Aurélia Fraysse 
email: fraysse@lss.supelec.fr.
  
On the wavelet denoising of multifractal functions

Keywords: 62G05, 62G20, 28C20, 46E35 minimax theory, maxiset theory, Besov spaces, prevalence, wavelet bases, multifractal analysis, Frisch-Parisi conjecture

 

On the wavelet denoising of multifractal functions

Introduction

The increasing interest on nonparametric statistics in the last decades comes from an important need for accurate estimation methods in a wide class of applicative contexts. The aim in this case is to determine estimators of innite dimensional objects, such as functions for instance. Another important question in this case is on how an estimation procedure can be said to be ecient. The classical approach is thus to determine the minimax rate of approximation reached by this estimator. This minimax rate of convergence is obtained by considering the minimal, over all estimation procedures, of the maximal error in a given space. Although minimax theory is widely used in theoretical and practical studies, its denition is subject to controversy. First of all, it allows to merge dierent estimators by nding their worst performances. Furthermore, in practical studies, the hypothesis of a given space seems too restrictive to be taken into account.

In this paper, we are mainly interested on those two drawbacks and on how they can be relaxed. For this purpose, we consider the classical estimation problem given by the white noise model and we focus on thresholding algorithms, commonly used in practice. This paper is inspired by [START_REF]Why minimax is not that pessimist[END_REF] and [START_REF] Gloter | Nonparametric reconstruction of a multifractal function from noisy data[END_REF]. These two papers linked, with dierent points of view, performances of those algorithms with the frontier of the Besov domain of functions. In [START_REF]Why minimax is not that pessimist[END_REF] it is proved that the generic behaviour of thresholding in a given Besov space coincides with its minimax risk. On the other side, the authors of [START_REF] Gloter | Nonparametric reconstruction of a multifractal function from noisy data[END_REF] studied the minimax risk obtained when relaxed the hypothesis of belonging to a Besov ball. They also studied the possible relationship between estimation performances and multifractal analysis. The main purpose of this paper is to merge those two results and to show how minimax performances are related to multifractal behaviour. Let us in a rst time dene multifractal analysis and its related tools. This theory was developed to study fully developed turbulent ows. Regularity of those kind of signals changing wildly from point to point it is hardly computable in practice. Hence, rather than studying the values of this regularity, one proposed to study sets of points where it takes a given value H. This leads to the spectrum of singularities d(H) which gives for each H the fractal dimension of the set of points where the regularity of a function is exactly H.

The main notion of multifractal analysis is the measure of the regularity which is given by the Hölder exponent.

Denition 1. Let α ≥ 0; a function f : R d → R is C α (x 0 ) if for all x ∈ R d such that x -x 0 ≤ 1 there exist a polynomial P of degree less than [α] and a constant C > 0 such that, |f (x) -P (x -x 0 )| ≤ C x -x 0 α . (1) 
The Hölder exponent of f at x 0 is

h f (x 0 ) = sup{α : f ∈ C α (x 0 )}.
As the spectrum of singularities cannot be obtained numerically, in [START_REF] Frisch | On the singularity structure of fully developed turbulence[END_REF] two physicists U. Frisch and G. Parisi proposed the following heuristic formula, the so called multifractal formalism, to obtain this spectrum:

d(H) = inf p∈R (pH -ξ f (p) + d).
(2)

Here ξ f (p) stands for the L p modulus of continuity of the function f . This quantity is called the scaling function, or scaling exponent of f , and is dened by p) , where ∼ means that |f (x+l)-f (x)| p dx is of the order of magnitude of |l| ξ f (p) when l tends to 0. Numerical estimations and further results about the scaling function and its wavelet decomposition can be found in [START_REF] Abry | Ondelettes et turbulences. Multirésolutions, algorithmes de décomposition, invariance d'échelle et signaux de pression[END_REF][START_REF] Arneodo | The thermodynamics of fractals revisited with wavelets[END_REF].

|f (x+l)-f (x)| p dx ∼ |l| ξ f (
It is proved in [START_REF]Multifractal formalism for functions[END_REF] that for p ≥ 1, the scaling function ξ f (p) is closely related to Sobolev or Besov smoothness. It is thus natural to replace the scaling function ξ f (p) as follows:

If p > 0 η f (p) = sup{s : f ∈ B s/p,∞ p }.
(3) So (2) applied to η f can at most give the increasing part of the spectrum. Recent results such as [START_REF] Jaard | Wavelet leaders in multifractal analysis, Wavelet Analysis and Applications[END_REF] retrieve the decreasing part by considering oscillations spaces instead of Besov ones.

Dening, as in [START_REF]On the Frisch-Parisi conjecture[END_REF], an auxiliary function s(1/p) = η f (p)/p, the Besov domain of a function f is the set of (q, t) such that f ∈ B t,1/q 1/q . The boundary of the Besov domain of f is then given by the graph of s(q). And by Sobolev embeddings, the Besov domain of a function is a convex set. Thus, the functions η satisfying (3) are increasing and concave. Furthermore the auxiliary function s is such that 0 ≤ s ′ (q) ≤ d. These facts lead us to the following denition. Denition 2. A function η is admissible if s(q) = qη(1/q) is concave and

satises 0 ≤ s ′ (q) ≤ d. Furthermore it is strongly admissible if s(0) > 0.
Furthermore, see [START_REF]On the Frisch-Parisi conjecture[END_REF], the following proposition entails the properties of admissible functions. Proposition 1. Any concave function s satisfying 0 ≤ s ′ (q) ≤ d denes the Besov domain of a distribution f . Thanks to Proposition 1, to each admissible function η, can be associated a metric space V by taking

V = ε>0,0<p<∞ B (η(p)-ε)/p,p p,loc . (4) 
One can notice that this topological vector space can be seen as an extension of classical Besov spaces. Indeed, if a function f belongs to a given Besov space B s 0 ,∞ p 0 it also belongs to a space V dened thanks to an admissible function s where:

∀p > 0 s(p) = s 0 if p ≤ p 0 d p + s 0 -d p 0 if p ≥ p 0 . (5) 
The main result of [START_REF] Gloter | Nonparametric reconstruction of a multifractal function from noisy data[END_REF] and the main purpose of the present paper is the statistical denoising of functions of V .

In the following, we treat the statistical problem given by the Gaussian white noise model. As in [START_REF] Ibragimov | Statistical estimation[END_REF], we suppose that we observe Y t such that

dY t = f (t)dt + 1 √ n dW t , t ∈ (0, 1) d , (6) 
where dW t stands for the d-dimensional Wiener measure, n is known and f is the unknown function to be estimated.

The main issue is to determine a good estimation procedure that can retrieve f knowing the observation of Y . Given a pseudo distance R(., .), the risk function, an estimator fn measurable respectively to Y is minimax on a function space if it attains, at least asymptotically, the minimum value of the maximal risk on this space. Hence given a function space Θ and a closed ball Θ C of radius C > 0, the maximal risk attainable by fn on Θ C is given by

R n ( fn ) = sup f ∈Θ C E(R( fn , f )), (7) 
and the minimax risk is given by

R n (Θ) = inf f ∈Tn sup f ∈Θ C E(R( fn , f )), (8) 
where T n is the set of estimation procedure measurable respectively to Y .

In [START_REF]Why minimax is not that pessimist[END_REF], it is shown that in a given Besov space the minimax risk for this model is indeed attained by the thresholding estimator on generic sets.

Genericity used there is given by the notion of prevalence, that is in an innite dimensional measure theoretic sense.

The rst denition of this "almost every" notion is given by J. Christensen in 1972 see [START_REF] Benyamini | Geometric nonlinear functional analysis[END_REF][START_REF] Christensen | On sets of Haar measure zero in Abelian Polish groups[END_REF][START_REF] Hunt | Prevalence: A translation invariant "almost every" on innite dimensional spaces[END_REF]. Denition 3. Let E be a complete metric vector space. A Borel set A ⊂ E is Haar-null (or shy) if there exists a compactly supported probability measure

µ such that ∀x ∈ E, µ(x + A) = 0. (9) 
If this property holds, the measure µ is said to be transverse to A.

A subset of E is called Haar-null if it is contained in a Haar-null Borel set. The complement of a Haar-null set is called a prevalent set.

The following results enumerate important properties of prevalence and show that these notions supply a natural generalization of zero measure and almost every in nite-dimensional spaces, see [START_REF] Benyamini | Geometric nonlinear functional analysis[END_REF][START_REF] Christensen | On sets of Haar measure zero in Abelian Polish groups[END_REF][START_REF] Hunt | Prevalence: A translation invariant "almost every" on innite dimensional spaces[END_REF].

Proposition 2. • If S is Haar-null, then ∀x ∈ E, x + S is Haar-null.
• If dim(E) < ∞, S is Haar-null if and only if meas(S) = 0 (where meas denotes the Lebesgue measure).

• Prevalent sets are dense.

• The intersection of a countable collection of prevalent sets is prevalent.

• If dim(E) = ∞, compact subsets of E are Haar-null.
The fact that a set is prevalent or not is independant of the chosen transverse measure. Several kinds of transverse measures, such as the one induces by the sample paths of a random process or the Lebesgue measure on a nite dimensional subspace can thus be used in this context, involving the same results. However, an important drawback of this theory, which is shared by a lot of genericity results, is that it does not allow to characterize element of generic sets.

The remaining of this paper is devoted to the thresholding estimation in the topological vector space V . In order to dene this estimation procedure one has to dene a basis of the involved space. In our context, this basis is given by wavelet bases.

Wavelet expansion

The wavelet thresholding was introduced in [START_REF] Donoho | Asymptotic minimax risk for sup-norm loss: solution via optimal recovery[END_REF] as a denoising tool in transform domains. The starting point is that in a wavelet decomposition of noisy data, small coecients should correspond to noise. It is thus natural to remove them in order to recover the signal. Wavelets take here an important role, as they are well localized in time and in frequency domains. Furthermore, it also provides a good tool for regularity criterion.

For r large enough there exists 2 d -1 functions ψ (i) with compact support and which belong to C r , see [START_REF] Daubechies | Orthonormal bases of compactly supported wavelets[END_REF]. Each ψ (i) has r vanishing moments and the set of functions {ψ (i)

j,k = 2 dj/2 ψ (i) (2 j . -k), j ∈ Z, k ∈ {0, . . . , 2 j -1} d , i ∈ {1, ..., 2 d -1}}, which are called wavelets, forms an orthonormal basis of L 2 ([0, 1] d ).
It is also noticed in [START_REF] Meyer | Ondelettes et opérateurs[END_REF] that wavelets provide unconditional bases of L p ([0, 1] d ) as far as 1 < p < ∞. [START_REF] Frisch | On the singularity structure of fully developed turbulence[END_REF] where

Thus any function

f ∈ L p ([0, 1] d ) can be written as f (x) = i,j,k c (i) j,k ψ (i) j,k (x)
c (i) j,k = 2 jd/2 f (x)ψ (i) (2 j x -k)dx. (11) As the collection of {2 dj/2 ψ (i) (2 j . -k), j ∈ N, k ∈ {0, . . . , 2 j -1} d , i = 1, ..., 2 d -1} form an orthonormal basis of L 2 ([0, 1] d ), observing the whole tra- jectory of Y t in (6) is equivalent to observe its wavelet coecients (y j,k ) j∈N,k∈{0,...,2 j -1} d ∈ ℓ 2 (N d ) such that ∀j, k,
problem. Thus the direction of the wavelets is not involved and we omit in the following the directional index i.

Furthermore wavelets are useful as they provide a simple characterization of Besov spaces.

Homogeneous Besov spaces are characterized, for p, q > 0 and s ∈ R, by

f ∈ B s,q p ([0, 1] d ) ⇐⇒ ∃C > 0 j   j≥0,k∈{0,...2 j -1} d |c j,k | p 2 (sp-d+ pd 2 )j   q/p ≤ C.
(13) This characterization is independent from the chosen wavelet as soon as it is C r and has r vanishing moments with r ≥ s.

Another important function spaces, studied in the following is given by the weak Besov spaces dened in [START_REF] Cohen | Maximal spaces with given rate of convergence for thresholding algorithms[END_REF]. These spaces are are subsets of Lorentz spaces, and constitute a larger class than Besov spaces. Denition 4. Let 0 < r < p < ∞. We say that a function f = j,k c j,k ψ j,k belongs to W (r, p) if and only if

sup λ>0 λ r 2 j( dp 2 -d) k 1 {|c j,k |>λ} < ∞. (14) 
A fast calculation shows that the space W (r, p) contains homogeneous Besov spaces B β,∞ r

for β ≥ d 2 ( p r -1).
From the localization property of wavelet bases, it also provides a powerful tool in multifractal analysis, thanks in particular to the following proposition from [START_REF]Multifractal formalism for functions[END_REF]. Proposition 3. Let x be in R d . If f is in C α (x) then there exists c > 0 such that for each (j, k):

|c j,k | ≤ c2 -(α+ d 2 )j (1 + |2 j x -k|) α . ( 15 
)
Unfortunately this condition is not a characterization. If for any ε > 0, a function does not belongs to C ε (R d ) one cannot express its pointwise Hölder regularity in term of condition on wavelet coecients. However, the following proposition from [START_REF] Jaard | Pointwise smoothness, two-microlocalisation and wavelet coecients[END_REF] allows to deduce a lower bound of the Hölder exponent thanks to wavelets properties. Proposition 4. Let x 0 ∈ R d be xed and s > 0. Let f = j,k c j,k ψ j,k be such that

∃s ′ > 0 sup j∈Z,k∈Z d |c j,k | ≤ 2 -(s+ d 2 )j (1 + |k -2 j x 0 |) s ′ < ∞. ( 16 
)
Then f ∈ C s (x 0 ).
There is thus a logarithmic loss between [START_REF]Multifractal formalism for functions[END_REF] and the Hölder exponent. Note that recent results showed that an equivalent condition on wavelet leaders provides a caracterization of the regularity [START_REF] Jaard | Wavelet leaders in multifractal analysis, Wavelet Analysis and Applications[END_REF].

Let us now dene the statistical estimation that we deal with. This procedure, classical in terms of signal estimation is given by the "hard" wavelet thresholding such as given in [START_REF] Donoho | Asymptotic minimax risk for sup-norm loss: solution via optimal recovery[END_REF]. Denition 5. The wavelet hard thresholding estimator is dened by

f T n (x) = j(n) j=0 k β T j,k ψ j,k (x). (17) 
Here the weights are given by:

β T j,k = y j,k 1 {|y j,k |≥κtn} . ( 18 
)
where

t n = log n n , (19) 
is the universal threshold, j(n) is such that

2 -j(n) ≤ log n n < 2 -j(n)+1
and κ is a constant large enough.

Statement of main results

The purpose of this paper is twofold. First we establish which rate of approximation by wavelet thresholding is generic in a space dened as in (4).

In a second time, we link this result with the multifractal formalism.

In the rest of this paper, we x η to be an admissible function and V the metric space dened by:

V = ε>0,0<p<∞ B (η(p)-ε)/p,p p,loc , (20) 
This set V can also be written as a countable intersection of B (η(pn)-εn)/pn,pn pn,loc Note that V is a topological vector space. For p < 1 Besov spaces are only quasi-Banach spaces, as the triangle inequality is only satised up to a constant and V is not a Banach space but a complete metric space. Indeed, if p ≥ 1 we take for distance between two functions f and g in B s,q p :

d(f, g) = j≥0   k∈{0,...,2 j -1} d (c j,k -d j,k )2 (s-d p + d 2 )j p   q p
where c j,k are the wavelet coecients of f and d j,k are those of g.

If p < 1 we consider:

d(f, g) =    j≥0   k∈{0,...,2 j -1} d |(c j,k -d j,k )2 (s-d p + d 2 )j | p   q p    min(p,q) q .
Finally, we obtain a distance in V by taking:

∀f, g ∈ V d(f, g) = n 2 -n d n (f, g) 1 + d n (f, g)
where d n denotes the distance in B (η(pn)-εn)/pn,pn pn,loc

. With this distance V is clearly a complete space. Furthermore, as in [START_REF] Gloter | Nonparametric reconstruction of a multifractal function from noisy data[END_REF], for each r ≥ 1 we dene p * (r) as the solution, if it exists, of

s(1/p) = d 2 r p -1 . (21) 
Note that a sucient condition for existence of p * (r) is that s ′ (∞) < dr 2 . Let us now state our main result. In the following a n ≈ b n means that log(an) log(bn) → 1.

Theorem 1. Let 1 ≤ r ≤ ∞ such that s ′ (∞) < dr
2 , then in the context of ( 6), for almost every f ∈ V and for the thresholding algorithm (

f T n E f T n -f r L r ≈ n log n -αr ( 
) 23 
As one can see, this result is similar to the minimax result of [START_REF] Gloter | Nonparametric reconstruction of a multifractal function from noisy data[END_REF].

Thanks to Theorem 1, we can also prove the following result.

Theorem 2. For every function f ∈ V satisfying

∀H ∈ s(0), d p c d f (H) = inf p≥pc (pH -η f (p) + d) ( 24 
)
where p c is the only critical point such that η(p c ) = d, the rate of estimation of f by wavelet thresholding in the context of ( 6) satises: (

E f T n -f r L r ≈ n log n -αr , (25) 
) 26 
Stated dierently, in this second theorem we see how the multifractal behaviour is linked to estimation performances. Actually, one can check in [START_REF] Fraysse | Generic validity of the multifractal formalism[END_REF] and in Theorem 1 that both multifractal and minimax properties represent characteristic behaviour in Besov spaces. The question raised thus is to understand which one is the most "generic". The answer given here is that the multifractal formalism actually entails minimax rate of estimation by wavelet thresholding.

Proof of Theorems 1 and 2

In order to prove the main results of this paper we have to introduce an useful tool given by the maxiset theory introduced in [START_REF] Cohen | Maximal spaces with given rate of convergence for thresholding algorithms[END_REF][START_REF] Kerkyacharian | Thresholding algorithms, maxisets and well-concentrated bases[END_REF][START_REF]Minimax or maxisets?[END_REF] as an alternative way to compare dierent estimation procedures.

Maxiset theory

The main idea of this theory is to consider the maximal space on which an estimator reach a given rate, instead of searching an optimal rate for a given space. Denition 6. Let ρ be a risk function and (v n ) n∈N a sequence such that v n → 0. For fn an estimator measurable with respect to Y given by ( 6), the maximal space associated to ρ, v n and a constant T is given by

M S( fn , ρ, v n , T ) = f ; sup n v -1 n E(ρ( fn , f )) < T . (27) 
The maxiset associated with the thresholding estimation procedure is given by a weak Besov space as proved in [START_REF] Cohen | Maximal spaces with given rate of convergence for thresholding algorithms[END_REF].

Proposition 5. Let 1 ≤ p < ∞, 1 ≤ r < ∞, s > d
r and α ∈ (0, 1). Let f T n be the estimator dened by [START_REF] Jaard | Wavelet leaders in multifractal analysis, Wavelet Analysis and Applications[END_REF] and [START_REF] Kerkyacharian | Thresholding algorithms, maxisets and well-concentrated bases[END_REF]. Then for every f we have the following equivalence:

∃K > 0 such that ∀n > 0, E f T n -f p p ≤ K n log(n) -1 -αp (28) 
if and only

if f ∈ B α/2,∞ p ∩ W ((1 -α)p, p).
Furthermore the following proposition from [START_REF] Fraysse | Generic validity of the multifractal formalism[END_REF] gives also a key argument to prove Theorem 1.

Proposition 6. For almost every f in V , we have:

∀0 < p < ∞ η f (p) = η(p). (29) 

Generic rate for thresholding algorithms

Let us now prove Theorem 1. For this purpose we use the following proposition from [START_REF] Gloter | Nonparametric reconstruction of a multifractal function from noisy data[END_REF], which gives the upper bound.

Proposition 7.

E( f T n -f r r ) ≤ c n log n - s(1/p * (r)) 2s(1/p * (r))+d r . ( 30 
)
Let us now determine the lower bound. For this purpose, let r ≥ 0 be xed and f T n the estimator given in Denition 5.

Let us turn out our attention to the minimax rate of convergence. For this purpose, we write in the following

α(r) = 2s(1/p * (r)) 2s(1/p * (r)) + d . (31) 
For every values of α(r), let 0 < ε < 1 -α(r) be xed, and M (ε) be the set dened by

M (ε) = f ∈ V ; ∃c > 0 ∀n ∈ N, E( f T n -f r L r ) < c n log n -( α(r)+ε)r . (32) Thanks to Proposition 5, this set M (ε) is embedded in B α(r)+ε 2 ,∞ p ∩W ((1- α(r) -ε)r, r).

Let us now prove that

W ((1 -α(r) -ε)r, r) is a Haar null Borel set in V .
For this purpose, we consider as a transverse measure, the Lebesgue measure on the set generated by the function g dened thanks to its wavelet coecients:

d j,k = 2 a(j,k) j a (33) 
where a = a j = log j and

a(j, k) = inf p d(j -J) -η(p)j -pdj/2 p . (34) 
In this denition, 0 ≤ J ≤ j and K ∈ {0, . . . , 2 J -1} d are such that

K 2 J = k 2 j (35) 
is an irreducible fraction. As it can be seen in [START_REF]On the Frisch-Parisi conjecture[END_REF], this function g belongs to V . Let f ∈ V be an arbitrary function and consider the ane subset

M = {α ∈ R f + αg ∈ W ((1 -α(r) -ε)r, r)}. (36) 
Suppose that there exist two points α 1 and α 2 in M . Thus f + α 1 g -(f + α 2 g) belongs to W ((1 -α -ε)r, r), and therefore there exists c > 0 such that

f + α 1 g -(f + α 2 g) W ((1-α-ε)r,r) = (α 1 -α 2 )g W ((1-α-ε)r,r) ≤ c. (37) A fast calculation shows that for each 0 ≤ t ≤ r, ∀α > 0, αg W (t,r) = α t g W (t,r) (38) 
and we just have now to determine g W ((1-α-ε)r,r) . Thanks to equation [START_REF] Jaard | Pointwise smoothness, two-microlocalisation and wavelet coecients[END_REF], this is equivalent to determine for every t > 0, the value of

g W ((1-α-ε)r,r) = 2 -(1-α-ε)rt j≥0 2 j( dr 2 -d) k 1 {d j,k >2 -t }
But by denition of g, when d j,k > 2 -t we have, by setting q = 1/p in (34)

2 a(j,k) j a j > 2 -t ⇔ sup q (qd(J -j) + s(q)j + jd/2) ≤ t,
which implies that

∀q > 0 J ≤ 1 qd (t -s(q)j - dj 2 ) + j,
in particular when q = 1 p * where p * satises (21),

J ≤ p * d (t -s(1/p * )j - dj 2 ) + j, (39) 
Note that J must be positive thus . From denition of weak Besov spaces, we have for every t > 0,

g W ((1-α-ε)r,r) ≥ 2 -(1-α-ε)rt sup 0≤j≤ t 2 j( dr 2 -d) j∧[ p * d (t-s(1/p * )j-dj 2 )+j] J=0 2 dJ ≥ 2 -(1-α-ε)rt sup   sup 0≤j≤ t 2 j( dr 2 -d) j J=0 2 dJ , sup t≤j≤ t 2 j( dr 2 -d) [ r d (t-js(1/p * )-jd 2 )+j] J=0 2 dJ   ≥ 2 -(1-α-ε)rt 2 d -1 sup sup 0≤j≤ t 2 drj 2 (1 -2 -jd ), sup t<j≤ t 2 j( dr
Merging this result with (37) together with (38), we obtain that, if there exist α 1 and α 2 in M then they satisfy that for every t ≥ 0 and 0 ≤ j ≤ t,

|α 1 -α 2 | (1-α-ε)r ≤ inf   c2 (1-α-ε)rt sup 0≤j≤ t 2 drj 2 |1 -2 -jd | , c2 (1-α-ε)rt sup t<j≤ t 2 j( dr 2 -d) |2 p * t 2 -jp * (s(1/p * )+ d 2 -d p * ) -1|   (41) But p * is such that r(s(1/p * ) + d 2 -d p * ) = dr 2 -d. Thus, for t large enough sup t<j≤ t 2 j( dr 2 -d) |2 p * t 2 -jp * (s(1/p * )+ d 2 -d p * ) -1| ∼ 2 rt .
And,

α = 2s(1/p * ) 2s(1/p * ) + d = 1 - p * r . Therefore, |α 1 -α 2 | (1-α-ε)r ≤ c2 -εr (42) 
As 1 -α -ε > 0, it can be deduced from equations (42) that for t large enough, M is of vanishing Lebesgue measure and W ((1 -α -ε)r, r) is an Haar null set in B s,∞ p . Thanks to invariance under inclusion, we have obtained that for every ε > 0, the set of functions f in V such that

∃c > 0 ∀n ∈ N, E( f T n -f r L r ) < c n log n -(α(s)+ε)p (43) is a Haar null set.
Taking the countable union of those sets over a decreasing sequence ε n → 0, and considering the complementary we obtain that for almost every function in V ,

lim inf n→∞ log(E( f L n -f r L r )) -r log n ≤ α(s). (44) 
Which induces the expected result.

3.3

Multifractal results in a weak Besov space

As it can be seen in the previous proof, Theorem 1 is based on maxiset theory and estimation behaviour in weak Besov spaces. In the following we determine the multifractal behaviour of function in a weak Besov space.

Proposition 8. Let 0 ≤ t ≤ r be xed and f ∈ W (t, r). For D > 0 and

β = D-d t -d 2 + dr 2t , we have H D {x : f ∈ C β (x)} = 0,
where H D denotes the D-dimensional Hausdor measure.

Corollary. Let 0 ≤ t ≤ r be xed. Then for every f ∈ W (t, r), and for all

H ∈ dr 2t -d t -d 2 , dr 2t -d 2 , d(H) ≤ tH - dr 2t + dt 2 + d. (45) 
Proof. The rst step of the proof consists in the construction of a set E ⊂ R d such that H D (E) vanishes.

Let f = c j,k ψ j,k be in W (t, r) thus :

∃c > 0 such that ∀i > 0 ∀j k∈{0,...,2 j -1} d 2 -ti 2 j( dr 2 -d) 1 {|c j,k |>2 -i } ≤ cε j ,
where (ε j ) ∈ l 1 (N). This implies that We can deduce from (46) that

∃c > 0 such that ∀i > 0 ∀j k∈{0,...,2 j -1} d 2 j( dr 2 -d) |c j,k | t 1 {|c j,k |>2 -i } ≤ cε j . (46 
H D (E) = 0.
Let us assume now that x ∈ E. There exists l such that ∀j ≥ l, ∀k x ∈ B j,k so that: The corollary is straightforward, by noticing that 0 ≤ D ≤ d.

Let us now turn out our attention to the proof of Theorem 2. By setting t = (1 -α)r, 0 ≤ α ≤ 1 in the previous proposition we obtain that for each Furthermore, from [START_REF]On the Frisch-Parisi conjecture[END_REF] we have for every f ∈ V , (48)

And in [START_REF] Gloter | Nonparametric reconstruction of a multifractal function from noisy data[END_REF], the following identity is given: 

as soon as (24) is satised.

Let ε > 0 be xed and M (ε) be the set dened by (32). As M (ε) ⊂ W ((1-α-ε)r, r), for every f ∈ M (ε) we have for every H ∈ d(α-ε)

2(1-α+ε) - Furthermore, in [START_REF] Gloter | Nonparametric reconstruction of a multifractal function from noisy data[END_REF] we have that as soon as the multifractal formalism is fullled, Which entails Theorem 2.

α(s) = inf

  p * (r)) 2s(1/p * (r)) + d .

H

  + (d -d(H))/r 2H + d .

  ) Let us denote d j,k = (|c j,k |2 d t j( r 2 -1) ) t D . Let B j,k be the ball centered at k 2 jand of size d j,k . Thus (46) entails∀j k∈{0,...,2 j -1} d | diam(B j,k )| D = k∈{0,...,2 j -1} d |d j,k | D ∀j k∈{0,...,2 j -1} d (|c j,k |2 d t ( r 2 -1)j ) t ≤ cε jAs a consequence, we obtain that k diam(B j,k ) D → j→∞ 0. Let us now denote byE = lim sup j k B j,k .

|x - k 2 j

 2 | ≥ |d j,k | hence |c j,k | ≤ c2 d t j( r 2 -1)-D t j |2 j x -k| D t . (47)By setting β = D-d t -d 2 + dr 2t , we deduce from Proposition 4 that f ∈ C β (x).

f

  ∈ W ((1 -α)r, r):

  ∈ s(0), d p c d(H) ≤ inf p≥pc (pH -η(p) + d).

s( 1

 1 /p * )r 2s(1/p * ) + d = inf s(0)≤H≤ d pc rH + d -d(H) 2H + d ,

1 ( 1 -

 11 α+ε)r , d(α-ε) 2(1-α+ε) d(H) ≤ (1 -α -ε)rH -dr(α -ε) 2 + d.By taking α = 2s(1/p * ) 2s(1/p * )+d , we obtain∀H ∈ s( 1 p * ) -d p * , s(1 p * ) , d(H) ≤ p * H -p * s(1/p * ) + d.Thus,∀ε > 0, M (ε) ⊂ {f ∈ V, d(H) < p * H -p * s(1/p * ) + d},and taking the complementary,{f ∈ V, d(H) = inf p≥pc (pH-ps(1/p)+d} ⊂ {f ∈ V, lim inf n→∞ log(E( f L n -f r L r )) -r log n ≤ α(s)}.

  H∈supp(d) H -(d -d(H))/r 2H + d .

 

y j,k = θ j,k + 1 √ n v j,k ,(12)where y j,k = ψ (i) j,k dY , v j,k are i.i.d. Gaussian random variables and (θ j,k ) is the sequence to be estimated. One can notice that we stand in an isotropic

-d) (2 p * t 2 -jp * (s(1/p * )+ d 2 -d p * ) -1)