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On homotopy invariants of combings of 3–manifolds

Christine Lescop ∗

September 12, 2012

Abstract

Combings of oriented compact 3-manifolds are homotopy classes of nowhere zero vector
fields in these manifolds. A first known invariant of a combing is its Euler class, that is
the Euler class of the normal bundle to a combing representative in the tangent bundle
of the 3-manifold M . It only depends on the Spinc-structure represented by the combing.
When this Euler class is a torsion element of H2(M ;Z), we say that the combing is a
torsion combing. Gompf introduced a Q-valued invariant θG of torsion combings of closed
3-manifolds that distinguishes all combings that represent a given Spinc-structure. This
invariant provides a grading of the Heegaard Floer homology ĤF for manifolds equipped
with torsion Spinc-structures. We give an alternative definition of the Gompf invariant
and we express its variation as a linking number. We also define a similar invariant p1
for combings of manifolds bounded by S2. We show that the Θ-invariant, that is the
simplest configuration space integral invariant of rational homology spheres, is naturally
an invariant of combings of rational homology balls, that reads (14p1 + 6λ) where λ is the
Casson-Walker invariant. The article also includes a mostly self-contained presentation of
combings.

Keywords: Spinc-structure, nowhere zero vector fields, first Pontrjagin class, Euler class,
homology 3–spheres, Heegaard Floer homology grading, Gompf invariant, Theta invariant,
Casson-Walker invariant, perturbative expansion of Chern-Simons theory, configuration space
integrals
MSC: 57M27 57R20 57N10

1 Introduction

1.1 General introduction

In this article, M is an oriented connected compact smooth 3-manifold. The boundary ∂M of
M is either empty or identified with the unit sphere S2 of R3. In this latter case, a neighborhood
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N(∂M) of ∂M in M is identified with a neighborhood of S2 in the unit ball of R3. The tangent
bundle of M is denoted by TM , and the unit tangent bundle of M is denoted by UM . Its
fiber is UmM = (TmM \ {0})/R+∗. All parallelizations of M are assumed to coincide with the
parallelization induced by the standard parallelization τs of R

3 over N(∂M), and all sections of
UM are assumed to be constant with respect to this parallelization over N(∂M). Homotopies
of parallelizations or sections satisfy these assumptions at any time. When ∂M = ∅, the
parallelizations of M also induce the orientation of M .

A combing of M is a homotopy class of such sections of UM . According to Turaev [Tur97],
a Spinc-structure on M may be seen as an equivalence class of sections of UM , where two
sections are in the same class if and only if they are homotopic over the complement of a point
that sits in the interior of M .

For K = Z or Q, a K-sphere or (integral or rational) homology sphere (resp. a K-ball) is a
smooth, compact, oriented 3-manifold with the same K-homology as the sphere S3 (resp. as a
point).

In this mostly self-contained article, we study the combings ofM , that are homotopy classes
of sections of UM . We first describe the first known homotopy invariant of a combing, that is
the Euler class, in terms of linking numbers. The Euler class of a combing is the Euler class of
the normal bundle to a combing representative in TM . It only depends on the Spinc-structure
induced by the combing. When this Euler class is a torsion element of H2(M, ∂M ;Z), we say
that the combing is a torsion combing . We introduce a rational invariant p1 of torsion combings
of M . When M is closed (i. e. compact, without boundary), we show that the invariant p1
coincides with the Gompf invariant θG. Thus,

θG+2
4

coincides with the Ozsváth Szabó grading

of the Heegaard-Floer homology ĤF for manifolds equipped with torsion Spinc-structures in
[OS06], according to a Gripp and Huang article [GH11]. For a combing that extends to a paral-
lelization, the invariant p1 coincides with the Pontrjagin number (or Hirzebruch defect) of the
parallelization, studied in [KM99, Les04a, Les12]. In general, we express the variation of p1 in
terms of linking numbers. We also show that the Θ-invariant, that is the simplest configuration
space integral invariant of rational homology spheres, is naturally another canonical invariant
of combings of rational homology balls. It reads (1

4
p1 + 6λ) where λ is the Casson-Walker

invariant normalized like in [AM90, Mar88] for Z-spheres and like λW

2
for Q-spheres, where λW

is the Walker normalisation in [Wal92].

1.2 Conventions and notations

Unless otherwise mentioned, all manifolds are oriented. Boundaries are oriented by the outward
normal first convention. Products are oriented by the order of the factors. More generally, unless
otherwise mentioned, the order of appearance of coordinates or parameters orients chains or
manifolds. The fiber of the normal bundle N(A) of an oriented submanifold A is oriented so that
the normal bundle followed by the tangent bundle of the submanifold induce the orientation of
the ambient manifold, fiberwise. The transverse intersection of two submanifolds A and B in a
manifold M is oriented so that the normal bundle of A∩B is (N(A)⊕N(B)), fiberwise. If the
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two manifolds are of complementary dimensions, then the sign of an intersection point is +1 if
the orientation of its normal bundle coincides with the orientation of the ambient space, that
is if TxM = NxA ⊕ NxB (as oriented vector spaces), this is equivalent to TxM = TxA⊕ TxB.
Otherwise, the sign is −1. If A and B are compact and if A and B are of complementary
dimensions in M , their algebraic intersection is the sum of the signs of the intersection points,
it is denoted by 〈A,B〉M . The linking number of two rationally null-homologous disjoint knots
in a 3-manifold is the algebraic intersection of a rational chain bounded by one of the knots
and the other one. In this article, blowing up a submanifold A means replacing it by its
unit normal bundle. Locally, ((Rc = {0}∪]0,∞[×Sc−1)× A) is replaced by ([0,∞[×Sc−1 ×A).
Topologically, this amounts to removing an open tubular neighborhood of the submanifold
(thought of as infinitely small), but the process is canonical, so that the created boundary
is the unit normal bundle of the submanifold and there is a canonical projection from the
blown-up manifold to the initial manifold.

1.3 Expanded introduction

Let us now be more explicit in order to state the main results precisely. The assertions below
will be justified in Subsections 2.2 and 2.3. When a parallelization τ ofM is given, two sections
X and Y of UM induce a map (X, Y ):M → S2 × S2. Two sections X and Y are said to be
transverse if the induced maps (X, Y ) and (X,−Y ) are transverse to the diagonal of S2 × S2,
that is if their images are. This is generic and independent of τ . For two transverse sections X
and Y , let LX=Y be the preimage of the diagonal of S2 under the map (X, Y ). Thus LX=Y is
an oriented link in the interior of M . It is cooriented by the fiber of the normal bundle to the
diagonal of (S2)2.

The Spinc-structures ofM form an affine space S(M) with translation groupH2(M, ∂M ; π2(S
2)).

The Poincaré duality isomorphism P :H2(M, ∂M ;Z) → H1(M ;Z) identifies the translation
group of S(M) with H1(M ;Z). Then, for any two transverse sections X and Y of UM , the
difference ([X ]c − [Y ]c) ∈ H1(M ;Z) of the two corresponding Spinc-structures [X ]c and [Y ]c of
M is the class of LX=−Y in H1(M ;Z).

The Euler class of a combing [X ] represented by a section X , is the Euler class of the
normal bundle of TM/RX . It is denoted as e(X⊥), it belongs to H2(M ;Z) (here, H2(M ;Z) =
H2(M, ∂M ;Z)) and satisfies

P (e(X⊥)) = [X ]c − [−X ]c

so that for two combings [X ] and [Y ],

P (e(X⊥)− e(Y ⊥)) = 2([X ]c − [Y ]c).

A torsion combing ofM is a combing whose Euler class is a torsion element ofH2(M, ∂M ;Z).
A torsion section of UM is a section that represents a torsion combing.

There is a natural transitive action of π3(S
2) = Z on the combings of M that belong to a

given Spinc-structure. This action is free for torsion Spinc-structures , that are Spinc-structures
represented by torsion combings.
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We shall prove the following theorem in Subsection 3.2.

Theorem 1.1 Let X be a fixed section of UM . Two sections Y and Y ′ of UM transverse to X
represent the same Spinc-structure if and only if the links LY=−X and LY ′=−X are homologous.

If X is a torsion section, then a section Y of UM transverse to X is a torsion section if
and only if the links LY=−X and LY=X are rationally null-homologous in M .

If X is a torsion section, then two torsion sections Y and Y ′ of UM transverse to X
represent the same combing if and only if the links LY=−X and LY ′=−X are homologous, and
lk(LY=−X , LY=X) = lk(LY ′=−X , LY ′=X).

This theorem is a generalisation of a Pontrjagin theorem recalled in Subsection 2.2 that treats
the case when X extends to a trivialization.

The first Pontrjagin class induces a canonical map p1 from the set of parallelization ho-
motopy classes of M to Z, that is studied under the name Hirzebruch defect in [KM99] when
∂M = ∅, by Kirby and Melvin, and studied and used as p1 in [Les04a, Les12] when M is a
Q-ball. The definition of p1 and some of its properties are recalled in Subsection 2.1.

The main result of this article is the following theorem that is proved in Section 3.

Theorem 1.2 There exists a unique map

p1: {Torsion combings of M} → Q

such that

• if the combing [X ] extends as a parallelization τ , then p1([X ]) = p1(τ),

• for any two transverse torsion sections X and Y of UM ,

p1([Y ])− p1([X ]) = 4lk(LX=Y , LX=−Y ),

The map p1 satisfies the following properties:

• For any combing [X ], p1([X ]) = p1([−X ]).

• The restriction of p1 to any torsion Spinc-structure is injective.

We present simple operations on combings in Definition 2.6. The variation of p1 under these
and other simple operations on torsion combings are presented in Subsection 4.1, and the image
of p1 is determined by the following theorem that is also proved in Subsection 4.1.

Let ℓ: Torsion(H1(M ;Z)) → Q/Z denote the self-linking number (the linking number of a
representative and one of its parallels). View an element a of Q/Z as its class (a+ Z) in Q so
that 4ℓ(Torsion(H1(M ;Z)) is a subset of Q, invariant by translation by 4.
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Theorem 1.3 Let τ be a parallelization of M inducing a combing X. For any torsion combing
Y ,

p1(Y ) ∈ (p1(τ)− 4ℓ([LY=−X ])).

p1({Torsion combings}) = p1(τ)− 4ℓ(Torsion(H1(M ;Z)).

Here p1(τ) is an integer whose parity is determined in Theorem 2.3 below. Note that the image
of p1 is not an affine space in general.

In Subsection 4.2, we prove that the invariant p1 coincides with the Gompf invariant when
∂M = ∅. The Gompf invariant is denoted by θ in [Gom98], and it is denoted by θG in this
article to prevent confusion with Θ.

In [OS04, Section 2.6], Ozsváth and Szabó associate a Spinc-structure to a generator x of

the Heegaard Floer homology ĤF . Gripp and Huang refine this process in [GH11] in order
to associate a combing g̃r(x) to such a generator x, and they relate the Gompf invariant
with the absolute Q-grading gr of Ozsváth and Szabó for the Heegaard Floer homology of
3-manifolds equipped with torsion Spinc structures in [OS06]. According to [GH11, Corollary

4.3], gr(x) = 2+θG(g̃r(x))
4

.
The work of Witten [Wit89] pioneered the introduction of many Q-sphere invariants, among

which the Kontsevich configuration space invariant [Kon94] that was proved to be equivalent
to the LMO invariant of Le, Murakami and Ohtsuki [LMO98] for integral homology spheres
by G. Kuperberg and D. Thurston [KT99]. This Kontsevich configuration space invariant is
in fact an invariant of parallelised Q-balls M . Its degree one part is called the Θ-invariant.
For a Q-ball M equipped with a parallelization τ , the invariant Θ(M, τ) is the sum of 6λ(M)

and p1(τ)
4

, where λ is the Casson-Walker invariant, according to a Kuperberg-Thurston theorem
[KT99] generalized to rational homology spheres in [Les04b, Theorem 2.6 and Section 6.5].

The extension of the map p1 to torsion combings in Theorem 1.2 and the proof of the
variation formula p1([Y ]) − p1([X ]) = 4lk(LX=Y , LX=−Y ) occured to me when I realized that
the Θ-invariant is actually an invariant of combings X of Q-balls M such that

Θ(M,X) = 6λ(M) +
1

4
p1(X).

The Θ-invariant is presented as an invariant of combings in Section 5, and the above formula
is proved in this section.

2 Preliminaries and background

2.1 The original map p1 for parallelizations

It has long been known that smooth compact oriented 3-manifolds are parallelisable.
LetM be equipped with a parallelization τM :M×R3 → TM . Let GL+(R3) denote the group

of orientation-preserving linear isomorphisms of R3. Let [(M, ∂M), (GL+(R
3), 1)]m denote the

5



set of maps
g : (M, ∂M) −→ (GL+(R3), 1)

from M to GL+(R3) that send ∂M to the unit 1 of GL+(R3). Let [(M, ∂M), (GL+(R
3), 1)] de-

note the group of homotopy classes of such maps, with the group structure induced by the multi-
plication of maps using the multiplication inGL+(R

3). For a map g in [(M, ∂M), (GL+(R
3), 1)]m,

define
ψ(g) : M × R3 −→ M × R3

(x, y) 7→ (x, g(x)(y)).

Then any parallelization τ of M that coincides with τM on ∂M reads

τ = τM ◦ ψ(g)

for some g ∈ [(M, ∂M), (GL+(R
3), 1)]m. Thus, fixing τM identifies the set of homotopy classes

of parallelizations of M fixed on ∂M to the group [(M, ∂M), (GL+(R
3), 1)]. Since GL+(R

3)
deformation retracts onto the group SO(3) of orientation-preserving linear isometries of R3,
the group [(M, ∂M), (GL+(R

3), 1)] is isomorphic to [(M, ∂M), (SO(3), 1)].
See B3 as the quotient of [0, 2π]×S2 where the quotient map identifies {0}×S2 to a point.

Then the map from B3 to SO(3) that maps (θ ∈ [0, 2π], x ∈ S2) to the rotation ρ(θ, x) with
axis directed by x and with angle θ is denoted by ρ. It induces the standard double covering
map ρ̃ from S3 = B3/∂B3 to SO(3) that orients SO(3). The following standard proposition is
proved in [Les12].

Proposition 2.1 For any compact connected oriented 3-manifoldM , the group [(M, ∂M), (SO(3), 1)]
is abelian, and the degree

deg: [(M, ∂M), (SO(3), 1)] −→ Z

is a group homomorphism, that induces an isomorphism

deg: [(M, ∂M), (SO(3), 1)]⊗Z Q −→ Q.

Let W be a compact 4–dimensional manifold with signature 0 whose boundary is ∂W =
M ∪1×∂M (−[0, 1]× S2) ∪0×S2 (−B3) (resp. ∂W = M) when ∂M = S2 (resp. when ∂M = ∅).
When ∂M = S2, W has ridges and it is identified with an open subspace of one of the products
[0, 1[×B3 or ]0, 1] × M near ∂W . Then the Pontrjagin number p1(τ) of a parallelization τ
is the obstruction to extending the trivialization of TW ⊗ C induced by τ and the standard
parallelization τs of R3 on ∂W across W . This obstruction lives in H4(W, ∂W, π3(SU(4)) =
Z) = Z. For more details, see [Les04a, Section 1.5] or [Les12] where the following classical
theorem is proved.

Theorem 2.2 Let M be a compact connected oriented 3-manifold such that ∂M = ∅ or S2.
For any map g in [(M, ∂M), (SO(3), 1)]m, for any trivialization τ of TM

p1(τ ◦ ψ(g))− p1(τ) = 2deg(g).
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For n ≥ 3, a spin structure of a smooth n–manifold is a homotopy class of parallelizations
over a 2-skeleton of M (that is over the complement of a point when n = 3).

The class of the double covering map ρ̃ described above is the standard generator of
π3(SO(3)) = Z[ρ̃]. The map ρ can be used to describe the action of π3(SO(3)) on the ho-
motopy classes of parallelizations (τ :M × R3 → TM) of TM as follows. Let B be a 3–ball in
M identified with B3. Let τψ(ρ) coincide with τ outside B ×R3 and read τ ◦ ψ(ρ) on B ×R3.
Set [ρ̃][τ ] = [τψ(ρ)]. The set of parallelizations that induce a given spin structure form an affine
space with translation group π3(SO(3)). According to Theorem 2.2, p1([ρ̃][τ ]) = p1(τ) + 4.

The Rohlin invariant µ(M,σ) of a smooth closed 3-manifold M , equipped with a spin
structure σ, is the mod 16 signature of a compact spin 4-manifold W bounded by M so that
the spin structure of W restricts toM as a stabilisation of σ. The first Betti number ofM that
is the dimension of H1(M ;Q) is denoted by β1(M).

Kirby and Melvin proved the following theorem [KM99, Theorem 2.6].

Theorem 2.3 For any closed oriented 3-manifold M , for any parallelization τ of M ,

(p1(τ)− dimension(H1(M ;Z/2Z))− β1(M)) ∈ 2Z.

Let M be a closed 3-manifold equipped with a given spin structure σ, p1 is a bijection from the
set of homotopy classes of parallelizations of M that induce σ to

2 (dimension(H1(M ;Z/2Z)) + 1) + µ(M,σ) + 4Z

When M is a Z–sphere, p1 is a bijection from the set of homotopy classes of parallelizations of
M to (2 + 4Z).

Extend the standard parallelization τs of B
3 as a parallelization τ̂s of S

3. When ∂M = S2,
we can form M̂ = (S3 \ (B3 \N(∂M))) ∪N(∂M)M and use τ̂s to extend any parallelization τ of

M to a parallelization τ̂ of M̂ . Then it is easy to see that p1(τ) = p1(τ̂)− p1(τ̂s). In particular,
according to Theorem 2.3, (p1(τ)− dimension(H1(M ;Z/2Z))− β1(M)) ∈ 2Z and, when M is
a Z–ball, the map p1 is a bijection from the set of homotopy classes of parallelizations of M to
4Z.

2.2 Generalization of a Pontrjagin construction in dimension 3

Lemma 2.4 Combings are generically transverse. For two transverse sections X and Y of
UM , the homology classes of LX=Y and LX=−Y only depend on the Spinc-structures [X ]c and
[Y ]c represented by X and Y .

Proof: When X extends as a parallelization, this parallelization identifies UM with M × S2,
then Y may be seen as a map from M to S2, and a homotopy of Y is a map from [0, 1]×M
to S2, for which X is a regular value, generically. In particular, the preimage of X under such
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a homotopy h yields a cobordism from LY0=X and LY1=X , and the homology class of LY=X

only depends on the homotopy class of Y , when X is fixed. Since any X locally extends as
a parallelization, the local transversality arguments hold for any X so that the above proof
may be adapted to any X by using a homotopy (Yt, X) valued in S2 × S2 (with respect to
some reference trivialization) and the preimage of the diagonal under this homotopy. Similarly,
the homology class of LY=−X only depends on the homotopy classes of X and Y . Since the
homology classes of LY=−X and LY=X are unchanged under a homotopy of X or Y supported
in a ball, they only depend on [X ]c and [Y ]c. ⋄

Let X be a section of UM . Equip M with a Riemannian structure (all of these are homo-
topic). These two assumptions hold for the rest of the subsection.

Let NL be the normal bundle of a link L in M . Let S(NL, (−X)⊥) denote the space
of homotopy classes of sections of the S1–bundle over L whose fiber over x is the space of
orientation-preserving linear isometries from the fiber NxL = TxM/TxL of NL to (−X(x))⊥ =
TxM/R(−X(x)).

An X–framing of L will be an element of S(NL, (−X)⊥).
A framing of a link L of M is a homotopy class of sections of the unit normal bundle of

L. Pushing L in the direction of such a section yields a parallel L‖ of L up to isotopy of L‖ in
N(L)\L, where N(L) is a tubular neighborhood of L. This isotopy class of parallels induced by
the framing also induces the framing. Thus, a framing of L is such an isotopy class of parallels
of L.

Any section Y of UM transverse to X is equipped with an X–framing

σ(Y,X) ∈ S(NLY=−X , (−X)⊥)

of LY=−X , that is naturally induced by the restriction of the tangent map of Y .

Lemma 2.5 Let X and Y be two transverse sections of UM . Let N(LY=−X) be a tubular
neighborhood of LY=−X . There exists a section Ỹ homotopic to Y such that LỸ=−X = LY=−X ,

σ(Y,X) = σ(Ỹ , X) and Ỹ sends the complement of a tubular neighborhood of N(LY=−X) to X.
Furthermore, the homotopy class of Y is determined by X, LY=−X and σ(Y,X).

Proof: Outside LY=−X , there is a homotopy from Y to X . When Y (m) 6= −X(m), there is a
unique geodesic arc [Y (m), X(m)] with length (ℓ ∈ [0, π[) from Y (m) to X(m). For t ∈ [0, 1],
let Yt(m) ∈ [Y (m), X(m)] be such that the length of [Y (m) = Y0(m), Yt(m)] is tℓ. Let D2

be the unit disk of C. Write N(LY=−X) as D2 × LY=−X , and let χ be a smooth increasing
bijective function from [0, 1] to [0, 1] whose derivatives vanish at 0 and 1. Set Ỹt(m) = Yt(m) if

m /∈ N(LY=−X) and Ỹt(v ∈ D2, ℓ ∈ LY=−X) =

{
Yχ(|v|)t(v, ℓ) if v 6= 0
Y (0, ℓ) if v = 0.

Then Ỹ = Ỹ1 has the wanted properties.
Trivializing (−X)⊥ over N(LY =−X), and reducing the size of N(LY=−X) allows one to prove

that the homotopy class of Y is determined by X , LY=−X and σ(Y,X). ⋄

We now present some combing modifications.
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Definition 2.6 Let X be a section of UM . Let L be a link in the interior of M and let Z be
a section of UM|L orthogonal to X . Let η = ±1, let L‖ be a parallel of L and let N(L) be
a tubular neighborhood of L where Z is extended as a section of UM orthogonal to X . Let
ρ(θ,X) denote the rotation with axis X and angle θ. Let D2 = {u exp(iθ); u ∈ [0, 1], θ ∈ [0, 2π]}
be the unit disk of C. Define D(X,L, L‖, Z, η) (up to homotopy) as the section of UM that
coincides with X outside N(L) and that reads as follows in N(L) that is trivialized with respect
to L‖ so that it reads D2 × L.

• D(X,L, L‖, Z, η)(0, k ∈ L) = −X(0, k),

• when u ∈]0, 1], [−X(u exp(iθ), k), D(X,L, L‖, Z)(u exp(iθ), k)] is the geodesic arc of length
uπ of the half great circle [−X,X ]ρ(ηθ,X)(Z) from (−X) to X through ρ(ηθ,X)(Z), where
X and Z stand for X(u exp(iθ), k) and Z(u exp(iθ), k), respectively,

so that D(X,L, L‖, Z, η)(1/2, k) = Z(1/2, k). Note that the homotopy class ofD(X,L, L‖, Z, η)
can also be defined by the following formula.

D(X,L, L‖, Z, η)(u exp(iθ), k) = ρ(π(1 + u), ρ(ηθ − π/2, X)(Z))(X)(u exp(iθ), k).

Let L be a link X–framed by some [σ] ∈ S(NL, (−X)⊥) represented by σ:N(L) → (−X)⊥.
Let σN be a unit section ofN(L) that induces a parallel L‖ of L, up to isotopy. Set Z(σ, σN )(x) =
σ(x)(σN (x)). Then Z(σ, σN ) is a section of (−X)⊥.

Define
C(X,L, σ) = D(X,L, L‖, Z(σ, σN),−1).

Remark 2.7 Note that [σ] is determined by the homotopy classes of σN and Z(σ, σN ), where
the homotopy class of σN may be replaced by the isotopy class of L‖. Thus, we can think of
elements of S(NL, (−X)⊥) as pairs (L‖, Z(σ, σN )) up to simultaneous twists of L‖ and Z(σ, σN).

Lemma 2.8 Let X be a section of UM . Let L be a link equipped with an X–framing σ. Then
LC(X,L,σ)=−X = L and σ(C(X,L, σ), X) = σ. For any section Y of UM transverse to X, Y
is homotopic to C(X,LY=−X , σ(Y,X)). The Spinc-structure of Y is determined by [X ]c and
LY=−X .

Proof: The first properties are direct corollaries of Lemma 2.5. Let us prove that [Y ]c =
[C(X,LY=−X , σ(Y,X))]c does not depend on the X-framing σ(Y,X) of LY=−X . Two represen-
tatives σ1 and σ2 of any two X–framings of a link may be assumed to coincide over the link
except over one little interval for each link component. Thus, the associated C(X,LY=−X , σ1)
and C(X,LY=−X , σ2) coincide outside a finite union of balls that embeds in a larger ball. Then
[Y ]c is determined by X and LY=−X . Now, changing X inside its homotopy class or changing
X over a ball does not affect [Y ]c. ⋄

Let (−X)⊥ also denote the pull-back of (−X)⊥ under the natural projection from [0, 1]×M
to M . Let Σ be a properly embedded surface in [0, 1] ×M . Let S(NΣ, (−X)⊥) denote the
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space of homotopy classes of sections of the S1–bundle over Σ whose fiber over x is the space
of orientation-preserving linear isometries from the fiber NxΣ = Tx([0, 1]×M)/TxΣ of NΣ to
(−X(x))⊥. An X–framing of Σ is an element of S(NΣ, (−X)⊥).

Two X–framed links L and L′ are X–framed cobordant if and only if there exists an X–
framed cobordism Σ (that is a cobordism equipped with an X-framing) properly embedded in
[0, 1]×M , from {0} × L to {1} × L′ that induces the X–framings of L and L′.

Theorem 2.9 Let X be a section of UM . Two sections Y and Z of UM transverse to X are
homotopic if and only if (LY=−X , σ(Y,X)) and (LZ=−X , σ(Z,X)) are X-framed cobordant.

Proof: View a homotopy Yt from Y = Y0 to Z = Y1 as a section Yt of the pull-back of UM
under the natural projection from [0, 1]×M to M , and assume without loss that (Yt,−X) is
transverse to the diagonal of S2 × S2 (with respect to some trivialization). Then the preimage
Σ of the diagonal is a cobordism from LY=−X and LZ=−X that is canonically X–framed by an
X-framing that induces those of LY=−X and LZ=−X .

Conversely, assume that there exists an X–framed cobordism Σ from (LY=−X , σ(Y,X))
to (LZ=−X , σ(Z,X)). Write the tubular neghborhood of Σ as D2 × Σ. With respect to this
trivialization that induces a parallel Σ‖ of Σ, the X-framing of Σ becomes a section Z of (−X)⊥

over Σ. Define a unit section DΣ = D(X,Σ,Σ‖, Z,−1) of the pull-back of TM under the natural
projection from [0, 1] ×M to M like in Definition 2.6, so that DΣ coincides with X outside
D2 × Σ and

DΣ(u exp(iθ), k ∈ Σ) = ρ(π(1 + u), ρ(ηθ − π/2, X)(Z))(X)(u exp(iθ), k)

on D2 × Σ. Then the restriction Dt of DΣ on {t} × M defines a homotopy from D0 =
C(X,LY=−X , σ(Y,X)) to D1 = C(X,LZ=−X , σ(Z,X)), and, according to Lemma 2.8, Y and
Z are homotopic. ⋄

Corollary 2.10 Let X be a section of UM . The Spinc–structure of a section Y of UM trans-
verse to X is determined by [X ]c and by the homology class [LY=−X ] of LY=−X in H1(M ;Z).

⋄

When X is the first vector of a parallelization τ , the second vector X2 of τ is a section of
(−X)⊥, and τ identifies an X–framing [σ] ∈ S(NL, (−X)⊥) represented by σ with the isotopy
class of parallels L‖ of L induced by the section σ−1(X2). Set

C(τ, L, L‖) = C(X,L, [σ])

and note that a parallelization τ with X as first vector identifies X-framings of links with
framings of links. A framed cobordism from (L, L‖) to (L′, L′

‖) is a cobordism Σ from {0}×L to

{1} ×L′ equipped a unit normal section of TΣ in T ([0, 1]×M), up to homotopy, that induces

10



the given framings of L and L′. Two framed links are framed cobordant if and only if their
exists a framed cobordism from one to the other one.

As above, a parallelization τ with X as first vector identifies X-framings of cobordisms to
framings of cobordisms.

This allows us to state the following Pontrjagin theorem [Mil97, Section 7, Theorem B] as
a corollary of Theorem 2.9.

Theorem 2.11 (Pontrjagin construction) Let τ be a parallelization of M . Any section of
UM is homotopic to C(τ, L, L‖) for a framed link (L, L‖) of the interior of M . Two sec-
tions C(τ, L, L‖) and C(τ, L′, L′

‖) are homotopic if and only if (L, L‖) and (L′, L′
‖) are framed

cobordant.

⋄

Pontrjagin proved generalisations of this theorem to every dimension. See [Mil97, Section
7].

Let ΣM be an embedded cobordism from a link L to a link L1 in M . The graph of a Morse
function f from ΣM to [0, 1] such that f−1(0) = L and f−1(1) = L1 yields a proper embedding
Σ of ΣM into [0, 1]×M . The positive normal of ΣM in M at m seen in T(f(m),m){f(m)} ×M
frames Σ. This framing of Σ identifies the X-framings Σ with homotopy classes of sections
of (−X)⊥ over Σ. When ΣM is connected, and when K is a boundary component of Σ, any
X-framing defined on ∂Σ\K extends as an X-framing of Σ, and the extension of the X-framing
over K is determined by the restriction of the X-framing to ∂Σ \K.

Embed a sphere S with three holes in M , the 3 boundary components of S are 3 knots K1,
K2 and −K1♯bK2 of M that are framed by the embedding of S. Then K1♯bK2 is a framed band
sum of K1 and K2, it is framed cobordant to the union of K1 and K2. Note that any X–framed
link is X–framed cobordant to an X–framed knot by such band sums. Similarly, any framed
link is framed cobordant to a framed knot.

Lemma 2.12 Two framed links (L, L‖) and (L′, L′
‖) in a Z-sphere or in a Z-ball are framed

cobordant if and only if lk(L, L‖) = lk(L′, L′
‖).

Proof: When the framed links are framed cobordant, lk(L, L‖) = lk(L′, L′
‖), since lk(L, L‖)

is the algebraic intersection of two 2-chains bounded by L× {0} and L‖ × {0} in [−1, 0]×M .
Conversely, let (L, L‖) and (L′, L′

‖) be two framed links such that lk(L, L‖) = lk(L′, L′
‖). They

are respectively framed cobordant to framed knots (K,K‖) and (K ′, K ′
‖) such that lk(K,K‖) =

lk(L, L‖) and lk(K ′, K ′
‖) = lk(L′, L′

‖), so that lk(K,K‖) = lk(K ′, K ′
‖). There is a connected

cobordism fromK toK ′ that may be equipped with a framing that extends the framing induced
by K‖, and that therefore induces a framing of K ′ corresponding to a parallel K ′

1 of K ′ such
that lk(K,K‖) = lk(K ′, K ′

1). Thus lk(K ′, K ′
1) = lk(K ′, K ′

‖) and K
′
1 is isotopic to K ′

‖, so that

(K ′, K ′
‖) is framed cobordant to (K,K‖). ⋄
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2.3 More details about the introductions

Let us finish justifying the claims of the introductions.

Lemma 2.13 For any two transverse sections X and Y of UM , LY=−X = −LX=−Y . For three
pairwise transverse sections X, Y and Z of UM , [LZ=−X ] = [LZ=−Y ] + [LY=−X ] in H1(M ;Z).

Proof: For two sections X and Z of UM , transverse to Y , up to homotopy, we can assume
that LX=−Y and LZ=−Y are disjoint, and pick disjoint tubular neighborhoods N(LX=−Y ) and
N(LZ=−Y ) of LX=−Y and LZ=−Y , respectively. Then, according to Lemmas 2.4 and 2.5 we can
assume that Z = C(Y, LZ=−Y , σ(Z, Y )) and that X = C(Y, LX=−Y , σ(X, Y )) so that Z = Y
outside N(LZ=−Y ) and X = Y outside N(LX=−Y ). Then LZ=−X = LZ=−Y

∐
LY=−X . ⋄

Lemma 2.14 There is a canonical free transitive action of H1(M ;Z) on the set S(M) of
Spinc-structures of M such that for any two transverse sections Y and Z of UM ,

[LZ=−Y ][Y ]c = [Z]c.

Proof: Let Y be a section of UM and let [K] ∈ H1(M ;Z). Represent [K] by a knot K and
equip K with an arbitrary Y -framing. Define [K][Y ]c as [Z]c with Z = C(Y,K, σ). According
to Lemma 2.8, K = LZ=−Y and, according to Corollary 2.10, [Z]c is determined by [Y ]c and
[K]. Lemma 2.13 ensures that this defines an action of H1(M ;Z). This action is obviously
transitive since [Z]c = [LZ=−Y ][Y ]c and Lemma 2.4 ensures that the action is free. ⋄

Corollary 2.15 This action equips S(M) with an affine structure with translation group H1(M ;Z).
With respect to this structure, for two transverse sections X and Y of UM ,

[Y ]c − [X ]c = [LY=−X ].

Classically, S(M) is rather equipped with an affine structure with translation groupH2(M, ∂M ;Z),
and ([Y ]c − [X ]c)2 ∈ H2(M, ∂M ; π2(S

2) = Z) is the obstruction to homotoping a section Y of
UM to another such X over a two-skeleton of M .

Below, we confirm that the two structures are naturally related by the Poincaré duality
isomorphism P :H2(M, ∂M ;Z) → H1(M ;Z).

Lemma 2.16 For two transverse sections X and Y of UM ,

P (([Y ]c − [X ]c)2) = [Y ]c − [X ]c = [LY=−X ].

Proof: Up to homotopy, assume Y = C(X,LY=−X , σ(Y,X)) like in Lemma 2.8. Let S be
a 2–chain transverse to LY=−X . We may assume that X and Y coincide outside open disks
around S ∩ LY=−X . Extend X to a parallelization on the closure of these disks, and see Y as
a map from D2/∂D2 to S2 on each of these disks. The sum of the degrees of these maps is the
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algebraic intersection of LY=−X and S. By definition, this is also the evaluation of a cochain
that represents ([Y ]c − [X ]c)2 ∈ H2(M, ∂M ;Z) on S. This shows that LY=−X is Poincaré dual
to ([Y ]c − [X ]c)2. ⋄

The Euler class e(X⊥) is the obstruction to the existence of a nowhere zero section of X⊥.
It lives in H2(M ;Z). In particular, X extends as a parallelization if and only if e(X⊥) = 0.
We shall not give a more precise definition for the standard Euler class, since Lemmas 2.17 or
2.18 below can be used as definitions in our cases.

Lemma 2.17 Let X and Y be two homotopic transverse sections of UM , then LY=X is
Poincaré dual to e(X⊥). Therefore, P (e(X⊥)) = [X ]c − [−X ]c.

Proof: For a section of X⊥, X may be pushed slightly in the direction of the section. If Y
denotes the obtained combing, then LY=X is the vanishing locus of the section that is Poincaré
dual to e(X⊥). ⋄

Lemma 2.18 Let X and Y be two transverse sections of UM ,

2[LX=Y ] = P (e(X⊥) + e(Y ⊥))

and 2[LX=−Y ] = P (e(X⊥) − e(Y ⊥)). In particular, for two transverse torsion sections X and
Y of UM , LX=Y and LX=−Y represent torsion elements in H1(M ;Z).

Proof: [LX=Y ] = [X ]c−[−Y ]c = [Y ]c−[−X ]c so that 2([LX=Y ]) = [X ]c−[−X ]c+[Y ]c−[−Y ]c =
P (e(X⊥) + e(Y ⊥)). ⋄

Lemma 2.19 Let X and Y be two transverse torsion sections of UM , then lk(LX=Y , LX=−Y )
only depends on the homotopy classes of X and Y .

Proof: Let us prove that lk(LX=Y , LX=−Y ) does not vary under a generic homotopy of X .
Such a homotopy induces two homotopies h+ and h− from [0, 1] × M to S2 × S2 that are
transverse to the diagonal where h±(t,m) = (Xt(m),±Y (m)). There exists a finite sequence
0 = t0 < t1 < t2 < . . . < tk = 1 of times such that the projections on M of the preimages
of the diagonal under h+|[ti,ti+1]×M and h−|[ti,ti+1]×M are disjoint so that they yield two disjoint
cobordisms in M , one from LXti

=Y to LXti+1=Y , and the other one from LXti
=−Y to LXti+1=−Y

showing that lk(LXti
=Y , LXti

=−Y ) = lk(LXti+1=Y , LXti+1=−Y ). ⋄

Lemma 2.20 Let X be a section of UM that extends as a parallelization. The homotopy class
of a torsion section Y transverse to X is determined by X, by the homology class [LY=−X ] of
LY=−X in H1(M ;Z), and by the linking number lk(LY=−X , LY=X).

Proof: After a homotopy, Y reads C(τ, LY=−X , LY=X2) where X2 is the second vector of τ ,
and, LY=X and LY=X2 are parallel knots like in Theorem 2.11. According to Theorem 2.11,
the combing [Y ] is determined by the framed cobordism class of LY=−X , that is determined by
[LY=−X ] and by lk(LY =−X , LY=X2) since LY=−X is rationally null-homologous. After another
homotopy that makes Y transverse to X2 and X , lk(LY =−X , LY=X2) = lk(LY=−X , LY=X). ⋄
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2.4 Action of π3(S
2) on combings

Recall that the image of the first basis vector pS2:SO(3) → S2 induces an isomorphism from
π3(SO(3)) = Z[ρ̃] to π3(S

2), where ρ̃ was defined from a map ρ: (B3, ∂B3) → (SO(3), 1) before
Proposition 2.1. Let γ be the image of [ρ̃] under this isomorphism. Let X be a combing,
extend X to a parallelization (X, Y, Z) on a 3-ball B identified with B3, and see ρ as a map
ρ: (B, ∂B) → (SO(X, Y, Z), 1). Define γkX as the section that coincides with X outside B and
such that

γkX(m ∈ B) = ρk(m)(X)

on B. Note that [γkX ] is independent of the chosen parallelization. Since M is connected, any
two small enough balls may be put inside a bigger one and [γkX ] is independent of B. Set
γk[X ] = [γkX ]. It is easy to see that γk+k′[X ] = γk(γk

′

[X ]). Let X and Y be two sections of
UM that are homotopic except over a 3-ball B3. Up to homotopy, we may assume that they
are identical outside B3. On B3, X extends to a parallelization and Y reads as a map from
(B3, S2) to (S2, X). It therefore defines an element γk of π3(S

2), and [Y ] = γk[X ]. Thus, π3(S
2)

acts transitively on the combings that represent a given Spinc-structure. In particular it acts
transitively on the combings of a Z-sphere.

Lemma 2.21 Let τ be a parallelization of M and let [X(τ)] denote the induced combing. Let

(U, U−) be the negative Hopf link (lk(U, U−) = −1). Then, with the notation before Theo-
rem 2.11, [γX(τ)] = [C(τ, U, U−)].

Proof: First note that [C(τ, U, U−)] reads [γkX(τ)] for an integer k that does not depend
on (M, τ). We prove k = 1 when M = B3, when τ is the standard parallelization, and when
X = X(τ) is the constant upward vector field, with the help of Lemma 2.20, by showing that

lk(LγX(τ)=X′ , LγX(τ)=−X′) = lk(U, U−) = −1.

for some constant field X ′ near X . Let N be the North pole of S2, (pS2 ◦ρ)−1(N) intersects the
interior of B3 as the vertical axis oriented from South to North while (pS2 ◦ρ)−1(−N) intersects
B3 as π× (−E), where E is the equator oriented as a positive meridian of (pS2 ◦ρ)−1(N). Then
for N ′ near N , lk((pS2 ◦ ρ)−1(N ′), (pS2 ◦ ρ)−1(−N ′)) = −1. ⋄

Corollary 2.22 Let τ be a parallelization of M , let (L, L‖) be a framed link of L, let (U, U−)
be the negative Hopf link in a ball of M disjoint from L, and let (U, U+) be the positive Hopf

link in a ball of M disjoint from L. Then [γC(τ, L, L‖)] = [C(τ, L ∪ U, L‖ ∪ U−)] and
[γ−1C(τ, L, L‖)] = [C(τ, L ∪ U, L‖ ∪ U+)].

If L is non-empty, let L‖,−1 (resp. L‖,+1) be a parallel of L obtained from L‖ by adding a
negative (resp. positive) meridian of L, homologically in N(L)\L, then [C(τ, L∪U, L‖∪U−)] =
[C(τ, L, L‖,−1)] and [C(τ, L ∪ U, L‖ ∪ U+)] = [C(τ, L, L‖,+1)].
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Proof: Note that (L, L‖,±1) is framed cobordant to (L∪U, L‖ ∪U±) by band sum. Thus, the
second formula can be deduced from the fact that the disjoint union of two oppositely framed
unknots is framed cobordant to the empty link. ⋄

Corollary 2.23 Let X be a torsion section of UM , let k ∈ Z and let Y be a section of UM
that represents [γkX ]. Then lk(LY=X , LY=−X) = −k.

Proof: We already know that the linking number lk(LY=X , LY=−X) does not depend on the
transverse representatives of [X ] and [Y ]. Furthermore, by Lemma 2.8, [X ] can be represented

as C(τ, L, L‖) like in Corollary 2.22. Assume k 6= 0. Let (∪
|k|
i=1U

(i),∪
|k|
i=1U

(i)
ε ) denote the union

of |k| Hopf links with sign ε = −k/|k| contained in disjoint balls Bi, for i = 1, . . . , k. Let

Y be obtained from C(τ, L ∪ ∪
|k|
i=1U

(i), L‖ ∪ ∪
|k|
i=1U

(i)
−ε) by a small perturbation, induced by the

parallelization τ outside N(L ∪ ∪
|k|
i=1U

(i)) so that it is transverse to X , very close to X , and

distinct from ±X outside N(L ∪ (∪
|k|
i=1U

(i))). Then LY=−X is a parallel of ∪
|k|
i=1U

(i) and

lk(LY=X , LY=−X) =

|k|∑

i=1

lk(LY=X ∩ Bi, LY=−X ∩ Bi) =

|k|∑

i=1

lk(U (i), U (i)
ε ) = −k.

⋄

Proposition 2.24 Let [X ]c be a Spinc structure, then the set of combings that belong to [X ]c is
an affine space over Z/〈e(X⊥), H2(M ;Z)〉, where the translation by the class of 1 is the action
of γ.

Proof: Again, fix a parallelization τ of M , and an induced combing Y . This identifies the
set S(M) of Spinc structures to H1(M ;Z) by mapping [X ]c to the homology class [LX=Y ]. Any
framed link is framed cobordant to a framed knot. According to the Pontrjagin characterization
of the combings (Theorem 2.11), the combings that belong to the Spinc structure ξ(τ, [K])
corresponding to a given class [K] of H1(M ;Z) is the set of framed links homologous to [K] up
to framed cobordism. Let K be a knot that represents [K], then all framed links homologous
to [K] are framed cobordant to K equipped with some framing, and the combings of ξ(τ, [K])
are the equivalence classes of framings of K up to framed cobordism.

For two parallels K ′ and K ′′ of K on the boundary ∂N(K) of a tubular neighborhood N(K)
of K, the homology class of K ′′ −K ′ in ∂N(K) reads lkN(K)(K

′′ −K ′, K)m(K) where m(K)
is the oriented meridian of K. The integer lkN(K)(K

′′ −K ′, K) measures the difference of the
framings induced by K ′ and K ′′.

When [K] is a torsion element of H1(M ;Z), the self-linking number lk(K ′, K) makes sense,
and it is a complete invariant of framings of K, up to framed cobordism. This shows that the
action of π3(S

2) on the set of combings in a torsion Spinc-structure is free, and that this set is
an affine space over Z.
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In general, let B be a cobordism from 0×K ′ to 1×K ′′ in [0, 1]×N(K). Then lkN(K)(K
′′−

K ′, K) = 〈[0, 1]×K,B〉[0,1]×M . Let C be a framed cobordism from 0×K to 1×K in [0, 1]×M ,
and let C ′ be obtained from C by pushing C in the direction of the framing. Assume that
∂C ′ = 1×K ′′ − 0×K ′ so that C is a framed cobordism from (K,K ′) to (K,K ′′) and

0 = 〈C,C ′〉[0,1]×M = 〈[0, 1]×K + (C − [0, 1]×K), B + (C ′ − B)〉[0,1]×M .

Since (C−[0, 1]×K) and (C ′−B) are 2-cycles in [0, 1]×M , 〈(C−[0, 1]×K), (C ′−B)〉[0,1]×M = 0,
and since they are homologous 〈[0, 1] × K, (C ′ − B)〉[0,1]×M = 〈(C − [0, 1] × K), B〉[0,1]×M , so
that

lkN(K)(K
′′ −K ′, K) = −2〈[0, 1]×K, (C ′ −B)〉[0,1]×M .

In particular, the framing difference induced by C only depends on the homology class of the
projection S of C in M , and it is −2〈K,S〉M . Thus if the framings induced by K ′ and K ′′

are framed cobordant, lkN(K)(K
′′ − K ′, K) is in 〈2K,H2(M ;Z)〉M . Conversely, for any class

S of H2(M ;Z), there exists an embedded connected cobordism C that projects on S. Any
framing on 0 × K can be extended to C, and it induces a framing on 1 × K, such that the
framing difference is −2〈K,S〉M . Since the Euler class of ξ(τ, [K]) is Poincaré dual to 2[K],
the conclusion follows. ⋄

3 The extension of the map p1

3.1 The key proposition

In this subsection, we prove the following proposition that is the key to the extension of the
map p1.

Proposition 3.1 Let X, Y and Z be three pairwise transverse torsion sections of UM ,

lk(LX=Y , LX=−Y ) + lk(LY=Z , LY=−Z) = lk(LX=Z , LX=−Z).

Consider the 6-manifold [0, 1] × UM . Recall that UM is homeomorphic to M × S2. Let
(Si)i=1,...,β1(M) be β1(M) surfaces in the interior of M that represent a basis of H2(M ;Q). For
a section Z of UM , let Z(Si) denote the restriction of Z to Si. Let [S] denote the homology
class of the fiber of UM in H2(UM ;Q), oriented as the boundary of a unit ball of TxM .

H2(UM ;Q) = Q[S]⊕

β1(M)⊕

i=1

Q[Z(Si)].

Lemma 3.2 If Y and Z are two transverse sections of UM , then

[Z(Si)]− [Y (Si)] = 〈[Z]c − [Y ]c, Si〉[S] = 〈LZ=−Y , Si〉M [S]

in H2(UM ;Q) (and in H2([0, 1]× UM ;Q)).
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Proof: Fix a trivialization of UM so that both Y and Z become functions from M to S2,
then [Z(Si)] − [Y (Si)] = (deg(Z|Si

) − deg(Y|Si
))[S]. If X is a section of UM induced by the

trivialization, then deg(Z|Si
) = 〈LZ=−X , Si〉M = 〈[Z]c − [X ]c, Si〉M . ⋄

In particular, according to Lemma 2.18, the subspace HT of H2([0, 1]× UM ;Q) generated
by the [Z(Si)] for torsion combings Z is canonical. Set H(M) = H2([0, 1]×UM ;Q)/HT . Then
H(M) = Q[S].

Let X and Y be two sections of UM . Let ∂(X, Y ) be the following codimension 2 subman-
ifold of ∂([0, 1] × UM). If ∂M = ∅, ∂(X, Y ) = {1} × Y (M) − {0} ×X(M). If ∂M = S2, let
V (X) and V (Y ) be the elements of S2 such that X = V (X) and Y = V (Y ) on ∂M . Recall that
τs identifies UM|S2 with S2 × S2. Let P = P (X, Y ) be a 1–chain in [0, 1]× S2 such that ∂P =
{1}×V (Y )−{0}×V (X). Then ∂(X, Y ) = ∂(X, Y, P ) = {1}×Y (M)−{0}×X(M)−P ×∂M .

Lemma 3.3 For two transverse sections X and Y of UM such that ([Y ]c − [X ]c) vanishes in
H1(M ;Q), ∂(X, Y ) is rationally null-homologous in [0, 1] × UM . It bounds a rational chain
F (X, Y ) transverse to ∂([0, 1] × UM) that is well-determined, up to the addition of a chain
Σ× ∂M for a 2–chain Σ of [0, 1]× S2, up to the addition of a combination of {ti} ×UM|Si

for
distinct ti, and up to cobordism.

Proof: H3([0, 1] × UM ;Q) ∼= H1(M ;Q) ⊗ H2(S
2;Q) when ∂M = S2. The direct factor

Q[X(M)] should be added when ∂M = ∅. The class of a 3–submanifold of [0, 1]×UM vanishes
in H3([0, 1]× UM ;Q) if and only if its algebraic intersection with the [0, 1] × Z(Si) vanishes,
for all i, when ∂M = S2, for some combing Z. For ∂(X, Y ), this algebraic intersection reads

〈[0, 1]× Z(Si), ∂(X, Y )〉M = 〈Si, LZ=Y − LZ=X〉 = 〈Si, [Z]
c − [−Y ]c − ([Z]c − [−X ]c)〉

= 〈Si, [Y ]
c − [X ]c〉 = 0.

When ∂M = ∅, the algebraic intersection with [0, 1] × UM|{x} must vanish, too. This is
easily verified. Thus, ∂(X, Y ) bounds a rational chain F (X, Y ), and since H4(UM ;Q) =⊕β1(M)

i=1 Q[UM|Si
], the second assertion follows. ⋄

Lemma 3.4 For any two transverse torsion sections X and Y of UM , for any two-cycle C of
[0, 1]×UM , the class of C in H(M) is 〈C, F (X, Y )〉[0,1]×UM [S] for a F (X, Y ) as in Lemma 3.3.

Proof: First note that 〈C, F (X, Y )〉[0,1]×UM [S] only depends on the homology class of C, for a
given F (X, Y ), and that 〈[S], F (X, Y )〉 = 1. Now, it suffices to prove that 〈[Z(Si)], F (X, Y )〉 =
0 for any torsion combing Z, and for any i. Since 〈[Z(Si)], F (X, Y )〉 = 〈[Z(Si)], X(M)〉UM =
〈[Z(Si)], Y (M)〉UM , 〈[Z(Si)], F (X, Y )〉 does not depend on the torsion combings X and Y . In
particular, 〈[Z(Si)], F (X, Y )〉 = 〈[Z(Si)], F (−Z,−Z)〉 = 0. ⋄

Proposition 3.5 Let X and Y be two transverse torsion sections of UM . For any F (X, Y ) and
F (−X,−Y ) as in Lemma 3.3, such that the 1–chains P (X, Y ) and P (−X,−Y ) are disjoint,
the class of F (X, Y ) ∩ F (−X,−Y ) in H(M) is

lk(LX=Y , LX=−Y )[S].
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Proof: Let us first prove that the class of F (X, Y )∩F (−X,−Y ) is well-determined in H(M).
When F (X, Y ) is changed to F (X, Y )+ (Σ×∂M) for a two-chain Σ of [0, 1]×S2 transverse to
P (−X,−Y ), (Σ × ∂M) ∩ F (−X,−Y ) is added to F (X, Y ) ∩ F (−X,−Y ). Now, (Σ × ∂M) ∩
F (−X,−Y ) is a union of (tj , Xj) × ∂M that bounds since the parallelization τs extends to
M . Thus, the class of F (X, Y ) ∩ F (−X,−Y ) in H(M) in unchanged. Since the class of
{ti} × UM|Si

∩ F (−X,−Y ) is in HT , the class of F (X, Y ) ∩ F (−X,−Y ) is well-determined in
H(M).

Now, we construct an explicit F (X, Y ) by using the homotopy of Lemma 2.5 that we recall.
AssumeM is Riemannian. When X(m) 6= −Y (m), there is a unique geodesic arc [X(m), Y (m)]
with length (ℓ ∈ [0, π[) from X(m) to Y (m). For t ∈ [0, 1], let Xt(m) ∈ [X(m), Y (m)] be such
that the length of [X0(m) = X(m), Xt(m)] is tℓ. This defines Xt on (M \ LX=−Y ).

Observe that this definition naturally extends to the boundary of the manifold M(LX=−Y )
obtained from M by blowing up LX=−Y : Trivialize the tangent bundle of M on a tubular
neighborhood N(LX=−Y ) of LX=−Y with a trivialization whose first vector (the image of the
North Pole N) is (−Y ). Then X maps the normal bundle of LX=−Y to a disk of S2 around N ,
by an orientation-preserving diffeomorphism on every fiber (near the origin). In particular, X
induces a map from the unit normal bundle of LX=−Y to the unit normal bundle of the North
Pole in S2 that preserves the orientation of the fibers. Then for an element x of the unit normal
bundle of LX=−Y in M , Xt(x) describes the half great circle from the North Pole to the South
Pole that is tangent to the image of x under the above map. In particular, the whole sphere
is covered with degree 1 by the image of ([0, 1] × fiber of the normal bundle). Let Gh be the
closure of

(
∪t∈[0,1]sXt

(M \ LX=−Y )
)
.

Gh = ∪t∈[0,1]Xt(M(LX=−Y )).

Define the 3–cycle of UM

p(∂(X, Y )) = Y (M)−X(M)− ∂M × [V (X), V (Y )]

where [V (X), V (Y )] is the shortest geodesic path from V (X) to V (Y ) in the fiber of UM over
∂M that is identified with S2 by τs. Then

∂Gh − p(∂(X, Y )) = ∪t∈[0,1]Xt(−∂M(LX=−Y )) = UM|LX=−Y

because it is oriented like ∪t∈[0,1]Xt(∂N(LX=−Y )). Let ΣX=−Y be a two-chain transverse to
LX=Y and bounded by LX=−Y in M . Set G = Gh −

(
UM|ΣX=−Y

)
so that ∂G = p(∂(X, Y )).

Now let ι be the endomorphism of UM over M that maps a unit vector to the opposite one.
Set

F (X, Y ) = [0, 1/3]×X(M) +{1/3} ×G +[1/3, 1]× Y (M)
and F (−X,−Y ) = [0, 2/3]× (−X)(M) +{2/3} × ι(G) +[2/3, 1]× (−Y )(M).

Then

F (X, Y )∩F (−X,−Y ) = [1/3, 2/3]×Y (LY=−X)−{1/3}×(−X)(ΣX=−Y )+{2/3}×(Y )(ΣX=−Y ).
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Using Lemma 3.4 with F (X,X) = [0, 1]×X(M) to evaluate the class of (F (X, Y )∩F (−X,−Y ))
in H(M) finishes the proof. ⋄

Proof of Proposition 3.1: Compute lk(LX=Z , LX=−Z) by computing the class of F (X,Z)∩
F (−X,−Z) in H(M) where F (X,Z) (resp. F (−X,−Z)) is constructed by gluing shrinked
copies of F (X, Y ) (resp. F (−X,−Y )) and F (Y, Z) (resp. F (−Y,−Z)) so that [F (X,Z) ∩
F (−X,−Z)] = [F (X, Y ) ∩ F (−X,−Y )] + [F (Y, Z) ∩ F (−Y,−Z)]. ⋄

3.2 Proofs of Theorems 1.2 and 1.1

Lemma 3.6 Let τ be a trivialization of TM . Let g ∈ [(M, ∂M), (SO(3), 1)]m. Recall that
pS2:SO(3) → S2 maps a transformation t of SO(3) to t(N) where N is the first basis vector of
R3. Let X and Y be two combings of UM induced by τ and [g][τ ] = [τψ(g)], respectively. Then

lk(LY =X , LY=−X) = lk((pS2 ◦ g)−1(N), (pS2 ◦ g)−1(−N)) = −
1

2
deg(g)

Proof: The first equality follows from the definition. It implies that lk(LY=X , LY=−X) =
lk((pS2 ◦ g)−1(N), (pS2 ◦ g)−1(−N)) = lk′(g) only depends on g. Then Proposition 3.1 implies
that lk′ is a homomorphism from [(M, ∂M), (SO(3), 1)] to Q. According to Proposition 2.1 it
suffices to evaluate it on the element ρ viewed as a degree 2 map of [(B3, ∂B3), (SO(3), 1)]m.
According to Corollary 2.23, when g = ρ, lk(LY =X , LY=−X) = −1. ⋄

Proof of Theorem 1.2: Theorem 2.2 and Lemma 3.6 show that if X and Y extend to
parallelizations τ(X) and τ(Y ), then

p1(τ(Y ))− p1(τ(X)) = −4lk(LY=X , LY=−X).

For any torsion combing [Y ], define p1([Y ]) from a combing [X ] that extends to a parallelization
by

p1([Y ]) = p1([X ]) + 4lk(LX=Y , LX=−Y ).

Thanks to Proposition 3.1, since this formula is valid for combings that extend to paralleliza-
tions, this definition does not depend on the choice of X . Now, Proposition 3.1 implies that
the above formula is valid for all pairs of torsion combings.

Since [−X ] = [X ] for a section X that extends as a trivialization, we deduce that p1([−Y ]) =
p1([Y ]), for all torsion sections Y , from the above definition.

According to the following Lemma 3.7, Proposition 2.24 ensures the injectivity of the re-
striction of p1 to any torsion Spinc-structure. ⋄

Lemma 3.7 For any torsion combing [X ], p1(γ[X ])− p1([X ]) = 4.
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Recall Corollary 2.23. ⋄

Proof of Theorem 1.1: The first part of Theorem 1.1 follows from Lemma 2.4 and Corol-
lary 2.10. According to Lemma 2.18, two transverse sections X and Y are torsion sections if
and only if LY=X and LY=−X are rationally null-homologous. In this case, lk(LY =X , LY=−X)
only depends on the combings [X ] and [Y ] according to Lemma 2.19. Now, if Y and Y ′ are such
that LY=X and LY ′=X are homologous, there exists an integer k such that [Y ′] = γk[Y ] so that
p1([Y

′]) = p1([Y ])+4k, according to Lemma 3.7, and lk(LY ′=X , LY ′=−X) = lk(LY=X , LY=−X)−
k, according to Theorem 1.2. ⋄

4 More properties of p1

4.1 More variations of p1

Lemma 4.1 LetM be equipped with a torsion combingX. Let L be a rationally null-homologous
link in the interior of M and let Z be a section orthogonal to X of UM , such that Z is defined
on L and ∂M . Extend Z as a section Z̃ of the D2-bundle X⊥, so that Z̃ is transverse to the
zero section. Let L(Z ⊂ X⊥) be the zero locus of Z̃ cooriented by the fiber D2 of X⊥. Then
L(Z ⊂ X⊥) is a link of M \ L that represents the Poincaré dual of the relative Euler class of
(X⊥, Z), and L(Z ⊂ X⊥) is homologous to the Poincaré dual of e(X⊥).

⋄

Remark 4.2 Lemma 4.1 can be taken as a definition of the relative Euler class in this case.
The obstruction to extending Z across a 2–cycle of (M,L ∪ ∂M) is the intersection of the
2–cycle with L(Z ⊂ X⊥).

Proposition 4.3 Under the assumptions of Lemma 4.1 above, let η = ±1, let L‖ be a parallel
of L and let N(L) be a tubular neighborhood of L where Z is extended as a section of UM
orthogonal to X. For the combing D(X,L, L‖, Z, η) of Definition 2.6,

p1(D(X,L, L‖, Z, η))− p1(X) = 4lk(L, ηL(Z ⊂ X⊥)− L‖).

Proof: Set Y = D(X,L, L‖, Z, η). Let τ be the parallelization of N(L) with first vector X
and second vector Z. Then τ−1 maps Y (D2/∂D2 × k) to the sphere S2 with degree (−η) so
that LY=−X = −ηL and LX=−Y = ηL. In order to use Theorem 1.2, deform X to X̃ to make
it transverse to Y using Z̃ as follows. Let N1/3(L) = {(u exp(iθ), k ∈ L) ∈ N(L); u ∈ [0, 1/3]}
and N2/3(L) = {(u exp(iθ), k) ∈ N(L); u ∈ [0, 2/3]}. Consider a function χ:M → [0, 1] that
maps

(
M \N2/3(L)

)
to 1 and N1/3(L) to 0. Let ε be a very small positive real number,

set X̃ = 1
‖X+εχZ̃‖

(X + εχZ̃) so that X̃(M) is now transverse to Y (M). Outside UM|N(L),

X̃(M) ∩ Y (M) reads Y (L(Z ⊂ X⊥)), whereas on UM|N(L), Y (M) ∩ X̃(M) reads Y (−ηL‖)
because Y covers S2 with degree (−η) along a fiber of N(L). ⋄

We have the two immediate corollaries.
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Corollary 4.4 Under the hypotheses of Proposition 4.3, when Z extends as a section of the
unit bundle of X⊥ on M ,

p1(D(X,L, L‖, Z, η)) = p1(X)− 4lk(L, L‖).

Corollary 4.5 Under the hypotheses of Proposition 4.3, let K = {K(exp(iκ) ∈ S1)} be a
component of L, let r ∈ Z, and let Zr = Z on L\K and Zr(K(k = exp(iκ))) = ρ(rκ,X)(Z)(k).
Then

p1(D(X,L, L‖, Zr, η))− p1(D(X,L, L‖, Z, η)) = 4ηr.

Note that under the hypotheses of Proposition 4.3, when X is tangent to L, if Z is induced
by L‖, then D(X,L, L‖, Z, 1) is independent of Z and L‖.

Proof of Theorem 1.3: Corollary 4.4 shows that the set p1({Torsion combings}) contains
(p1(X)− 4ℓ(Torsion(H1(M ;Z)))). Conversely, under the assumptions of Theorem 1.3, p1(X)−
p1(Y ) = 4lk(LY=X , LY=−X) ∈ 4ℓ([Y ]c − [X ]c) since [−X ]c = [X ]c. ⋄

The following combing modification also arises in the study of combings associated with
Heegaard diagrams.

Proposition 4.6 Let M be equipped with a torsion combing X. Let N0(L) denote a tubular
neighborhood of a rationally null-homologous link L in the interior of M . Let L2 ⊂ ∂N0(L)
be a satellite of L such that the restriction to L2 of the bundle projection of N0(L) onto L
defines a 2-fold covering of L. Let s be the involution of L2 that exchanges two points in
a fiber of this covering. Pick a parallelization τ of M such that X is constant with respect
to τ over N(L). Let Z be a section orthogonal to X of the restriction of UM to L2, such
that Z(s(k)) = −Z(k). Define D(X,L, L2, Z,−1) as follows. On intervals I of L, trivialize
a larger tubular neighborhood N(L) (N0(L) ⊂ N(L)) as D2 × I so that (D2 × I) ∩ L2 reads
{−1/2, 1/2} × I, and define D(X,L, L2, Z,−1) as in Proposition 4.3 on these portions:

• D(X,L, L2, Z,−1)(0, k ∈ I) = −X(0, k),

• when u ∈]0, 1], [−X,D(X,L, L2, Z)(u exp(iθ), k)] is the geodesic arc of length uπ of the
half great circle [−X,X ]ρ(−θ,X)(Z(1/2,k)) from (−X) to X through ρ(−θ,X)(Z(1/2, k)),

so that D(X,L, L2, Z,−1)(1/2, k) = Z(1/2, k). Let f be a smooth increasing surjective function
from an interval I to [0, π], such that all derivatives of f vanish at the ends of I. Let k ∈ Z.
Define

T k: D2 × I −→ D2 × I
(u exp(iθ), t) 7→ (u exp(i(θ + kf(t))), t)

so that T is a half-twist. Assume that D2×I is a part of N(L) as above and let (T k(L2), T
k
∗ (Z))

coincide with (L2, Z) outside D2 × I and read (T k(L2), T
k
∗ (Z)) on D2 × I where, for θ ∈

{−1/2, 1/2},

T k
∗ (Z)((exp(i(θ + kf(t)))/2, t)) = ρ(kf(t), X)(Z((exp(iθ)/2, t))).
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Then
p1(D(X,L, T k(L2), T

k
∗ (Z),−1))− p1(D(X,L, L2, Z,−1)) = −4k

Proof: The variation of a combing under some T k sits inside the ball D2 × I. Therefore
the corresponding variation of p1 may be read in this ball. It does not depend on the trivial-
ization of the ball induced by X and Z, since all of them are homotopic. Therefore, it only
depends on k, linearly. The coefficient is obtained by looking at the effect of the twist T 2 on a
D(X,L, L‖, Z,−1) like in Proposition 4.3. ⋄

4.2 Identifying p1 with the Gompf invariant

Let us first recall the definition of the Gompf invariant. An almost-complex structure on a
smooth 4-dimensional manifold W is an operator J such that J2 = −1, acting smoothly on
the tangent space of W , fiberwise. An almost-complex structure on W induces a combing of
∂W , that is the class of the image [JN = J(N(∂W ))] under J of the outward normal N(∂W )
of W . Gompf showed that all the combings of a 3-manifold appear as combings JN for some
W [Gom98, Lemma 4.4], this will be reproved below. The first Chern class c1(TW, J) of
(TW, J) is the obstruction to trivializing TW over the two-skeleton ofW as an almost-complex
manifold (the induced trivialization of TW must read (X, JX, Y, JY )). The class c1(TW, J)
lives in H2(W ;Z). (The first Chern class c1 of a complex vector bundle is the Euler class
of the corresponding determinant bundle. The reader can check that the definitions coincide
in this case.) Its restriction to H2(∂W ;Z) is e(JN⊥) so that the boundary of the Poincaré
dual Pc1(TW, J) of c1(TW, J) is Poincaré dual to e(JN⊥). When JN is a torsion combing,
this boundary ∂Pc1(TW, J) is a torsion element of H1(∂W ;Z) so that there exists a rational
2–chain Σ of ∂W such that (Pc1(TW, J) ∪ Σ) is a closed rational 2-cycle of W . The algebraic
self-intersection of this rational cycle is independent of Σ and it is denoted by (Pc1(TW, J))

2,
and the Gompf invariant θG(JN) that is denoted by θ(JN) in [Gom98, Section 4] is

θG(JN) = (Pc1(TW, J))
2 − 2χ(W )− 3 signature(W )

where χ stands for the Euler characteristic.
In this subsection, we prove that θG = p1.

Lemma 4.7 When a combing X of M extends as a parallelization, θG([X ]) = p1([X ]).

Proof: For a rank 2k complex bundle ω seen as a rank 4k real bundle ωR, p1(ωR) = c21(ω)−
2c2(ω), where c2 denotes the second Chern class that is the Euler class of ωR for a rank 2
complex bundle ω. See [MS74, Definition p.158 § 14 and Corollary 15.5]. Let (W,J) be an
almost-complex connected compact manifold bounded by M such that X = JN , let Y be a
nowhere zero section of X⊥ ⊂ TM . Consider the complex parallelization (N, Y ) inducing the
real parallelization (N, JN, Y, JY ) of TW|M , and the complex bundle ω over (W ∪M (−W ))
that is trivial with fiber CN ⊕ CY over (−W ) and that coincides with the initial one over
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W . Since the characteristic classes p1, c1 and c2 of ωR or ω trivially restrict to H∗(−W ),
they come from classes of H∗(W ∪M (−W ),−W ) ∼= H∗(W,M). Thus, p1(ω) is the image of
p1(W, (JN, Y, JY )) ∈ H4(W, ∂W ), and c2(ω) is the image of c2(TW,N) ∈ H4(W, ∂W ) that is
χ(W )[W, ∂W ] since c2 is the obstruction to extending N as a nowhere zero section of TW , that
is the relative Euler class of (TW,N). Similarly, c1(ω) is the image of a lift c̃1 of c1(TW, J) in
H2(W, ∂W ), where P c̃1 is represented by a cycle of W . The Poincaré dual Pc1(ω) of c1(ω) is
the image of this cycle in H2(W ∪M (−W )) and p1(W, (JN, Y, JY )) = (Pc1(TW, J))

2−2χ(W ).
⋄

Lemma 4.8 When a combing X of M extends as a parallelization, θG([γX ]) = θG([X ]) + 4.

Proof: According to Lemma 3.7, p1([γX ]) = p1([X ]) + 4 for any [X ]. ⋄

Any closed oriented connected 3-manifold M is the boundary of a 4-manifold

WL = B4
⋃

L×D2⊂S3

∐

i=1,...,n

(D2 ×D2)(i)

obtained from B4 by attaching 2-handles (D2×D2)
(i)
i=1,...,n along a tubular neighborhood L×D2

of a framed link L = (Ki, µi)i=1,...,n. Such a framed link L is an integral surgery presentation of
WL andM . TheKi are the components of L, the µi are the surgery parallelsKi×{1} ⊂ Ki×D

2

that frame the Ki, and the handle (D2 ×D2)(i) is attached by a natural identification of Ki ×
D2 ⊂ ∂B4 with ((−S1)×D2)(i) that restricts to µi as an orientation-reversing homeomorphism
onto (S1 × {1})(i).

According to Kaplan [Kap79], we can furthermore demand that lk(Ki, µi) is even for any i,
in the statement above. In this case, we shall say that the surgery presentation is even.

Lemma 4.9 Let L be an even surgery presentation ofM . There is an almost-complex structure
J0 on WL (described below) such that e(J0N⊥) = 0. For any Spinc structure ξ on M , there
is at least one almost complex structure J on WL (described below) such that the class of JN
belongs to ξ and, if JN is a torsion combing, then p1(JN)− p1(J

0N) = θG(JN)− θG(J
0N).

Proof: We shall only consider almost-complex structures J that are compatible with a given
Riemannian metric in the following sense: J preserves the Riemannian metric and Jx is orthog-
onal to x for any x. Our almost-complex structures J of 4-manifolds also induce the orientation
via local parallelizations of the form (X, JX, Y, JY ). Below, B4 is seen as the unit complex
ball of C2, it is equipped with its usual Riemannian structure. It is also seen as the unit ball
of the quaternion field H = C⊕ Cj.

A homotopy
JN : [−1, 0]× S3 → TS3

(t, x) 7→ JN(t, x) ∈ TxS
3

such that JN(−1, x) = ix, and ‖JN(t, x)‖ = 1 induces a homotopic almost-complex structure
on B4 as follows, the complex structure is unchanged outside a collar [−1, 0] × S3 of the
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boundary of B4, and the operator J of the almost-complex structure maps the unit tangent
vector of [0, 1]×{x ∈ S3} at (t, x) to JN(t, x). Note that J is completely determined by these
conditions. If such a homotopy is such that JN(0, .) is tangent to Ki×{y} on Ki×D

2, then the
associated almost-complex structure J preserves the tangent space of {x}×D2 and it uniquely
extends to (D2 ×D2)(i) so that J preserves the tangent space of {x}×D2 and J is compatible
with the product Riemannian structure on (D2 × D2)(i). In particular J maps the outward
normal to (D2 × S1)(i) ⊂M at (x, y ∈ S1) to the unit tangent vector of ({x} × S1)(i) at (x, y).

Before smoothing the ridges, WL reads (R2 \ {(x, y); x < −1, y > −1}) × (−Ki) × S1 near
Ki×S

1. The 4-manifoldWL is next smoothed around Ki×S
1, the smoothing adds the product

NB4

ND2×D2

B4

(D2
× D

2)(i)

NB4

ND2×D2

WL

Figure 1: WL near Ki × S1 before and after smoothing.

of Ki × S1 by a triangle with two orthogonal straight sides and a smooth hypothenuse that
makes null angles with the two straight sides. See Figure 1.

This new piece may be seen as a part of a D2×R2 that contains D2×D2, so that J naturally
extends there.

In the plane of the triangle, the normal N reads N = cos(θ)NB4 + sin(θ)ND2×D2 for some
θ ∈ [0, π/2], so that JN reads JN = cos(θ)JNB4 + sin(θ)JND2×D2 and JN goes from the
tangent to Ki × {y} to the tangent of ({x} × S1)(i) on T(x,y)Ki × S1 by the shortest possible
way on the smooth hypothenuse.

Then J and JN are completely determined on WL by the homotopy JN on [−1, 0] × S3,
and we now study them as a function of this homotopy.

We shall consider homotopies induced by homotopies of orthonormal parallelizations, i.e.
homotopies JN such that there is a homotopy V : [−1, 0] × S3 → TxS

3 where V (t, x) ∈ TxS
3,

V (t, x) ⊥ JN(t, x), ‖V (t, x)‖ = 1 and V (−1, x) = jx. Furthermore, our homotopies are such
that JN(0, .) is tangent to Ki × {y} on Ki ×D2, so that V (0, x) induces a framing of Ki. The
linking number of Ki with the parallel of Ki induced by this framing is denoted by ri. Recall
that H1(SO(3)) = π1(SO(3)) = Z/2Z is generated by a loop of rotation (exp(iθ) 7→ ρ(θ, A))
with a fixed arbitrary axis A.

Let us prove that the integers ri are odd. Let Σ be a Seifert surface of Ki, then TM|Σ has
a trivialization τΣ whose third vector is the positive normal NΣ to Σ, and whose first vector
over Ki is obtained from the tangent vector vK to Ki by rotating it (−χ(Σ)) times around
the axis NΣ, along Ki. On the other hand, the first vector of the restriction to Ki of the
trivialization τJV induced by JN(0, .) and V (0, .) is vK and its third vector is obtained from
NΣ by rotating it ri times around vK along Ki. Then τ

−1
Σ ◦τJV induces a map from Σ to SO(3)
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whose restriction to Ki represents a trivial homology class in H1(SO(3)). Since the class of this
restriction is (ri + χ(Σ)) mod 2 and since χ(Σ) is odd, ri is odd, too.

Furthermore, we show later in this proof that any ri may be changed to any arbitrary odd
number, by perturbing the homotopy near Ki ×D2.

Now, the obstruction to extending V as a unit vector tangent to the second almost-complex
factor D2 across (D2×.)(i) is −(ri−lk(µi, Ki)), and the obstruction to extending JN that is the
tangent toKi×{y} as a unit vector tangent to the first almost-complex factor across (D2×.)(i) is
1. In particular, the Poincaré dual of the Chern class c1(TWL, J) may be represented by a chain
that does not intersect B4 and that intersects (D2×D2)(i) as (1−ri+ lk(µi, Ki))(0×D

2)(i). Let
J0N be a homotopy such that ri = lk(µi, Ki) + 1. Then c1(TWL, J

0) = 0 since H2(B4, S3) = 0
and θG(J

0N) = −2χ(WL)− 3 signature(WL).
Assume without loss that J0N(0, .) is tangent to Ki×{y} on a bigger tubular neighborhood

Ki × 2D2. Let e1 denote the first basis vector of R3. Consider a map

F : [0, 1]× R

2πZ
→ SO(3)

(t, θ) 7→ 1 if t = 1 or θ ∈ 2πZ
ρ(2θ, e1) if t = 0.

Composing this map by the evaluation pS2 at e1 provides a degree ±1 map from (D2, ∂D2) to
(S2, e1). Then (J0N, V 0, J0V 0)(0, .) may be replaced on Ki × 2D2, by the homotopic

(0, (exp(iθ), u exp(iη))) 7→ F (max(0, u− 1), kiθ)
(
(J0N, V 0, J0V 0)(0, (exp(iθ), u exp(iη)))

)

for some integer ki. Since this changes ri to ri + 2ki, this shows that ri can be changed to any
odd number.

The obtained almost-complex structure is denoted by J . Let us compare the induced vec-
tor fields and compute LJN=V 0 and LJN=−V 0 . We can assume that LJN=V 0 ⊂ L × uS1 and
LJN=−V 0 ⊂ L × u′S1 for two distinct elements u and u′ of ]1, 2[. Then there exists a well-
determined ε = ±1 such that LJN=V 0 is homologous to ε

∑n
i=1 kimi in L × uS1 where mi is

a meridian of Ki in L × uS1, and LJN=−V 0 is homologous to ε
∑n

i=1 kimi‖ in L × u′S1, where
mi‖ is a meridian of Ki in L× u′S1. In particular, since the meridians mi generate H1(M ;Z),
for any Spinc-structure ξ, there exists an almost-complex structure J as above such that JN
belongs to ξ. The combing JN is torsion if and only if LJN=−V 0 represents a torsion element
in H1(M ;Z). Assume that JN is torsion from now on. Then

p1(JN)− p1(J
0N) = p1(JN)− p1(V

0) = −4lk(

n∑

i=1

kimi,

n∑

i=1

kimi‖).

On the other hand, since the boundary of Pc1(TWL, J) is homologous to 2LJN=−V 0 , Pc1(TWL, J)
is represented by 2ε

∑n
i=1 ki(0×D

2)(i). In order to compute (Pc1(TWL, J))
2, consider a parallel

copy Pc1(TWL, J)‖ = 2ε
∑n

i=1 ki(x×D2)(i), and let (−∂Pc1(TWL, J)) and (−∂Pc1(TWL, J)‖)
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bound Σ and Σ‖ in M , respectively, so that

θG(JN)− θG(J
0N) = (Pc1(TW, J))

2

= 〈2ε
∑n

i=1 ki(0×D2)(i) ∪ Σ, 2ε
∑n

i=1 ki(x×D2)(i) ∪ Σ‖〉WL∪∂WL=0×M [0,1]×M

= 〈(−[0, 1/2]× ∂Σ) ∪ (1/2× Σ), (−[0, 2/3]× ∂Σ‖) ∪ (2/3× Σ‖)〉[0,1]×M

= −〈Σ, ∂Σ‖〉M
= p1(JN)− p1(J

0N).

⋄

The previous lemma, Lemma 3.7 and the transitivity of the action of π3(S
2) on the combings

of a Spinc-structure reduce the proof that θG = p1 to the proof of the following lemma.

Lemma 4.10 θG([γX ])− θG([X ]) = 4 for any combing [X ].

Proof: We refer to the previous proof. Add a trivial knot U framed by +1 to a surgery
presentation L, such thatWL is equipped with an almost-complex structure J . The structure J
is homotopic to a structure J (1) that extends onWL∪U so that Pc1(TW, J

(1)) is (0×D2)(0). Then
θG(J

(1)N)−θG(JN) = 1−2−3 = −4. The structure J is also homotopic to a structure J (3) that
extends onWL∪U so that Pc1(TW, J

(3)) is 3(0×D2)(0), then θG(J
(3)N)−θG(J

(0)N) = 9−2−3 =
4. These two combing modifications sit in a 3-ball of M , so that each of them correspond to
the action of an element of π3(S

2) independent of (M,J). According to Lemma 4.8, [J (1)N ] =
[γ−1JN ] and [J (3)N ] = [γJN ]. Since the above process allows us to inductively represent all
the combings [γkJN ], by adding some disjoint trivial knots framed by +1, and to prove that
θG(γ

kJN)− θG(γ
k−1JN) = 4, for all k ∈ Z, we are done. ⋄

Remark 4.11 For a natural integer k and for a surgery presentation L of M in S3, let L(k)
be the surgery presentation of M obtained from L by adding k trivial knots framed by +1.
On our way, we have proved that for any combing [X ], for any even surgery presentation L
of M , there exists a natural integer k and an almost complex structure J on WL(k) such that
[X ] = [JN ].

5 Relation with the Θ-invariant

5.1 On configuration spaces

Recall that blowing up a submanifold A means replacing it by its unit normal bundle.
In a closed 3-manifold R, we fix a point ∞ and define C1(R) as the compact 3-manifold

obtained from R by blowing up {∞}. This space C1(R) is a compactification of Ř = (R\{∞}).
The configuration space C2(R) is the compact 6–manifold with boundary and corners ob-

tained from R2 by blowing up (∞,∞), and the closures of {∞}× Ř, Ř×{∞} and the diagonal
of Ř2, successively.
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Then ∂C2(R) contains the unit normal bundle of the diagonal of Ř2. This bundle is canon-
ically isomorphic to UŘ via the map

[(x, y)] ∈
TrŘ2

diag
\ {0}

R+∗
7→ [y − x] ∈

TrŘ \ {0}

R+∗
.

Since ((R3)2 \ diag) is homeomorphic to R3×]0,∞[×S2 via the map

(x, y) 7→ (x, ‖ y − x ‖,
1

‖ y − x ‖
(y − x)),

((R3)2 \ diag) is homotopy equivalent to S2. In general, C2(R) is homotopy equivalent to
(Ř2 \ diag). When R is a rational homology sphere, Ř is a rational homology R3 and the
rational homology of (Ř2 \diag) is isomorphic to the rational homology of ((R3)2 \diag). Thus,
C2(R) has the same rational homology as S2, and H2(C2(R);Q) has a canonical generator [S]
that is the homology class of a fiber of UŘ ⊂ C2(R). For a 2-component link (J,K) of Ř,
the homology class [J ×K] of J ×K in H2(C2(R);Q) reads lk(J,K)[S], where lk(J,K) is the
linking number of J and K, see [Les12, Proposition 1.6].

5.2 On propagators

When R is a rational homology sphere, a propagator of C2(R) is a 4–cycle F of (C2(R), ∂C2(R))
that is Poincaré dual to the preferred generator of H2(C2(R);Q) that maps [S] to 1. For such
a propagator F , for any 2-cycle G of C2(R),

[G] = 〈F,G〉C2(R)[S]

in H2(C2(R);Q).
Let B and 1

2
B be two balls in R3 of respective radii ℓ and ℓ

2
, centered at the origin in

R3. Identify a neighborhood of ∞ in R with S3 \ (1
2
B) in (S3 = R3 ∪ {∞}) so that Ř reads

Ř =M∪]ℓ/2,ℓ]×S2 (R3\(1
2
B)) for a rational homology ballM whose complement in Ř is identified

with R3 \B. There is a canonical regular map

p∞: (∂C2(R) \ UM) → S2

that maps the limit in ∂C2(R) of a sequence of ordered pairs of distinct points of (Ř \M)2

to the limit of the direction from the first point to the second one. See [Les04a, Lemma 1.1].
Recall that τs:R

3 × R3 → TR3 denotes the standard parallelization of R3. Also recall that the
sections X of UM that we consider are constant on ∂M , i.e. they read τs(∂M × {V (X)}) for
some fixed V (X) ∈ S2 on ∂M . Let X be such a section. Then the propagator boundary ∂FX

associated with X is the following 3–cycle of ∂C2(R)

∂FX = p−1
∞ (V (X)) ∪X(M)

and a propagator associated with the section X is a 4–chain FX of C2(R) whose boundary reads
∂FX . Such an FX is indeed a propagator because the algebraic intersection in UM of a fiber
and the section X(M) is one.

27



5.3 On the Θ-invariant of a combed Q-sphere

Theorem 5.1 Let X be a section of UM (that is constant on ∂M) for a rational homology
ball M , and let (−X) be the opposite section. Let FX and F−X be two associated transverse
propagators. Then FX ∩F−X is a two-dimensional cycle whose homology class is independent of
the chosen propagators. It reads Θ(M, [X ])[S], where Θ(M, [X ]) is a rational valued topological
invariant of (M, [X ]).

Proof: Recall that C2(R) has the same rational homology as S2. In particular, since
H3(C2(R);Q) = 0, there exist transverse propagators FX and F−X with the given boudaries
∂FX and ∂F−X . Without loss, assume that F±X ∩ ∂C2(R) = ∂F±X . Since ∂FX and ∂F−X do
not intersect, FX ∩F−X is a 2–cycle. Since H4(C2(R);Q) = 0, the homology class of FX ∩F−X

in H2(C2(R);Q) does not depend on the choices of FX and F−X with their given boundaries.
Then it is easy to see that Θ(M,X) ∈ Q is a locally constant function of the section X . ⋄

When R is an integral homology sphere, a combing X is the first vector of a unique par-
allelization τ(X) that coincides with τs outside M , up to homotopy. When R is a rational
homology sphere, and when X is the first vector of a such a parallelization τ(X), this par-
allelization is again unique. In this case, the invariant Θ(M,X) is the degree 1 part of the
Kontsevich invariant of (M, τ(X)) [Kon94, KT99, Les04a] and

Θ(M,X) = 6λ(M) +
p1(τ(X))

4
.

With our extension of the definition of p1 to combings, we prove that the above formula
also holds for combings.

Theorem 5.2 Let X and Y be two transverse sections of UM . Then

Θ(M,Y )−Θ(M,X) = lk(LX=Y , LX=−Y ).

In particular,

Θ(M,X) = 6λ(M) +
p1(X)

4
.

Proof: Let us prove that Θ(M,Y ) − Θ(M,X) = lk(LX=Y , LX=−Y ). This can be done as
follows. Let F−1(±X,±Y ) be the chain F (±X,±Y ) of Lemma 3.3 translated by −1 and seen
in a collar [−1, 0] × UM of UM in C2(R). Assume that FX and F−X behave as products
[−1, 0]× ∂F±X in [−1, 0]× UM . Then replacing these parts by F−1(X, Y ) and F−1(−X,−Y ),
respectively, and making the appropriate easy corrections in C2(R)\C2(M) transforms FX and
F−X into chains FY and F−Y so that [FY ∩ F−Y ] = [FX ∩ F−X ] + [F−1(X, Y ) ∩ F−1(−X,−Y )]
where [F−1(X, Y ) ∩ F−1(−X,−Y )] = lk(LX=Y , LX=−Y )[S] according to Proposition 3.5. ⋄
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