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On the wavelet denoising of multifractal

functions

A. Fraysse∗

Abstract

This paper is devoted to the link between the rate of convergence

of functions by thresholding algorithms and the multifractal formal-

ism. Indeed we show that once given its Besov regularity, almost ev-

ery function in the prevalence sense, is approximated at the minimax

rate. We also prove that when the multifractal formalism is ful�lled

the corresponding functions are approximated at the minimax rate of

convergence.

AMS classi�cation:

62G05, 62G20, 28C20, 46E35
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minimax theory, maxiset theory, Besov spaces, prevalence, wavelet bases,
multifractal analysis, Frisch-Parisi conjecture

1 Introduction

The increasing interest on nonparametric statistics in the last decades comes
from an important need for accurate estimation methods in a wide class of
applicative contexts. The aim in this case is to determine estimators of in�-
nite dimensional objects, such as functions for instance. Another important
question in this case is on how an estimation procedure can be said to be
e�cient. The classical approach is thus to determine the minimax rate of
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approximation reached by this estimator. This minimax rate of convergence
is obtained by considering the minimal, over all estimation procedures, of
the maximal error in a given space. Although minimax theory is widely used
in theoretical and practical studies, its de�nition is subject to controversy.
First of all, it allows to merge di�erent estimators by �nding their worst per-
formances. Furthermore, in practical studies, the hypothesis of a given space
seems too restrictive to be taken into account.

In this paper, we are mainly interested on those two drawbacks and on
how they can be relaxed. For this purpose, we consider the classical estima-
tion problem given by the white noise model and we focus on thresholding
algorithms, commonly used in practice. This paper is inspired by [9] and
[11]. These two papers linked, with di�erent points of view, performances of
those algorithms with the frontier of the Besov domain of functions. In [9] it
is proved that the generic behaviour of thresholding in a given Besov space
coincides with its minimax risk. On the other side, the authors of [11] stud-
ied the minimax risk obtained when relaxed the hypothesis of belonging to
a Besov ball. They also studied the possible relationship between estimation
performances and multifractal analysis. The main purpose of this paper is to
merge those two results and to show how minimax performances are related
to multifractal behaviour.

Let us in a �rst time de�ne multifractal analysis and its related tools. This
theory was developed to study fully developed turbulent �ows. Regularity of
those kind of signals changing wildly from point to point it is hardly com-
putable in practice. Hence, rather than studying the values of this regularity,
one proposed to study sets of points where it takes a given value H. This
leads to the spectrum of singularities d(H) which gives for each H the fractal
dimension of the set of points where the regularity of a function is exactly H.

The main notion of multifractal analysis is the measure of the regularity
which is given by the Hölder exponent.

De�nition 1. Let α ≥ 0; a function f : Rd → R is Cα(x0) if for all x ∈ R
d

such that ‖x− x0‖ ≤ 1 there exist a polynomial P of degree less than [α] and
a constant C > 0 such that,

|f(x)− P (x− x0)| ≤ C‖x− x0‖α. (1)
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The Hölder exponent of f at x0 is

hf (x0) = sup{α : f ∈ Cα(x0)}.

As the spectrum of singularities cannot be obtained numerically, in [10]
two physicists U. Frisch and G. Parisi proposed the following heuristic for-
mula, the so called multifractal formalism, to obtain this spectrum:

d(H) = inf
p∈R

(pH − ξf (p) + d). (2)

Here ξf (p) stands for the L
p modulus of continuity of the function f . This

quantity is called the scaling function, or scaling exponent of f , and is de�ned
by
∫

|f(x+l)−f(x)|pdx ∼ |l|ξf (p), where ∼means that
∫

|f(x+l)−f(x)|pdx is
of the order of magnitude of |l|ξf (p) when l tends to 0. Numerical estimations
and further results about the scaling function and its wavelet decomposition
can be found in [1, 2].

It is proved in [15] that for p ≥ 1, the scaling function ξf (p) is closely
related to Sobolev or Besov smoothness. It is thus natural to replace the
scaling function ξf (p) as follows:

If p > 0 ηf (p) = sup{s : f ∈ Bs/p,∞
p }. (3)

So (2) applied to ηf can at most give the increasing part of the spectrum.
Recent results such as [17] retrieve the decreasing part by considering oscil-
lations spaces instead of Besov ones.

De�ning, as in [16], an auxiliary function s(1/p) = ηf (p)/p, the Besov

domain of a function f is the set of (q, t) such that f ∈ B
t,1/q
1/q . The boundary

of the Besov domain of f is then given by the graph of s(q). And by Sobolev
embeddings, the Besov domain of a function is a convex set. Thus, the func-
tions η satisfying (3) are increasing and concave. Furthermore the auxiliary
function s is such that 0 ≤ s′(q) ≤ d. These facts lead us to the following
de�nition.

De�nition 2. A function η is admissible if s(q) = qη(1/q) is concave and
satis�es 0 ≤ s′(q) ≤ d. Furthermore it is strongly admissible if s(0) > 0.

Furthermore, see [16], the following proposition entails the properties of
admissible functions.
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Proposition 1. Any concave function s satisfying 0 ≤ s′(q) ≤ d de�nes the
Besov domain of a distribution f .

Thanks to Proposition 1, to each admissible function η, can be associated
a metric space V by taking

V =
⋂

ε>0,0<p<∞

B
(η(p)−ε)/p,p
p,loc . (4)

One can notice that this topological vector space can be seen as an ex-
tension of classical Besov spaces. Indeed, if a function f belongs to a given
Besov space Bs0,∞

p0
it also belongs to a space V de�ned thanks to an admis-

sible function s where:

∀p > 0 s(p) =

{

s0 if p ≤ p0
d
p
+ s0 − d

p0
if p ≥ p0.

(5)

The main result of [11] and the main purpose of the present paper is the
statistical denoising of functions of V .

In the following, we treat the statistical problem given by the Gaussian
white noise model. As in [13], we suppose that we observe Yt such that

dYt = f(t)dt+
1√
n
dWt, t ∈ (0, 1)d, (6)

where dWt stands for the d-dimensional Wiener measure, n is known and
f is the unknown function to be estimated.

The main issue is to determine a good estimation procedure that can
retrieve f knowing the observation of Y . Given a pseudo distance R(., .), the
risk function, an estimator f̂n measurable respectively to Y is minimax on
a function space if it attains, at least asymptotically, the minimum value of
the maximal risk on this space. Hence given a function space Θ and a closed
ball ΘC of radius C > 0, the maximal risk attainable by f̂n on ΘC is given
by

Rn(f̂n) = sup
f∈ΘC

E(R(f̂n, f)), (7)

and the minimax risk is given by

Rn(Θ) = inf
f̂∈Tn

sup
f∈ΘC

E(R(f̂n, f)), (8)
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where Tn is the set of estimation procedure measurable respectively to Y .
In [9], it is shown that in a given Besov space the minimax risk for

this model is indeed attained by the thresholding estimator on generic sets.
Genericity used there is given by the notion of prevalence, that is in an in�nite
dimensional measure theoretic sense.

The �rst de�nition of this "almost every" notion is given by J. Christensen
in 1972 see [3, 4, 12].

De�nition 3. Let E be a complete metric vector space. A Borel set A ⊂ E
is Haar-null (or shy) if there exists a compactly supported probability measure
µ such that

∀x ∈ E, µ(x+ A) = 0. (9)

If this property holds, the measure µ is said to be transverse to A.
A subset of E is called Haar-null if it is contained in a Haar-null Borel

set. The complement of a Haar-null set is called a prevalent set.

The following results enumerate important properties of prevalence and
show that these notions supply a natural generalization of �zero measure�
and �almost every� in �nite-dimensional spaces, see [3, 4, 12].

Proposition 2. • If S is Haar-null, then ∀x ∈ E, x+ S is Haar-null.

• If dim(E) <∞, S is Haar-null if and only if meas(S) = 0 (where meas
denotes the Lebesgue measure).

• Prevalent sets are dense.

• The intersection of a countable collection of prevalent sets is prevalent.

• If dim(E) = ∞, compact subsets of E are Haar-null.

The fact that a set is prevalent or not is independant of the chosen trans-
verse measure. Several kinds of transverse measures, such as the one induces
by the sample paths of a random process or the Lebesgue measure on a �nite
dimensional subspace can thus be used in this context, involving the same
results. However, an important drawback of this theory, which is shared by
a lot of genericity results, is that it does not allow to characterize element of
generic sets.
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The remaining of this paper is devoted to the thresholding estimation in
the topological vector space V . In order to de�ne this estimation procedure
one has to de�ne a basis of the involved space. In our context, this basis is
given by wavelet bases.

1.1 Wavelet expansion

The wavelet thresholding was introduced in [7] as a denoising tool in trans-
form domains. The starting point is that in a wavelet decomposition of noisy
data, small coe�cients should correspond to noise. It is thus natural to re-
move them in order to recover the signal. Wavelets take here an important
role, as they are well localized in time and in frequency domains. Further-
more, it also provides a good tool for regularity criterion.

For r large enough there exists 2d−1 functions ψ(i) with compact support
and which belong to Cr, see [6]. Each ψ(i) has r vanishing moments and the

set of functions {ψ(i)
j,k = 2dj/2ψ(i)(2j. − k), j ∈ Z, k ∈ {0, . . . , 2j − 1}d, i ∈

{1, ..., 2d − 1}}, which are called wavelets, forms an orthonormal basis of
L2([0, 1]d). It is also noticed in [20] that wavelets provide unconditional
bases of Lp([0, 1]d) as far as 1 < p <∞.

Thus any function f ∈ Lp([0, 1]d) can be written as

f(x) =
∑

i,j,k

c
(i)
j,kψ

(i)
j,k(x) (10)

where

c
(i)
j,k = 2jd/2

∫

f(x)ψ(i)(2jx− k)dx. (11)

As the collection of {2dj/2ψ(i)(2j.− k), j ∈ N, k ∈ {0, . . . , 2j − 1}d, i =
1, ..., 2d−1} form an orthonormal basis of L2([0, 1]d), observing the whole tra-
jectory of Yt in (6) is equivalent to observe its wavelet coe�cients (yj,k)j∈N,k∈{0,...,2j−1}d ∈
ℓ2(Nd) such that ∀j, k,

yj,k = θj,k +
1√
n
vj,k, (12)

where yj,k =
∫

ψ
(i)
j,kdY , vj,k are i.i.d. Gaussian random variables and (θj,k)

is the sequence to be estimated. One can notice that we stand in an isotropic
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problem. Thus the direction of the wavelets is not involved and we omit in
the following the directional index i.

Furthermore wavelets are useful as they provide a simple characterization
of Besov spaces.

Homogeneous Besov spaces are characterized, for p, q > 0 and s ∈ R, by

f ∈ Bs,q
p ([0, 1]d) ⇐⇒ ∃C > 0

∑

j





∑

j≥0,k∈{0,...2j−1}d

|cj,k|p2(sp−d+ pd
2
)j





q/p

≤ C.

(13)
This characterization is independent from the chosen wavelet as soon as

it is Cr and has r vanishing moments with r ≥ s.

Another important function spaces, studied in the following is given by
the weak Besov spaces de�ned in [5]. These spaces are are subsets of Lorentz
spaces, and constitute a larger class than Besov spaces.

De�nition 4. Let 0 < r < p <∞. We say that a function f =
∑

j,k cj,kψj,k

belongs to W (r, p) if and only if

sup
λ>0

λr
∑

2j(
dp
2
−d)
∑

k

1{|cj,k|>λ} <∞. (14)

A fast calculation shows that the space W (r, p) contains homogeneous
Besov spaces Bβ,∞

r for β ≥ d
2
(p
r
− 1).

From the localization property of wavelet bases, it also provides a powerful
tool in multifractal analysis, thanks in particular to the following proposition
from [15].

Proposition 3. Let x be in R
d. If f is in Cα(x) then there exists c > 0 such

that for each (j, k):

|cj,k| ≤ c2−(α+ d
2
)j(1 + |2jx− k|)α. (15)

Unfortunately this condition is not a characterization. If for any ε > 0, a
function does not belongs to Cε(Rd) one cannot express its pointwise Hölder
regularity in term of condition on wavelet coe�cients. However, the following
proposition from [14] allows to deduce a lower bound of the Hölder exponent
thanks to wavelets properties.
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Proposition 4. Let x0 ∈ R
d be �xed and s > 0. Let f =

∑

j,k cj,kψj,k be
such that

∃s′ > 0 sup
j∈Z,k∈Zd

|cj,k| ≤ 2−(s+ d
2
)j(1 + |k − 2jx0|)s

′

<∞. (16)

Then f ∈ Cs(x0).

There is thus a logarithmic loss between (15) and the Hölder exponent.
Note that recent results showed that an equivalent condition on wavelet lead-
ers provides a caracterization of the regularity [17].

Let us now de�ne the statistical estimation that we deal with. This pro-
cedure, classical in terms of signal estimation is given by the "hard" wavelet
thresholding such as given in [7].

De�nition 5. The wavelet hard thresholding estimator is de�ned by

f̂T
n (x) =

j(n)
∑

j=0

∑

k

βT
j,kψj,k(x). (17)

Here the weights are given by:

βT
j,k = yj,k1{|yj,k|≥κtn}. (18)

where

tn =

√

log n

n
, (19)

is the universal threshold, j(n) is such that

2−j(n) ≤ log n

n
< 2−j(n)+1

and κ is a constant large enough.

2 Statement of main results

The purpose of this paper is twofold. First we establish which rate of ap-
proximation by wavelet thresholding is generic in a space de�ned as in (4).
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In a second time, we link this result with the multifractal formalism.

In the rest of this paper, we �x η to be an admissible function and V the
metric space de�ned by:

V =
⋂

ε>0,0<p<∞

B
(η(p)−ε)/p,p
p,loc , (20)

This set V can also be written as a countable intersection ofB
(η(pn)−εn)/pn,pn
pn,loc

Note that V is a topological vector space. For p < 1 Besov spaces are
only quasi-Banach spaces, as the triangle inequality is only satis�ed up to a
constant and V is not a Banach space but a complete metric space. Indeed,
if p ≥ 1 we take for distance between two functions f and g in Bs,q

p :

d(f, g) =
∑

j≥0





∑

k∈{0,...,2j−1}d

∣

∣

∣
(cj,k − dj,k)2

(s− d
p
+ d

2
)j
∣

∣

∣

p





q
p

where cj,k are the wavelet coe�cients of f and dj,k are those of g.
If p < 1 we consider:

d(f, g) =







∑

j≥0





∑

k∈{0,...,2j−1}d

|(cj,k − dj,k)2
(s− d

p
+ d

2
)j|p




q
p







min(p,q)
q

.

Finally, we obtain a distance in V by taking:

∀f, g ∈ V d(f, g) =
∑

n

2−n dn(f, g)

1 + dn(f, g)

where dn denotes the distance in B
(η(pn)−εn)/pn,pn
pn,loc

. With this distance V is
clearly a complete space.

Furthermore, as in [11], for each r ≥ 1 we de�ne p∗(r) as the solution, if
it exists, of

s(1/p) =
d

2

(

r

p
− 1

)

. (21)

Note that a su�cient condition for existence of p∗(r) is that s′(∞) < dr
2
.

Let us now state our main result. In the following an ≈ bn means that
log(an)
log(bn)

→ 1.
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Theorem 1. Let 1 ≤ r ≤ ∞ such that s′(∞) < dr
2
, then in the context of

(6), for almost every f ∈ V and for the thresholding algorithm f̂T
n

E‖f̂T
n − f‖rLr ≈

(

n

log n

)−αr

(22)

where

α =
s(1/p∗(r))

2s(1/p∗(r)) + d
. (23)

As one can see, this result is similar to the minimax result of [11].
Thanks to Theorem 1, we can also prove the following result.

Theorem 2. For every function f ∈ V satisfying

∀H ∈
[

s(0),
d

pc

]

df (H) = inf
p≥pc

(pH − ηf (p) + d) (24)

where pc is the only critical point such that η(pc) = d, the rate of estimation
of f by wavelet thresholding in the context of (6) satis�es:

E‖f̂T
n − f‖rLr ≈

(

n

log n

)−αr

, (25)

where

α = min
H∈supp(d)

H + (d− d(H))/r

2H + d
. (26)

Stated di�erently, in this second theorem we see how the multifractal
behaviour is linked to estimation performances. Actually, one can check in [8]
and in Theorem 1 that both multifractal and minimax properties represent
characteristic behaviour in Besov spaces. The question raised thus is to
understand which one is the most "generic". The answer given here is that
the multifractal formalism actually entails minimax rate of estimation by
wavelet thresholding.

3 Proof of Theorems 1 and 2

In order to prove the main results of this paper we have to introduce an useful
tool given by the maxiset theory introduced in [5, 18, 19] as an alternative
way to compare di�erent estimation procedures.
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3.1 Maxiset theory

The main idea of this theory is to consider the maximal space on which an
estimator reach a given rate, instead of searching an optimal rate for a given
space.

De�nition 6. Let ρ be a risk function and (vn)n∈N a sequence such that
vn → 0. For f̂n an estimator measurable with respect to Y given by (6), the
maximal space associated to ρ, vn and a constant T is given by

MS(f̂n, ρ, vn, T ) =

{

f ; sup
n
v−1
n E(ρ(f̂n, f)) < T

}

. (27)

The maxiset associated with the thresholding estimation procedure is
given by a weak Besov space as proved in [5].

Proposition 5. Let 1 ≤ p < ∞, 1 ≤ r < ∞, s > d
r
and α̃ ∈ (0, 1). Let

f̂T
n be the estimator de�ned by (17) and (18). Then for every f we have the

following equivalence:
∃K > 0 such that ∀n > 0,

E‖f̂T
n − f‖pp ≤ K

(

√

n log(n)−1
)−α̃p

(28)

if and only if f ∈ B
α̃/2,∞
p ∩W ((1− α̃)p, p).

Furthermore the following proposition from [8] gives also a key argument
to prove Theorem 1.

Proposition 6. For almost every f in V , we have:

∀0 < p <∞ ηf (p) = η(p). (29)

3.2 Generic rate for thresholding algorithms

Let us now prove Theorem 1. For this purpose we use the following propo-
sition from [11], which gives the upper bound.

Proposition 7.

E(‖f̂T
n − f‖rr) ≤ c

(

n

log n

)−
s(1/p∗(r))

2s(1/p∗(r))+d
r

. (30)
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Let us now determine the lower bound. For this purpose, let r ≥ 0 be
�xed and f̂T

n the estimator given in De�nition 5.

Let us turn out our attention to the minimax rate of convergence. For
this purpose, we write in the following

α̃(r) =
2s(1/p∗(r))

2s(1/p∗(r)) + d
. (31)

For every values of α̃(r), let 0 < ε < 1− α̃(r) be �xed, and M(ε) be the
set de�ned by

M(ε) =

{

f ∈ V ; ∃c > 0 ∀n ∈ N, E(‖f̂T
n − f‖rLr) < c

√

n

log n

−(α̃(r)+ε)r
}

.

(32)

Thanks to Proposition 5, this setM(ε) is embedded in B
α̃(r)+ε

2
,∞

p ∩W ((1−
α̃(r)− ε)r, r).

Let us now prove that W ((1− α̃(r)− ε)r, r) is a Haar null Borel set in V .

For this purpose, we consider as a transverse measure, the Lebesgue mea-
sure on the set generated by the function g de�ned thanks to its wavelet
coe�cients:

dj,k =
2a(j,k)

ja
(33)

where a = aj = log j and

a(j, k) = inf
p

(

d(j − J)− η(p)j − pdj/2

p

)

. (34)

In this de�nition, 0 ≤ J ≤ j and K ∈ {0, . . . , 2J − 1}d are such that

K

2J
=

k

2j
(35)

is an irreducible fraction. As it can be seen in [16], this function g belongs
to V . Let f ∈ V be an arbitrary function and consider the a�ne subset

M = {α ∈ R f + αg ∈ W ((1− α̃(r)− ε)r, r)}. (36)
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Suppose that there exist two points α1 and α2 inM . Thus f +α1g− (f +
α2g) belongs to W ((1− α̃− ε)r, r), and therefore there exists c > 0 such that

‖f + α1g − (f + α2g)‖W ((1−α̃−ε)r,r) = ‖(α1 − α2)g‖W ((1−α̃−ε)r,r) ≤ c. (37)

A fast calculation shows that for each 0 ≤ t ≤ r,

∀α > 0, ‖αg‖W (t,r) = αt‖g‖W (t,r) (38)

and we just have now to determine ‖g‖W ((1−α̃−ε)r,r). Thanks to equation (14),
this is equivalent to determine for every t > 0, the value of

‖g‖W ((1−α̃−ε)r,r) = 2−(1−α̃−ε)rt
∑

j≥0

2j(
dr
2
−d)
∑

k

1{dj,k>2−t}

But by de�nition of g, when dj,k > 2−t we have, by setting q = 1/p in
(34)

2a(j,k)

jaj
> 2−t ⇔ sup

q
(qd(J − j) + s(q)j + jd/2) ≤ t,

which implies that

∀q > 0 J ≤ 1

qd
(t− s(q)j − dj

2
) + j,

in particular when q = 1
p∗

where p∗ satis�es (21),

J ≤ p∗

d
(t− s(1/p∗)j − dj

2
) + j, (39)

Note that J must be positive thus

j(s(1/p∗)− d

p∗
+
d

2
) ≤ t. (40)

We denote by t̃ = t
s(1/p∗)− d

p∗
+ d

2

and by ˜̃t = t
s(1/p∗)+ d

2

. From de�nition of

weak Besov spaces, we have for every t > 0,

‖g‖W ((1−α̃−ε)r,r) ≥ 2−(1−α̃−ε)rt sup
0≤j≤t̃

2j(
dr
2
−d)

j∧[ p
∗

d
(t−s(1/p∗)j− dj

2
)+j]

∑

J=0

2dJ

≥ 2−(1−α̃−ε)rt sup



 sup
0≤j≤˜̃t

2j(
dr
2
−d)

j
∑

J=0

2dJ , sup
˜̃t≤j≤t̃

2j(
dr
2
−d)

[ r
d
(t−js(1/p∗)− jd

2
)+j]

∑

J=0

2dJ





≥ 2−(1−α̃−ε)rt

2d − 1
sup

(

sup
0≤j≤˜̃t

2
drj
2 (1− 2−jd), sup

˜̃t<j≤t̃

2j(
dr
2
−d)(2p

∗t2−jp∗(s(1/p∗)+ d
2
− d

p∗
) − 1)

)
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Merging this result with (37) together with (38), we obtain that, if there
exist α1 and α2 in M then they satisfy that for every t ≥ 0 and 0 ≤ j ≤ t̃,

|α1−α2|(1−α̃−ε)r ≤ inf





c2(1−α̃−ε)rt

sup
0≤j≤˜̃t

2
drj
2 |1− 2−jd|

,
c2(1−α̃−ε)rt

sup˜̃t<j≤t̃
2j(

dr
2
−d)|2p∗t2−jp∗(s(1/p∗)+ d

2
− d

p∗
) − 1|





(41)
But p∗ is such that r(s(1/p∗)+ d

2
− d

p∗
) = dr

2
− d. Thus, for t large enough

sup
˜̃t<j≤t̃

2j(
dr
2
−d)|2p∗t2−jp∗(s(1/p∗)+ d

2
− d

p∗
) − 1| ∼ 2rt.

And,

α̃ =
2s(1/p∗)

2s(1/p∗) + d
= 1− p∗

r
.

Therefore,
|α1 − α2|(1−α̃−ε)r ≤ c2−εr (42)

As 1− α̃ − ε > 0, it can be deduced from equations (42) that for t large
enough, M is of vanishing Lebesgue measure and W ((1 − α̃ − ε)r, r) is an
Haar null set in Bs,∞

p .
Thanks to invariance under inclusion, we have obtained that for every

ε > 0, the set of functions f in V such that

∃c > 0 ∀n ∈ N, E(‖f̂T
n − f‖rLr) < c

√

n

log n

−(α(s)+ε)p

(43)

is a Haar null set.
Taking the countable union of those sets over a decreasing sequence

εn → 0, and considering the complementary we obtain that for almost every
function in V ,

lim inf
n→∞

log(E(‖f̂L
n − f‖rLr))

−r log n ≤ α(s). (44)

Which induces the expected result.
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3.3 Multifractal results in a weak Besov space

As it can be seen in the previous proof, Theorem 1 is based on maxiset
theory and estimation behaviour in weak Besov spaces. In the following we
determine the multifractal behaviour of function in a weak Besov space.

Proposition 8. Let 0 ≤ t ≤ r be �xed and f ∈ W (t, r). For D > 0 and
β = D−d

t
− d

2
+ dr

2t
, we have

HD{x : f 6∈ Cβ(x)} = 0,

where HD denotes the D-dimensional Hausdor� measure.

Corollary. Let 0 ≤ t ≤ r be �xed. Then for every f ∈ W (t, r), and for all
H ∈

[

dr
2t
− d

t
− d

2
, dr
2t
− d

2

]

,

d(H) ≤ tH − dr

2t
+
dt

2
+ d. (45)

Proof. The �rst step of the proof consists in the construction of a set E ⊂ R
d

such that HD(E) vanishes.

Let f =
∑

cj,kψj,k be in W (t, r) thus :

∃c > 0 such that ∀i > 0 ∀j
∑

k∈{0,...,2j−1}d

2−ti2j(
dr
2
−d)

1{|cj,k|>2−i} ≤ cεj,

where (εj) ∈ l1(N). This implies that

∃c > 0 such that ∀i > 0 ∀j
∑

k∈{0,...,2j−1}d

2j(
dr
2
−d)|cj,k|t1{|cj,k|>2−i} ≤ cεj.

(46)

Let us denote dj,k = (|cj,k|2
d
t
j( r

2
−1))

t
D . Let Bj,k be the ball centered at k

2j

and of size dj,k. Thus (46) entails

∀j
∑

k∈{0,...,2j−1}d

| diam(Bj,k)|D =
∑

k∈{0,...,2j−1}d

|dj,k|D

∀j
∑

k∈{0,...,2j−1}d

(|cj,k|2
d
t
( r
2
−1)j)t ≤ cεj

15



As a consequence, we obtain that
∑

k diam(Bj,k)
D →j→∞ 0. Let us now

denote by

E = lim sup
j

⋃

k

Bj,k.

We can deduce from (46) that

HD(E) = 0.

Let us assume now that x 6∈ E. There exists l such that ∀j ≥ l, ∀k
x 6∈ Bj,k so that:

|x− k

2j
| ≥ |dj,k|

hence
|cj,k| ≤ c2

d
t
j( r

2
−1)−D

t
j|2jx− k|Dt . (47)

By setting β = D−d
t

− d
2
+ dr

2t
, we deduce from Proposition 4 that f ∈ Cβ(x).

The corollary is straightforward, by noticing that 0 ≤ D ≤ d.

Let us now turn out our attention to the proof of Theorem 2. By setting
t = (1− α)r, 0 ≤ α ≤ 1 in the previous proposition we obtain that for each
f ∈ W ((1− α)r, r):

∀H ∈
[

dα

2(1− α)
− 1

(1− α)r
,

dα

2(1− α)

]

d(H) ≤ (1− α)rH − drα

2
+ d.

Furthermore, from [16] we have for every f ∈ V ,

∀H ∈
[

s(0),
d

pc

]

d(H) ≤ inf
p≥pc

(pH − η(p) + d). (48)

And in [11], the following identity is given:

s(1/p∗)r

2s(1/p∗) + d
= inf

s(0)≤H≤ d
pc

rH + d− d(H)

2H + d
, (49)

as soon as (24) is satis�ed.
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Let ε > 0 be �xed and M(ε) be the set de�ned by (32). As M(ε) ⊂
W ((1−α−ε)r, r), for every f ∈M(ε) we have for everyH ∈

[

d(α−ε)
2(1−α+ε)

− 1
(1−α+ε)r

, d(α−ε)
2(1−α+ε)

]

d(H) ≤ (1− α− ε)rH − dr(α− ε)

2
+ d.

By taking α = 2s(1/p∗)
2s(1/p∗)+d

, we obtain

∀H ∈
[

s(
1

p∗
)− d

p∗
, s(

1

p∗
)

]

, d(H) ≤ p∗H − p∗s(1/p∗) + d.

Thus,

∀ε > 0, M(ε) ⊂ {f ∈ V, d(H) < p∗H − p∗s(1/p∗) + d},

and taking the complementary,

{f ∈ V, d(H) = inf
p≥pc

(pH−ps(1/p)+d} ⊂ {f ∈ V, lim inf
n→∞

log(E(‖f̂L
n − f‖rLr))

−r log n ≤ α(s)}.

Furthermore, in [11] we have that as soon as the multifractal formalism
is ful�lled,

α(s) = inf
H∈supp(d)

H − (d− d(H))/r

2H + d
.

Which entails Theorem 2.
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