖∇uh‖2

L2(Ω) +
1

h
‖uh‖2

L2(∂Ω) + h‖∇uh‖2
L2(∂Ω). (3.21)

As in [13], we make an additional geometrical assumption in the spirit of the one made for fictitious
domain methods or of assumption 2.2 in [6]. In these methods, the size of the surface element
should be comparable with the size of the volume element in order to prove convergence. In this
work, we make the following geometrical assumption. We consider a cartesian grid of mesh size h.
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Definition 3.1 The domain Ω and the grid satisfy a uniform roundness condition if there exists
a constant γ ∈ (0, 1) such that, for each cell grid K intersected by the domain Ω,

ρ(K ∩ Ω) ≥ γh, (3.22)

where ρ(E) denotes the diameter of the largest disk included in E.

As explained in [13], adding this condition provides two keys ingredient: the following interpolation
result Proposition 3.1 and the trace lemma 3.1 below quoted from [13].

Proposition 3.1 Let Ω and a grid satisfying the roundness condition in the sense of Definition
3.1. Let (K,P,Σ) be a finite element and let k,m be two integers such that m < k. Assume that
Π ∈ L(Hk+1(K), P ) and P ⊂ Hm(K ∩ Ω). Then, there is a constant C such that

|v − Πv|m,K∩Ω ≤ Chk+1−m|v|k+1,Ω∩K . (3.23)

The proof of Proposition 3.1 is a straightforward adaptation of the usual interpolation result in
finite elements theory.

Let us recall the usual Nitsche’s formulation: on the discrete space Vh, consider the bilinear form
ah and the linear form bh defined as

aN
h (uh, uh) =

∫

Ω
∇uh · ∇vh −

∫

∂Ω
(uh∂nvh + vh∂nuh) +

β

h

∫

∂Ω
uhvh, (3.24)

bNh (vh) =

∫

Ω
fvh −

∫

∂Ω
g∂nvh +

β

h

∫

∂Ω
gvh. (3.25)

The number β is a parameter called Nitsche parameter. In the approach we follow here, the added
surface mass term is changed in a surface rigidity term. On the discrete space Vh, we consider the
bilinear form ah and the linear form bh defined as

ah(uh, vh) =

∫

Ω
∇uh · ∇vh −

∫

∂Ω
(uh ∂nvh + vh ∂nuh) +

γ

h

∫

∂Ω
∇τuh · ∇τvh, (3.26)

bh(vh) =

∫

Ω
f vh −

∫

∂Ω
g ∂nvh +

γ

h

∫

∂Ω
∇τg · ∇τvh. (3.27)

For reasons that will be explained with Lemma 3.3, we shall work on Vh,0, the subspace of Vh of
the functions with a null mean on the boundary defined as

Vh,0 =

{

u ∈ C0(Ω)/u|K∩Ω ∈ P
k(K ∩ Ω), for all K ∈ Th such that

∫

∂Ω
uh = 0

}

. (3.28)

Therefore, we restrict ourselves to right hand side g of zero mean value. Let us emphasize that
this is not a restriction thanks to the linearity of the Laplace operator. Let g be any function of
H1(∂Ω), define its mean value

[g] =
1

|∂Ω|

∫

∂Ω
g,

8



and make the change of unknown w = u − [g]. Then, w is the unique solution of the boundary
value problem

{

−∆w = f in Ω,
w = g − [g] on ∂Ω,

(3.29)

with a right hand side g − [g] of zero mean value. Hence, to solve the original boundary value
problem (1.1), it suffices to compute the mean value [g] of g then to solve the modified boundary
value problem (3.29).

The discrete variational problem on Vh,0 can be written as follows :

(Ph,0) Find uh in Vh,0 such that ah(uh, vh) = bh(vh) for all vh ∈ Vh,0 (3.30)

To study this problem, we follow the usual steps in the proof of convergence for Nitsche method:
we first prove trace and inverse inequalities, then we show that ah is coercive in the norm ‖.‖h and
finally we conclude by the error estimate.

Lemma 3.1 There is a non negative constant C1 such that, for any function uh in Vh,

‖uh‖2
L2(∂Ω) ≤

C1

h
‖uh‖2

L2(Ω), (3.31)

We refer to [13] for the proof: the geometrical condition is needed to justify that C1 is not domain
and mesh size dependent. Since ∂nuh = ∇uh ·n, Pythagore’s equality provides the following inverse
inequality result as a direct consequence of (3.31) applied to ∇u.

Lemma 3.2 There is a non negative constant C such that, for any function uh ∈ Vh,

‖∂nuh‖2
L2(∂Ω) ≤

C

h
‖∇uh‖2

L2(Ω) and ‖∇τuh‖2
L2(∂Ω) ≤

C

h
‖∇uh‖2

L2(Ω). (3.32)

Finally, to deal with the last term of ah, we need a control of the L2(∂Ω) norm of u by the L2(∂Ω)
norm of its tangential gradient ∇τu. Obviously, this is not possible for every function as shown by
the example of the constant function. This is why we imposed in this first step the restriction

∫

∂Ω
uh = 0,

and work only on Vh,0. The control of ‖uh‖2
L2(∂Ω) is classically obtained by Wirtinger inequality (in

dimension two, the boundary is a curve).

Lemma 3.3 There is a non negative constant CW that depends on Ω such that, for any function
uh ∈ Vh,0,

‖uh‖L2(∂Ω) ≤ CW‖∇τuh‖L2(∂Ω). (3.33)
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Let us sketch the proof of this lemma. In dimension two, the boundary is a curve, uh is a periodic
function and the proof is a direct consequence of Parseval formula for Fourier series. In higher
dimension, things are not elementary. Following [25], the Laplace-Beltrami operator −∆τ on ∂Ω
is a positive, formally self-adjoint, elliptic pseudo-differential operator of real symbol of order two
for which the spectrum (as an unbounded operator on Hs(∂Ω)) is independent of s and is made
of a series of real eigenvalues growing to infinity. Its kernel is the space of constant functions to
which Vh,0 is L2(∂Ω) orthogonal, hence the Courant Fischer formulae for the Rayleigh quotient of
the Laplace Beltrami operator provides the result.

Let emphasize that this control is not an inverse inequality: it is based on global arguments. One
could ask if a better estimate with a gain in h holds. It is an open question: it is true on each
element but the global property of null mean value plays a crucial role and cannot be handled easily
at the element level. This fact is the main obstacle to a unweighted discretization of the variational
formulation studied in Section 2.

We now prove that the quadratic form ah defined in (3.26) is coercive in the weighted norm ‖.‖h

for γ large enough. Set γ0 = CCW where C is the constant given by the inverse inequality, Lemma
3.2 and CW the constant in Wirtinger’s lemma.

Proposition 3.2 If γ > γ0, there is a non negative constant α independent of h but not of γ such
that for all uh ∈ Vh,0

ah(uh, uh) ≥ α‖uh‖2
h. (3.34)

Then, the discrete problem (Ph,0) defined in (3.30) has a unique solution.

Proof: By Cauchy-Schwarz inequality, one has

ah(uh, uh) =

∫

Ω
|∇uh|2 − 2

∫

∂Ω
uh∂nuh +

γ

h

∫

∂Ω
|∇τuh|2,

≥ ‖∇uh‖2
L2(Ω) − 2 ‖h−1/2uh‖L2(∂Ω) ‖h1/2∂nuh‖L2(∂Ω) +

γ

h
‖∇τuh‖2

L2(∂Ω).

We introduce a parameter ε to be fixed later. By Cauchy inequality, we have

ah(uh, uh) ≥ ‖∇uh‖2
L2(Ω) − ε ‖h−1/2uh‖2

L2(∂Ω) −
1

ε
‖h1/2∂nuh‖2

L2(∂Ω) +
γ

h
‖∇τuh‖2

L2(∂Ω).

Then, by the inverse inequality (3.32) and Wirtinger inequality (3.33), we get

ah(uh, uh) ≥ ε− C

ε
‖∇uh‖2

L2(Ω) +
γ

h
‖∇τuh‖2

L2(∂Ω) −
ε

h
‖uh‖2

L2(∂Ω),

≥ ε− C

ε
‖∇uh‖2

L2(Ω) +
γ − CW ε

h
‖∇τuh‖2

L2(∂Ω),

≥ ε− C

ε
‖∇uh‖2

L2(Ω) +
γ − CW ε

CWh
‖uh‖2

L2(∂Ω).

Now, we first take ε > C and then γ > CW ε, hence γ0 can be chosen as CCW . We have proven the
coercivity result (3.34) for α = min((ε− C)/ε, (γ − CW ε)/CW )) > 0.
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The continuity of the forms is automatic in the finite dimensional context: nevertheless, the con-
stants of continuity depend on h and of γ. Here, using Lemma 3.2 to dominate the surface rigidity
term or directly the definition of Nitsche’s norm (3.21), we have only the poor

|ah(uh, vh)| ≤ C1h
−2‖uh‖h‖vh‖h. (3.35)

Next lemma, stating Galerkin orthogonality, will be used to prove the convergence.

Lemma 3.4 Consider (2.11) with the condition [g] = 0. Let u be its solution and let uh be the
solution of the discrete problem (3.30) then ah((uh − u), ϕh) = 0 for all ϕh ∈ Vh.

Proof: Fix ϕh ∈ Vh,0 and compute:

ah(u, ϕh) =

∫

Ω
∇u · ∇ϕh −

∫

∂Ω
(ϕh ∂nu+ u∂nϕh) +

γ

h

∫

∂Ω
∇τu · ∇τϕh

=

∫

Ω
∇u · ∇ϕh −

∫

∂Ω
ϕh ∂nu−

∫

∂Ω
g ∂nϕh +

γ

h

∫

∂Ω
∇τg · ∇τϕh.

Since Vh ⊂ H1(Ω), we can integrate by parts and we find:

ah(u, ϕh) = −
∫

Ω
ϕh∆u−

∫

∂Ω
g ∂nϕh +

γ

h

∫

∂Ω
∇τg · ∇τϕh

=

∫

Ω
f ϕh −

∫

∂Ω
g ∂nϕh +

γ

h

∫

∂Ω
∇τg · ∇τϕh.

The conclusion follows by considering uh ∈ Vh, the solution of the discrete problem (3.30) which
satisfies:

ah(uh, ϕh) =

∫

Ω
f ϕh −

∫

∂Ω
g ∂nϕh +

γ

h

∫

∂Ω
∇τg · ∇τϕh.

We now assume that the uniform roundness compatibility condition is satisfied in order to have
Proposition 3.1 at our disposal. We can state the error estimate.

Theorem 3.1 Consider (2.11) with the condition [g] = 0. Assume γ > γ0. Let u be its solution
and let uh be the solution of problem (3.30). If u ∈ Hs(Ω) with 2 ≤ s ≤ k, and assume that the
uniform roundness condition (3.22) is satisfied. Then, there is C > 0 such that:

‖u− uh‖h ≤ Chs−3 ‖u‖Hs(Ω) . (3.36)

11



Proof: We proceed in the usual way. For any function ϕh ∈ Vh, we get by triangular inequality

‖u− uh‖h ≤ ‖u− ϕh‖h + ‖uh − ϕh‖h .

Using the continuity and coercivity of ah (3.34) and (3.35), and also Lemma 3.4, there is C1 > 0
such that:

‖uh − ϕh‖2
h ≤ 1

α
ah(uh − ϕh, uh − ϕh) ≤ 1

α
ah(uh − ϕh, u− ϕh) ≤ C1

α
h−2‖uh − ϕh‖h‖u− ϕh‖h.

Gathering the two inequalities, we get

‖uh − ϕh‖h ≤ (1 +
C1

α
h−2) inf

ϕh∈Vh

‖u− ϕh‖h. (3.37)

We introduce the trianglewise defined norm :

‖ϕ‖2
h,H2(Ω) =

∑

K∈Th

‖ϕ‖2
H2(Ω∩K) .

to recall the following upper bound of the weighted norm proven in [26] for example: there is C2 > 0
such that, for any function ϕ ∈ H2(Ω):

‖ϕ‖h ≤ C2h
−1

(

‖ϕ‖L2(Ω) + h ‖ϕ‖H1(Ω) + h2 ‖ϕ‖h,H2(Ω)

)

. (3.38)

Thanks to Proposition 3.1 on the local approximation, there is a constant C3 > 0 such that :

‖u− Π(u)‖L2(Ω) + h ‖u− Π(u)‖H1(Ω) + h2 ‖u− Π(u)‖h,H2(Ω) ≤ C3h
s ‖u‖Hs(Ω) . (3.39)

Combining (3.38) with (3.39), we obtain

inf
ϕh∈Vh

‖u− ϕh‖h ≤ C2C3h
s−1 ‖u‖Hs(Ω) . (3.40)

We deduce the convergence estimate (3.36) from the upper bounds (3.37) and (3.40).

The poor scaling of the surface diffusion and the choice of keeping the weighted norm of Nitsche’s
method explain why we have the poor convergence result: convergence is proved only if s > 3 with
also k ≥ 4 at least. However, this unsatisfactory theoretical result is not observed in numerical
tests as presented in next section.

4 Numerical validation and comparison with Nitsche method.

4.1 Numerical implementation.

Not every domain satisfies the compatibility condition of Definition (3.1), for example this is the
case of a starfish like domain as illustrated in Figure 6. In order to force the compatibility condition,
we have to modify the domain Ω by moving its boundary points that are too close from grid vertices.

12



Since the roundness condition (3.1) is not easily checked, we have introduced in [13] a stronger
compatibility condition that would be easy to check in implementation. We consider a regular grid
Gh of size h covering the domain Ω. Each cell K of the grid is then a cube of side h, its border ∂K
has vertices S that are the nodes of the grid. We set ∂K∗ the border ∂K from which we removed
the vertices. The union of the ∂K∗ is denoted by G∗.

Definition 4.1 The domain Ω and the grid are said to be compatible if there exists a constant
Pc ∈ (0, 1/2) such that if S /∈ ∂Ω is a node of the grid, then

‖S − Y ‖ ≥ Pch for all Y ∈ ∂Ω ∩G∗. (4.41)

The key point is (4.42) that plays the same role than the roundness of the element in the usual
result. The choice of the stronger condition (4.41) in Definition 4.1 is motivated by practical
consideration: it provides an easily implemented way to modify the domain in order to check the
needed (4.42). Let us explain how to perform that modification.

Figure 3 illustrates the forbidden places for boundary points of ∂Ω. Once this property is satisfied,
then the diameter ρ(K ∩Ω) of the largest disk included in Ω∩K is uniformly in h controlled from
below. In dimension two, the set K ∩ Ω contains a least an isosceles triangle of size length Pch,
Pch and

√
2Pch and therefore:

ρ(K ∩ Ω) ≥ 1

2
Pch. (4.42)

Pch Pch

Pch

Pch

PchPch

Pch

Pch

Figure 3: illustration of Definition 4.1 on a cell K of size h of the grid.

This is performed as illustrated in Figures 4 and 5. The domain Ω is hatched. For computations,
it is modified: the black area is either removed from Ω, or added to Ω and a computational domain
Ω̃h is obtained. By an argument of continuity and derivability with respect to the domain of the
solution in H1 of (2.11), the error on the solution ũh committed by this geometrical modification
is small (of order Pch

2). We refer to the monographs [1, 16] on the subject.

According to the numerical study for the choice of this parameter performed in [13], we have fixed
the value of parameter Pc = 1/10.

Finally, the tangential gradients are computed thanks to (2.8): on each cell K, the boundary ∂Ω∩K
is a straight line and the tangential gradient is nothing but the component of the gradient in the

13
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Figure 4: case where ‖S − Y ‖ < Pch/2. The
dark area is removed.
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Figure 5: case where ‖S − Y ‖ ≥ Pch/2. The
dark area is added.

direction of this line. One has to be careful with the orientation. The surface rigidity term is then
assembled in a loop over all cells intersected by ∂Ω.

4.2 Numerical results and comparison with Nitsche method

Our theoretical results are valid only for boundary values with zero mean value, so we solve (2.11).
The presented computations have been performed on two domains: a matching square [−0.4, 0.4]×
[−0.4, 0.4], and on a more complex domain: the interior of the curve given in polar coordinates by
ρ(θ) = 0.385 + 0.09 · cos(7 · θ + (7/π)). This domain looks like a starfish as it is shown in Figure
6. Software was developed using MATLAB (The MathWorks). Let us emphasize that the square,
with just a Lipschitz boundary, does not fit the assumptions of this work.

−0.5 0 0.5

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Figure 6: A domain as a starfish plotted on a grid (h = 1/20).

The sample steps h = 1/400, 1/220, 1/120, 1/70, 1/40, 1/20, 1/10 have been chosen so that the
square exactly matches the regular grid composed of Q8-finite elements. The order two is not
justified by Theorem 3.1 that suggests to use higher order elements. Nevertheless, we will see that
convergence will be observed with an order much better than expected. This suggests that our
theoretical analysis can be improved.
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The exact solution we seek to recover is u(x, y) = ey sinx. Intensive tests have been performed
ranging γ from small values (i.e. γ ∈ {1, 2, 3, 4, 5}) to very large value (up to 200). Experiments
for γ = 5 to 200 have been conduced using a step of 5. The geometrical parameter Pc has been
set to 10% as it seems to be a good choice referring to the previous experiments presented in [13].
From this field of investigation, we comment on the observed results.
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Figure 7: H1 error for the matching square:
γ ∈ {1, 2, 3, 4, 5}

0.001 0.01 0.1 1
10

−13

10
−12

10
−11

10
−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

h

L2 (Ω
) 

er
ro

r

 

 

γ=1
γ=2
γ=3
γ=4
γ=5

Figure 8: L2 error for the matching square:
γ ∈ {1, 2, 3, 4, 5}

Figures 7 to 10 show H1 and L2 errors as h for the matching square for small values of parameter
(γ ∈ {1, 2, 3, 4, 5}), and for larger values (γ ∈ [5, 25] stepped by 5). Figures 11 to 14 show H1 and
L2 errors as h for the starfish for small values of parameter (γ ∈ {1, 2, 3, 4, 5}), and for larger values
(γ ∈ [5, 25] stepped by 5). For each domain we present the convergence graphs for H1 and L2 errors
as h plotted using loglog scales.

It can be observed that, for the same value of γ, convergence graphs for L2 errors have the same
behavior as the convergence graphs for H1 errors. This has been noted on all the experiments.

Figures 15 to 16 depict convergence graphs for H1 error only using γ ∈ [30, 50] stepped by 5 for
the matching square and for the starfish. As it can be observed, the curves are more smoothed as
larger values for γ are used.

As it can be observed in Figures 7-10 and 15 a quasi straight line for convergence graphs is obtained
when γ exceeds 2 for the matching square. If now consider Figures 11-14 and 16, we observe that
a good behavior is obtained when γ exceeds 5 for the starfish.

As it can be shown on all Figures, small values of γ suffice to ensure a good enough convergence.
So, we do not present the results obtained for large values of γ even though experiments have been
conduced up to 200. At this stage, we are not able to provide a safe recipe for choosing γ since
only two domains have been used for our experiments.

From the graphs presented in Figures 7-16, we see that the value of parameter γ has to be chosen
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Figure 9: H1 error for the matching square:
γ ∈ [5, 25]
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Figure 10: L2 error for the matching square:
γ ∈ [5, 25]
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Figure 11: H1 error for the starfish: γ ∈ [1, 5]
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Figure 12: L2 error for the starfish: γ ∈ [1, 5]

relatively small. This is remarkable in comparison with the usual Nitsche method we used in [13]
where the value of the parameter β is usually larger. Let us exhibits this observation on the starfish
domain. Figure 17 shows H1 error for the same value of the parameter γ = β = 10 while Figure 18
depicts results for γ = 10 and β = 100.

At this stage, we have not an explanation about the fact that γ can be affected a smaller value
than the Nitsche’s parameter β. We have just observed this fact on the performed experiments.

We are now giving some details about the practical implementation. We use MATLAB and standard
double-precision having a floating-point relative accuracy of eps = 2.2204e − 16 around 1.0. We
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Figure 13: H1 error for the starfish: γ ∈ [5, 25]
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Figure 14: L2 error for the starfish: γ ∈ [5, 25]
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Figure 15: H1 error for the matching square:
γ ∈ [30, 50]
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Figure 16: H1 error for the starfish like domain:
γ ∈ [30, 50]

use the UMFPACK direct method [11] of MATLAB and the embedded default ordering.

Tables 1 and 2 show the characteristics of the matrices associated with each problem to be solved.
As expected, these matrices become as large as h decreases.

Figures 19 and 20 depict the condition number estimate for matrices for the matching square while
Figures 21 and 22 show the condition number estimate for the starfish. For Figures 19 and 21
we have γ ∈ {1, 2, 3, 4, 5}. The two other Figures are plotted using γ ∈ [5, 25] stepped by 5. The
condest function of MATLAB has been used to obtain the values. These Figures clearly show that
matrices are as much as ill-conditioned as h decreases since the size of the linear system becomes
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Figure 17: H1 error for the starfish like domain:
γ = β = 10
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Figure 18: H1 error for the starfish like domain:
γ = 10 and β = 100

h 1/10 1/20 1/40 1/70 1/120 1/220 1/400

size 225 833 3201 9633 28033 93633 308481

nnz 3133 12285 48633 148289 434689 1458689 4817919

sparsity 6.1% 1.7% 0.47% 0.15% 0.055% 0.016% 0.0050%

Table 1: Size, number of non zero entries, and sparsity rate as h for the matching square domain

larger and larger. Moreover, one can observe that the condition number increases as the parameter
γ increases. So, pro and cons have to be weighted, oscillations of the solutions are smoothed adding
the stabilization term, but as a counterpart the condition number increases.

One can also observe on Figure 15 that curves diverge when h is below 0.01. This phenomenon has
been seen over the other experiments. At this stage, we have not a fully satisfactory explanation.
The MATLAB relative floating-point accuracy is eps = 2.2204e− 16, we probably have cumulative
round-off errors since interface terms are much smaller than internal ones. The direct solver has
a pivoting strategy that permits to obtain good quality solutions even on matrices having a poor
condition number. But we are probably near the limits when using such a resolution strategy on
large matrices issued from the proposed formulation.

When conducing the numerical tests our main aim was to validate the proposed alternative approach
on few enough significative tests. On the scope of practical use, it is obvious that more intensive

h 1/10 1/20 1/40 1/70 1/120 1/220 1/400

size 253 784 2732 7791 21988 71961 234202

nnz 3459 11218 40640 118241 338024 1115451 3647590

sparsity 5.4% 1.8% 0.54% 0.19% 0.069% 0.021 % 0.0066%

Table 2: Size, number of non zero entries, and sparsity rate as h for the starfish domain
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Figure 19: Condition number estimate for the
matching square: γ ∈ {1, 2, 3, 4, 5}
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Figure 20: Condition number estimate for the
matching square: γ ∈ [5, 25]
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Figure 21: Condition number estimate for the
starfish: γ ∈ {1, 2, 3, 4, 5}
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Figure 22: Condition number estimate for the
starfish: γ ∈ [5, 25]

experiments should be necessary in order to answer on questions relative to the choice of the
parameter γ and on the adequation between the intrinsic method and numerical solvers.

Conclusion We have presented a new method to solve a model boundary value problem with
a structured mesh on a bounding box. This method is a variant of the usual Nitsche method
with an interpretation in the continuous level, it is compatible with a level-set representation of
the boundary but imposes restrictive conditions. The empirical results are by far better than
the theoretical one. To obtain robustness and convergence, the procedure requires to adjust two
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parameters: a geometrical parameter Pc and a Nitsche like coefficient γ. It seems that this coefficient
can be chosen significantly smaller than Nitsche parameter.
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