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The Mechanical Response of a Model Silica Glass is studied extensively at the submicrometer
scale, with the help of atomistic simulations. The analysis of the response to a hydrostatic com-
pression is compared to recent experimental results. The irreversible behaviour and the variation of
intertetrahedral angles is recovered. It is shown that the atomistic response is homogeneous upon
compression, in opposition with the localization along shear bands occuring during shear deformation
with constant volume. Moreover, the Bulk Modulus anomaly is interpreted as due to a succession
of such homogeneous but irreversible atomic rearrangements.

I. INTRODUCTION

Glasses feature remarkable mechanical responses which
challenge modeling, among which we note the very high
elastic limit [29, 43] and the localization of plastic de-
formation [35, 68, 74]. Beyond the static mechanical
response, let us also mention the anomalous density of
low frequency vibrational states giving rise to high heat
capacity [24], low heat conductivity [24], low vibratio-
nal mean free path for the high frequency vibrational
modes [28, 61, 69].

There are at least two reasons why the mechanical be-
haviour of glasses is more difficult to model than the me-
chanical behaviour of crystalline materials. One is the
difficulty to identify a typical defect responsible for plas-
tic deformation [1, 3, 4, 65] ; another is the lack of sa-
lient characteristic lengthscale in the disordered struc-
ture [21, 22, 40, 72].

In the past decades, much progress has taken place,
and numerous theoretical studies of the mechanical be-
haviour of glasses at small scale [6, 19, 35, 39, 60, 64, 67]
have underlined common features shared by different
kinds of amorphous materials. It is now well known that
the elastic and acoustic response of glasses is strongly re-
lated to the inhomogeneous strain field taking place in
these disordered materials, with nanometer-size correla-
tional domains [5, 16, 37, 61, 62, 69]. The plastic response
is very different from the elastic one, even if prepared by
the inhomogeneous elastic strain field [69]. The actual
description of the plastic response of amorphous mate-
rials converges into a description in terms of local Shear
Transformations [2] (ST) involving only few atoms, whose
spatio-temporal dynamics can give rise to large scale de-
formations, for example along shear bands [35, 68].

However, the detailed study of the spatio-temporal dy-
namics of the Shear Transformations shows that the re-

lation between local dynamics and local structure is not
so evident. As an example, it has been shown through
atomistic simulations in the athermal regime, that the
relation between the existence of a local coordination
defect and the occurrence of a Shear Transformation is
dependent on the directionality of interatomic interac-
tions [20, 66]. In fact, nanoindentation experiments re-
veal also different behaviours depending on the compo-
sition of the glass. Silicate glasses for example, like soda
lime silica glass, display shear bands when submitted to
micro-indentation above the elastic limit, while pure si-
lica glasses follow an anomalous behaviour with local den-
sification and the formation of a Hertzian cone around the
indent that is enhanced under shear [15, 23, 30, 54, 55].
This means that, when submitted to complex mechanical
deformations combining local shear and pressure, the be-
haviour of a glass can be qualitatively very different for
different compositions. Note also that the sensitivity of
the detailed acoustic response to pressure is not easy to
understand, since the simple scaling by the pressure de-
pendence of the sound wave velocities is not always suffi-
cient to understand the frequency shift of the vibrational
density of states upon pressure [45, 49, 50]. It is thus very
important to differentiate the roles played respectively by
compression and shear at a atomistic level [71].

In this paper, we study the mechanical response of a
model glass by numerical atomistic simulations. We use
relatively realistic potentials and show that our results
qualitatively emulate the main features of silica glass
both in the elastic and the plastic regimes, under shear
or hydrostatic pressure.
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II. THE MODEL GLASS

In order to understand how the atomic rearrangements
affect the macroscopic behaviour of silica glasses, we
have performed Molecular Dynamics simulations for
different bulk sizes. Our systems are cubic boxes that
contain 3000, 24000, 81000, 192000 and even 375000
atoms and respectively measuring 3.583, 7.166, 10.749,
14.332, 17.950 nm edge size. These very large sizes
are indeed necessary to avoid finite size effects due to
long-range collective motion taking place in amorphous
systems especially when submitted to low velocity
mechanical deformation [67, 73]. The key point of these
simulation techniques is the empirical potential that
governs the classical description of the interactions
between atoms. The literature gives a large way to
model silicates. It appears a general scheme, which is in
fact the sum of different kinds of interactions. First of
all there is the Coulombic part, describing electrostatic
interactions between partial charges (ionic character
of the bond) with 1/r long-range spatial dependence.
A set of tools have been developed to deal with this
long-range dependence. The most frequently used is the
Ewald summation [18] for periodic boundary conditions,
which consists in replacing the interaction in the real
space by a rapidly convergent summation in the Fourier
space. However, this can cost a lot of computation time.
That is why some screened potentials have been used,
like Yukawa potential for example [82], to represent
the interaction between atoms at large distances. The
Wolf truncation method [79] is another way to take into
account long range interactions. It considers that for a
certain distance, all the charges will be compensating
each others. The second part in the potentials can take
different forms, such as Morse [46], Buckingham [11] or
Born-Huggins-Mayer [10]. It usually describes two kinds
of interactions : repulsion at short range (which comes
from Pauli repulsion between electronic clouds) and
dispersion (which comes from the correlation between
atoms charges fluctuations). This second term contains
important parameters of the interaction, as the resulting
potential wells characteristics (depth and width) :
these characteristic parameters are fitted from ab-initio
calculations [12]. Finally, because the second part is
not enough to describe entirely the directionality of
the bonds, one can add a three-body interaction part.
It allows the atoms to be distributed around a mean
angle value. The Sillinger-Weber three-body interaction
is surely the most used, but one can construct a specific
one, like Huang and Kieffer for example [26]. Although
we had the choice among a large set of potentials, we
had some constraints to take into account : 1) we wanted
to study large samples and finite size effects ; 2) for
tractability, we also needed a potential with a simple
analytical expression, and a range of interaction as short
as possible. This led us to use a BKS potential [9] modi-
fied by A. Carré et al. [12], which has a Coulombic part
plus a Buckingham repulsive potential, Wolf truncated,

and smoothed. It can be described as :

ΦBKSWαβ (r) = ΦCoulαβ (r) + ΦBuckαβ (r)

ΦCoulαβ (r) = qαqβe
2VW (r)GW (r)
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γsh = γW = 0.5, rc,W = 10.17 Å, and rc,sh = 5.5 Å.

We also add a strong and regular repulsive part at short
range (r < rc,sr) to avoid the collapse of atoms at high
pressure, or high temperatures. The added repulsive
part has the following form :

ΦRepαβ (r) =

{
Dαβ

r

}12

+ Eαβr + Fαβ

The parameters of this potential are tabulated in table I.

Aαβ(eV ) ραβ(Å) Cαβ(eV.Å6) Dαβ(Å.eV −12)

O-O 1388.773 0.3623 175.0 142.383338

Si-O 18003.7572 0.2052 133.5381 1.42402882

Si-Si 872360308.1 0.0657 23.299907 0.0

Eαβ(eV.Å−1) Fαβ(eV ) rc,sr (Å)

O-O -14.97811134 39.0602602165 1.75

Si-O -3.24749265 -15.86902056 1.27

Si-Si 0.0 0.0 0.0

Table I: Parameters of the empirical potential used to model
the silica glass.

Dαβ , Eαβ and Fαβ have been adjusted in order to have
the first, and second derivatives of the potential conti-
nuous.

The sample preparation proceeds as follows. The
glasses are obtained from a crystal state which is hea-
ted and then quenched. We start from a β-Cristobalite
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crystal sample, which is the last crystalline state be-
fore the melting point at normal pressure. Then we heat
the sample up to 5200K during 1 ns, let it evolve at
constant temperature during 10 000 time steps (time step
δt = 10−15s), and quench it at 0K in 1 ns. The quenching
rate is hence 5.2.1012K.s−1. Finally we relax the simu-
lation box to avoid residual stress, and then obtain a
density of 2.18g.cm−2 with a pressure P ≈ 0GPa with a
precision of 10MPa.

In order to validate our sample, we check its structural
properties. The pair correlation function (Fig. 1a) is in
good agreement with former numerical [37, 70, 77] and
experimental studies [32, 47, 80] with a first Si-O distance
at 1.6Å, a first O-O distance at 2.6Å and a first Si-Si
distance at 3.2Å. Regarding the angle distribution, the
literature shows a distribution from 142o to 153o for the
Si-O-Si angles from numerical [8, 26, 37, 53, 70, 76, 77] as
well as from experimental data [13, 14, 41, 47, 48, 56, 57].
This angle is the inter-tetrahedral angle. It can be seen
as the link between all the elementary pieces in silica, as
such it should be temperature and pressure dependent.
Nevertheless, the angle distribution we found (Fig. 1b
and Tab. II) contains the experimental and theoretical
range of angles.

In this study, we have chosen to perform the mecha-
nical deformation in the a-thermal regime, i.e. we either
perform energy minimization (T = 0K), or we let our
glass evolve at a temperature T = 10−5K, temperature
at which thermal effects are totally negligible and not
high enough to activate plastic events [73]. The reason
is first that the choice of a numerical thermostat in me-
chanically driven systems is not a simple issue [59], and
second because the object of this study is to show evi-
dence of the effect of pure structural disorder and of the
external load (shear vs. hydrostatic pressure) on the small
scale deformation of the sample.

We then apply two kinds of mechanical loads : hydro-
static compression and shear at constant volume (shear
at constant pressure will be the subject of another study).
For the hydrostatic compression we applied an external
pressure by two different ways. First, we apply successive
pressure steps P → P +∆P . At each pressure, we let the
system evolve in the NPT ensemble with T = 10−5K du-
ring a time ∆t = 2.10−11s (20 000 time steps) that is
sufficient to equilibrate the pressure through a Berend-
sen Thermostat. The pressure step used is ∆P = 100Bar
for pressures ranging from 0 to 12GPa and then ∆P =
500Bar up to 30GPa. In this case, the pressure increases
monotonously during compression, and the deformation
is applied dynamically with a given pressure variation
rate ∆Ṗ ≈ 5− 25.1012Bar.s−1. The second way we have
used to perform a hydrostatic compression, is to find the
nearest local minimum of the total energy of the system.
This kind of applied deformation corresponds to a quasi-
static deformation at controlled volume. In order to cir-
cumvent the pressure variations, we first perform energy
minimization at a desired external pressure. The minimi-
zation technique proposed by LAMMPS [33] consists in

minimizing the energy Etot = U +P (V −Vo), where U is
the internal energy of the system alone, P is the desired
pressure, and V the volume to be reached. According to
Parinello and Rahman [51], the system is coupled to an
external variable that acts as a piston. We have compared
different pressure increments : PInc = 5, 25 and 500Bar.
It is seen that sometimes this pressure increment is not
sufficient to overcome the energy barriers, and it is then
increased by amounts of PInc up to reaching a new equi-
librium. Then we check the complete equilibrium of the
system at constant volume. For that, the piston is remo-
ved, and the total energy is minimized at constant vo-
lume. The total force on each atom is then 0, within the
numerical accuracy. For both methods, we perform an
increase until a given pressure (Pmax), and then decrease
until a zero pressure. This is done for a set of pressures
Pmax (2,5,7,9,11,13,15,17,19,21,23 and 25 GPa). We also
focus on the history/memory effects by cycling loads, i.e.
we start from 0 GPa until 5 GPa, then decrease to 0
GPa, increase from that state to 7 GPa, decrease to 0
GPa, and so on, for the same set of pressures Pmax. This
allows to compare the behaviour for increasing and de-
creasing pressures and test the sensitivity of the Bulk
Modulus and of the yield stress to the loading history. For
the shear at constant volume, we change the shape of the
box within a monoclinic symetry and a small deforma-
tion step, and then let the atoms relax by minimizing the
total energy in the box. We carry on this operation to get
the desired total shear deformation. The shear step cor-
responds to a deformation of ∆εxy = 10−4, that is small
enough to decorrelate the plastic events that occur during
the shear [36]. These two first loads are configurational
minimizations. It corresponds to a very fast relaxation
time between each strain step (quasi-static deformation)
and mechanical equilibrium (athermal response). It gives
very detailed results on the restructuration of the phase
space upon mechanical deformation [59], and allows to
construct the landscape over which thermal activation
acts. Thermal agitation, that can play a role even below
the glass transition temperature [59], will thus not be
discussed here.

0 GPa 5 GPa 10 GPa 15 GPa

Si-O-Si 151.5 145.68 137.44 133.93

144[47] 148.3[48] 137.40[17] 135.01[17] -

152[13]

O-Si-O 109.5 108.36 108.03 106.9

109.5[47] 109.47[48] - - -

109.7[13]

Table II: Values in degres of the maxima in the distribution of
Si-O-Si and O-Si-O angles. Data from the present simulations
are compared to the data given in the literature.
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Figure 1: [Color Online] a) Pair Correlation Function for the
species O-O, Si-O and Si-Si in a sample with P=0 GPa. b)
Angles distribution Si-O-Si and O-Si-O in a sample with P=0
GPa.

III. HYDROSTATIC COMPRESSION

The hydrostatic compression has been applied follo-
wing the two methods detailed in the previous part
(equilibrium at very small temperature with a Berend-
sen Barostat and Thermostat, or energy minimization at
controlled volume). We have found that both methods
give the same general variation P (∆V/V ), thus confir-
ming that the temperature (T = 10−5K) chosen for the
first method corresponds to athermal simulations. Ho-
wever, the dynamical method (Berendsen thermostat)
shows a monotonous increase of pressure, whereas the
quasi-static volume controlled protocole shows pressure
jumps due to local irreversible rearrangements (Fig. 2-
a). The irreversibility of these rearrangements has been
checked by comparing the atomic positions in the confi-
guration just before the jump, and the atomic positions
in the configuration obtained by decreasing the volume
again after the jump up to its initial value (Fig. 4-c). It
shows irreversible local quadrupolar rearrangements cor-
responding to irreversible micro-shears that do not affect
the global volume, but storing a small amount of dissi-
pated energy. The number of these rearrangements wi-
thin a pressure window ∆P = 0.1GPa is not dependent
on the increment PInc ≤ 25bar (Fig. 3-c). It represents
the number of dissipative rearrangements needed to over-

Figure 2: [Color Online] a) Pressure as a function of the re-
lative Volume variation. Comparison between the Dynamical
protocole at controlled pressure, and the quasi-static proto-
cole at controlled volume. N=24 000. Quasi-static deforma-
tion at controlled volume shows pressure jumps related to
irreversible local deformation (micro-plasticity). b) Pressure
as a function of the relative Volume variation for simple com-
pression and cyclic loads, at controlled volume. N=24 000. c)
Same curves for N=24 000 and N=81 000.

come energy barriers during the minimization process.
The corresponding pressure jumps are of course invisible
in the dynamical curve obtained with the Berendsen ther-
mostat since only the final pressures and volumes are
drawn there. Therefore, we will focus only on the volume
imposed protocole that contains more informations about
small-scale rearrangements.

Then we have performed two types of hydrostatic com-
pression tests on our model bulk silica glass. The first
test is a single compression run up to the maximum



5

Figure 3: [Color Online] a) Bulk Modulus as a function of
the pressure, from the data obtained in Fig. 2. The Bulk Mo-
dulus is defined as the local slope −V∆P/∆V measured wi-
thin a pressure interval δP = 0.1GPa, for N = 24000 and
N = 81000 particles. Long dashed line : guide for the eyes.
b) Comparison of the same Bulk Modulus obtained for a one
shot deformation : for a simple increase from P = 0GPa (tri-
angles), for a configuration that has been densified previously
up to 11 GPa (squares), for a configuration that has been pre-
viously densified up to 19 GPa (circles), and the correspon-
ding decreases : from 2GPa (red), 5GPa (green) and 11GPa
(black). Note the marked irreversibility for the configuration
previously densified up to 19 GPa, or for the drecrease from
11GPa. c) Number of jumps measured during pressure inter-
vals of amplitude δP = 0.1GPa as a function of the applied
pressure, and divided by the total number of pressure steps
imposed to the sample in the same interval.

pressure Pmax = 30 GPa. The second test is a series
of partial compression-(loading-unloading) runs with in-

Figure 4: [Color Online] a) Pressure as a function of the re-
lative volume variation during an increase from 0GPa, then
a decrease from 11GPa followed by an increase from 2GPa.
The aperture of the cycle is clearly visible. b) Zoom of the
same curve close to 2 GPa. Note that the pressure increase
follows the local slopes. c) Residual displacement of all the
atoms of the sample in projection in the x − y plane, when
the volume comes back to its initial value, and after a pressure
jump. The amplitude of arrows is proportional to the atomic
displacement, with a magnification of 10 in comparison with
the scale used to represent the positions (at the origin of the
arrows). Blue arrows represent the largest 3 percents displa-
cement amplitude particles.

creasing maximum pressure. In Fig. 2-b, we plot the total
average pressure with respect to the relative volume va-
riation for these two tests. From this figure, we can see
that for a single compression up to 30 GPa, the pressure
exhibits globally a monotonous increase with the com-
pressive strain (the volume decreases upon pressure), but
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Figure 5: [Color Online] a) Residual Volume Variation as a
function of Pmax applied and comparison with experimental
results obtained in [54]. b) Variation of the distribution of
Si-O-Si angles during compression. c) Variation of the Si-O-
Si angles defined as the maxima in the angle distribution,
and comparison with experimental results obtained in [17] for
different Pmax.

with small fluctuations including small pressure decreases
(with amplitude δP ≈ 0.01GPa) during the compression
of the volume. As seen before, these small pressure de-
creases consist of plastic rearrangements. Note that a ne-
gative Bulk Modulus (B ≡ −V.∆P/∆V ) is not allowed
by mechanical stability and corresponds necessarily to a
mechanical instability. We have checked that these small
pressure decreases are combined with a dissipative (plas-
tic) micro-rearrangement, by looking at the irreversible
components of the atomic displacements when the vo-
lume goes back to its initial value (Figure 4-c). We will
comment again on this later. Let us come back first to

Figure 6: [Color Online] a) Angular average of the Static
Structure Factor as a function of the applied pressure. b) Pair
Distribution Functions of the species O-O, Si-O and Si-Si, as
a function of the applied pressure.

the global P −∆V/V curve shown in Fig. 2-b.
Considering the pressure fluctuations measured during

the compression of our systems, we have first smoothed
the curves with a resolution δP = 0.1 GPa in order to
get an estimation of the macroscopic Bulk Modulus. The
well known experimental measurement specific to silica is
its strong anomalous elastic non-linearity : the Bulk Mo-
dulus is known to decrease first with the application of
hydrostatic pressure up to about 2.5 GPa, then increases
again [17, 31]. This mechanical behaviour has no defi-
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Figure 7: [Color Online] Coordination number of Si atoms
as a function of the applied pressure, during an increase and
two decreases from 9GPa and from 19GPa.

nite structural explanation, even if some authors have
proposed to relate it to a subtle morphological change
in the shape of Si-rings and to a partial β to α transi-
tion [26, 81]. We have calculated the macroscopic Bulk
Modulus from the slope of the single compression curve
P − ∆V/V smoothed with a resolution δP = 0.1GPa.
There is a complex variation of the slope of this smoo-
thed P −∆V/V curve (reported in Fig. 3-a) : the slope
initially decreases then it increases again above roughly 8
GPa, resulting in an inflexion point. This corresponds to
the well kown ”elastic anomaly” observed experimentally
in pure silica glasses. This behaviour captures qualitati-
vely the anomalous non linear elastic response of silica
glass, although the actual values (modulus, position of
the minimum) differ by a factor 2-3. This decrease in the
macroscopic Bulk Modulus is actually directly related to
the number of micro-jumps in the detailed pressure res-
ponse at controlled volume. The relative number of jumps
computed in pressure windows of width δP = 0.1GPa
and divided by the total number of steps in that win-
dow is shown in Fig. 3-c. It shows a maximum close to
P = 8GPa, independent on the increment PInc, and this
large number of micro-jumps could thus be responsible
for the apparent decay of the Bulk Modulus. Thus the
well known ”elastic anomaly” of silica glasses appears to
result from a micro-plastic behaviour in our simulations.
The evolution of this apparent Bulk Modulus can even
differ strongly, depending on the plastic state of the sys-
tem, as already shown experimentally [58]. We observe
(Fig. 3-b) that the modulus increases with density as evi-
denced by a modulus of about 100 GPa after full densifi-
cation has been reached above Pmax = 25 GPa. The mo-
dulus is then independent of hydrostatic pressure. This
is qualitatively in agreement with the Brillouin measure-
ment [58, 83], from which an increase of the bulk modu-
lus by 1.8 can be calculated from a ca. 20% density in-
crease. For macroscopically plastically densified samples
for example (Fig. 3-b, with Pmax = 19GPa) the elastic
anomaly can even disappear.

It must as well be noticed that during decompression,

Figure 8: [Color Online] a) Amplitude of the Non-Affine dis-
placement field (departure from homogeneous compression)
in a typical irreversible step of the stress-strain curve during
compression.(Picture realised with Atomeye [34]) b) Histo-
gram of the amplitude of the Non-Affine displacement field
measured on each atom for different steps of compression. The
numbers in the legend correspond to the ∆V/V value. The
points aligned are the maximum values of the histograms for
different steps of pressure. Inset : Superposition of the curves
with the help of a scaling factor. Note the similarity between
the histograms for either reversible (elastic) and irreversible
motion. c) Histogram of the participation ratio of the Non-
Affine displacement field during compression, compared to the
same histogram upon shear deformation. The histogram is
obtained on 2000 compression steps. The pressure mentioned
indicate the average pressure (±0.5GPa). Elastic rearrange-
ments are in the main graph, and plastic rearrangements are
in the inset.

this Bulk Modulus is very different from its value during
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compression (see figure 3-b). Here again, the different
succession of instabilities during loading and unloading
gives rise to an asymmetric behaviour with cycle aper-
ture. For a decompression from 11 GPa for example (tri-
angles with bold line in Fig. 3-b), the minimum value of
the Bulk Modulus is pushed back to 2.5 GPa, and even
if the local Bulk Modulus is the same at the beginning
of the decompression, the macroscopic plastic behaviour
manifests itself by a jump in the macroscopic Bulk Mo-
dulus, if Pmax is sufficiently high (see in Fig. 3-b, the
curve corresponding to the decrease from 5 GPa for the
configuration obtained with Pmax = 19 GPa). This hys-
teretic behaviour is usually described in terms of internal
friction [44]. We propose here a microscopic description
of what happens during the hysteretic process.

The analysis of the Bulk Modulus can be completed by
a detailed analysis of the local P−∆V/V slope (Fig. 4). It
is shown in Fig. 4-b, that the local slope (Local Bulk Mo-
dulus) can differ drastically from the slope of the smoo-
thed curve (Macroscopic Bulk Modulus). The difference
is so high that when decreasing the pressure, the system
follows elastically its local slope and this behaviour gives
rise to the aperture of a cycle in the global P − ∆V/V
curve (Fig. 4-a). When the pressure increases again (for
example from P = 2GPa in Fig. 4-b), the system follows
its local slope and opens a new cycle. Suprisingly howe-
ver, the system finally converges to the initial one-shot
curve, thus proving that probably it keeps somehow the
memory of its initial state, that is more precisely of the
maximum pressure Pmax it has reached previously. The
series of loading-unloading cycles with increasing maxi-
mum pressure thus demonstrate that the single compres-
sion curve P −∆V/V indeed reveals a well defined res-
ponse of the material : after each unloading segment, the
reloading curve converges to the single compression curve
as soon as the maximum pressure of the previous cycle is
reached. This means that even a complex loading history
does not affect the relation between Pmax and the rela-
tive volume variation. A similar anelastic behaviour has
also been obtained by S. Ispas [27] on a similar system.

From the cyclic loads, we can also characterize the ma-
croscopic plastic behaviour of the samples. We can indeed
identify a pressure threshold above which the unloading
curve for each cycle significantly departs from the single
compression curve (Fig. 2-b), giving rise finally to an ir-
reversible volume variation after the system has come
back to its initial pressure. Plotting the residual volume-
tric deformation after decompression (Fig. 5-a) as a func-
tion of the maximum pressure Pmax applied, the resulting
strain hardening curve reveals that significant densifica-
tion (∆V/V > 5%) is first observed around the macrosco-
pic plastic threshold Pmax ≈ 11GPa. The densification
also tends to flatten out around 20 GPa, at a value close
to 25 %. This irreversible macroscopic volume variation is
a clear signature of macroscopic irreversible response, i.e.
plasticity. We can thus identify an approximately rever-
sible regime (with internal friction) for Pmax < 11GPa
and a macroscopically plastic regime for Pmax > 11GPa.

Above this macroscopic plastic threshold, the deviation
of the unloading curve from the single compression curve
translates into a permanent residual volumetric deforma-
tion (densification). This behaviour is qualitatively com-
parable to the experimental results (see Fig. 5-a) obtai-
ned by Raman spectroscopy [15, 54, 55].

The densification of the system upon pressure is ac-
companied by structural changes. First consider the Sta-
tic Structure Factor S(q) (Fig. 6-a). The main change in
S(q) consists of decreasing the peaks especially at large
distances (small wave-vectors), which is evidence of a
more homogeneous sample with a mixture of different
lengthscales, in agreement with [42]. The large scale va-
riations of S(q) saturate when P > 11GPa that is for
permanent densification. At small distances, the pair dis-
tribution functions (Fig. 6-b) show a general decrease
of bond lengths, plus an additional peak at small dis-
tances for Si-Si and O-O bonds, appearing at P=11 GPa.
These structural changes are accompanied by angular
distorsion (Fig. 5-b,c). The angle evolution is reported
in Fig. 5-b. The most probable Si-O-Si angle decreases
from 151o to 130o as a function of the pressure, and a
second maximum at 100o in the Si-O-Si angle’s distri-
bution appears from P = 2.5 GPa first reversibly, and
then permanently above 11 GPa. This evolution corres-
ponds to different Si-centered tetrahedra moving closer
to each other in two different ways. Note that the expe-
rimental results [17] reported in the figure 5-c support
very well this evolution of the distribution of angles. The
structural changes can also be quantified by looking at
the evolution of the average Si-coordination number as
a function of the pressure applied (Fig. 7). The amount
of 4-fold coordination numbers decreases, whereas 5-fold
increases simultaneously with the angle’s variation, qua-
litatively consistent with [42]. Note that this evolution is
not fully reversible, since it follows a different path during
compression and decompression, as does the macroscopic
Bulk Modulus.

Finally, the mechanical behaviour of amorphous mate-
rials has often been characterized by its inhomogeneous
displacement field [35, 39, 67]. This was done for shear
deformation, since shear is usually considered as respon-
sible for strain localization and shear banding [59]. The
inhomogeneous deformation can also be responsible for
the low value of the Elastic Moduli, as shown by Reuss
long time ago [78]. For this reason we have analysed the
displacement field as a function of load, and especially
how it departs from the homogeneous strain field of an
isotropic and homogeneous material. As an example, the
amplitude of such a displacement field is shown in fi-
gure 8-a. The corresponding histogram of the amplitude
of the displacements is shown in figure 8-b. It is clear
that the distributions of displacements for reversible as
well as for irreversible paths are very similar. They differ
only by a scaling factor and superimpose into a master
curve (inset Fig. 8-b).

Moreover, the amplitude of the displacements appears
to be homogeneously spread over the sample. The spatial
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distribution of this amplitude can be quantified by the
participation ratio (P.R.) defined as

PR =
1

N

(∑N
i=1 u

2
i

)2
∑N
i=1 u

4
i

that goes from 1/N for the isolated motion of a single
atom to 1 for a block motion of the full system. It is a
measure of the percentage of atoms that move together.
As shown in Fig.8-c, the participation ratio of the
non-affine displacement field, in case of compression, has
a very large distribution independent on the pressure for
P > 0GPa, up to a maximum value P.R.max ≈ 80%.
Its distribution is not very different for plastic and for
elastic rearrangements : it is very large in both cases. It
corresponds to a fairly homogeneous response without
localization. The width of the distribution of the P.R.
is probably related to different numbers of maxima
in the displacement amplitude, since the distribution
of displacements is always the same (Fig.8-b). The
absence of localization is inferred from the absence of
size dependence in the P.R. (not shown here). The
homogeneous spreading of the atomic displacements
over the sample leads to a well defined spatial average
for the total stress released during a plastic deformation
(amplitude of the pressure drops visible in Fig. 2-c
and Fig. 4-b), that has no size dependence, as well.
These results are very specific of a hydrostatic compres-
sion. They are very different from what happens upon
shear [68]. The latter case will be discussed now in detail.

IV. SHEAR

In order to compare the elasto-plastic response of the
same system upon compression and upon shear, we apply
now a quasi-static shear to the sample through energy mi-
nimization at constant volume, with a monoclinic change
of the box orientation (as we have already done in the
past on many other systems [20, 59, 66, 68, 72]). The
corresponding mechanical deformation is a simple shear.
In this case, the sample is not allowed to densify, but
it is possible to infer its tendency to densify by measu-
ring the resulting average pressure inside the sample :
negative pressure (i.e. tension) builds up to oppose the
tendency to densify.

The corresponding stress-strain behaviour is depicted
in Fig. 9 for different system sizes. The stress-strain
curves show different regimes : first a linear (mainly re-
versible) part from which the shear modulus can be cal-
culated. We find µ = σxy/(2.εxy) ≈ 35GPa, in good
agreement with experimental values ; second, a maxi-
mum followed by stress softening ; then a plastic pla-
teau consisting in a series of small scale linear branches
and stress decays. Contrary to the hydrostatic compres-
sion, the finite size effects are evident here. Histograms
of stress jumps (Fig. 9-b) show a 1/Lα (with α ≈ 2.25)

Figure 9: [Color Online] Shear stress σxy as a function of
the imposed shear strain εxy during a quasi-static simple
shear at constant volume. a) for different system sizes N=3
000 (L=3.583 nm), N=24 000 (L=7.166 nm), N=81 000
(L=10.748 nm), N=192 000 (L=14.332 nm) b) Histogram
of Stress jumps in the plastic Plateau rescaled by N0.75

(i.e. L2.25). c) after different pressures have been applied
to the sample Pmax = 0GPa, Pmax = 11GPa, Pmax =
13GPa, Pmax = 15GPa, Pmax = 17GPa, Pmax = 19GPa and
Pmax = 21GPa. N = 24000

dependence corresponding to defects neither localized in
a small volume element (∝ 1/L3) nor linear (∝ L/L3).
This proves that dissipative rearrangements are localized,
contrary to the case of hydrostatic compression where
they were spanning the entire system and did not dis-
play any size dependence.

Stress-softening is usually related to permanent locali-
zation of dissipative rearrangements [59]. It is dependent
on the initial configuration, which strongly depends on
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Figure 10: [Color Online] a) Shear stress as a function of
the pressure during the shear transformation at constant vo-
lume, for samples densified at Pmax = 5, 11, 15 and 19GPa
respectively. Note the linear relation (Mohr-Coulomb like re-
lation) with a negative coefficient after the Yield Stress has
been reached. b) σxy/(σxx − σyy) as a function of the shear
strain for the same deformations.

sample preparation. Densification through application of
a hydrostatic pressure larger than the macroscopic yield
threshold will of course alter this initial configuration,
and we want precisely to study its impact now. Fig. 9-c
displays stress-strain curves in shear for several configura-
tions that have been compressed up to different Pmax and
then relaxed to zero pressure before shear. We find that
increasing the density in this way decreases the maxi-
mum shear stress. For Pmax > 17GPa the stress over-
shoot even disappears completely. The explanation for
that behaviour is that the configuration has then been
sufficiently homogeneized to avoid permanent localiza-
tion. Note that the disappearance of the stress overshoot
is here connected to subtle variations in the sample struc-
ture, and not to a change of interatomic interactions [20]
or deformation protocole [75]. This means that the shear
softening shown here, depends on sample structure in
a subtle way. In any case, we have observed here (see
Fig. 12), that the absence of strain softening is related to
the absence of permanent shear bands along the system.
The more compressed is the initial sample, the more ho-
mogeneous is the corresponding plastic deformation upon
shear.

For all the configurations considered, it is also in-

Figure 11: [Color Online] a) Amplitude of the Non-Affine
displacement field (departure from homogeneous shear) du-
ring an irreversible rearrangement along shear band. (Picture
realised with Atomeye [34]) b) Distribution of the amplitudes
of the Non-Affine displacement fields measured on each atom
for different steps in the stress-strain curve, and for samples
initially submitted to different Pmax. c) Histograms of the se-
cond order moments of the Non-Affine displacement field ob-
tained from all the configurations obtained during a shear at
constant volume, for samples initially submitted to different
Pmax. Same legend as in b. Note the difference between the
elastic and the plastic events. d) Histogram of the partici-
pation ratio of the Non-Affine displacement field during the
shear deformation at constant volume for the same samples.
Main graph : for elastic events. Inset : for plastic events.
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Figure 12: [Color Online] Shear flow from 15 to 30 percents
of deformation a) for non-densified sample, b) for sample ini-
tially submitted to Pmax = 11GPa, c) for sample initially
submitted to Pmax = 19GPa. The arrow sizes that shows the
atomic displacements have been increased by a factor 10.

teresting to look at the evolution of the hydrostatic
pressure with shear. Fig. 10-a shows that the pressure
first decreases, up to the maximum stress, and then
increases again when shear softening sets in. After
the maximum stress has been reached (that is during
the softening and then during the plastic flow), the
pressure evolves linearly with shear stress, following a
Mohr-Coulomb like relation with a negative coefficient.
In the plastic plateau, pressure and shear stress are thus
proportional, with the same negative proportionality
coefficient. The negative sign of this coefficient is simply
related to the fact that a deformation at constant
volume hides the natural densification of the system,

and constant volume is maintained by tension (σxy > 0
but P < 0). This behaviour is very characteristic of
pure silica samples. It is for example opposite to the
behaviour of granular materials [25], where shear induces
dilatancy (P > 0) ; this negative slope also disappears
in silicate glasses (x.SiO2 + (1 − x).Na2O) along with
the propensity to densify. It is interesting to note that
in our samples, the shear stress always dominates over
other stress components except at the very beginning
of the shear deformation (Fig. 10-b). Idem for the
compressive (or tensile) stress σyy that dominates over
the pressure. The Mohr-Coulomb like behaviour could
thus be as precisely described by a Drucker-Prager
like behaviour (where the maximum deviatoric stress
would be replaced by the amplitude of the deviatoric
stresses, and the tensile stress by the total pressure).
The difference between the two behaviours is not visible
in our data. This is why we refer more generally to a
”Mohr-Coulomb like” behaviour (that we describe here
simply by the linear dependance between shear stress and
pressure), and we omit more details of the behaviour law.

In the present case of shear deformation, the corres-
ponding non-affine displacements are very different in
the elastic reversible part and in the plastic part. Elastic
rearrangement shows homogeneous displacements spread
over the whole system (Fig. 11) ; then quadrupolar-
like dissipative rearrangements occur even before the
maximum shear stress is reached, in the linear part
of the stress-strain curve. Finally, the plastic plateau
consists in a series of localized rearrangements and shear
bands spanning the system along a plane parallel to the
shear direction. This confirms the localization of plastic
rearrangements, in contrast to what happens upon pure
compression (Part III). The progressive localization
of the non-affine displacements can be quantified by
computing the participation ratio as in the previous
part. We show in Fig. 11-c that the participation
ratio in the sheared systems is largely distributed.
The elastic rearrangements have a large P.R., with a
maximum value depending on the density of the sample
(P.R.max = 50% for Pmax = 0GPa and P.R.max = 95%
for Pmax = 19GPa), thus confirming the progressive
homogeneization of the non-affine displacements with
pressure. This progressive homogeneization is also
confirmed by the distribution of the variance of the
non-affine displacement field (Fig. 11-b). Its minimum
value is decreased by a factor of 10 when Pmax increases
from 0 to 19GPa. The displacement’s fluctutations in
the elastic regime can then have very small values. The
Participation ratio of plastic rearrangements are cente-
red on a second peak at smaller values depending on the
system size but not on the density. For N = 24000, this
peak is centered on P.R. = 10−2 corresponding to 1% of
atoms that is 240 atoms, that is approximately a cube
delimited by ≈ 6 atoms on each side. For N = 192000
the maximum value is decreased to 1.2.10−3 (0.12%)
corresponding to the same number of atoms (not shown
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here). These small values for plastic rearrangements
thus correspond to very localized, size independent,
rearrangements. They can be compared to the values
obtained upon compression. In the latter case, the
participation ratio is size independent, with an average
about 0.4 as for elastic rearrangements. Note also that
the maximum value of the relative amplitude of the
Non-Affine displacements (Fig. 11-(b) and Fig. 8-(b)),
as compared with the displacement applied at the boun-
daries, is between 103 and 105 times larger during shear
at constant volume than during a pure compression.
The consequence is that the effect of the inhomogeneous
strain can be quantitatively far more important during
a shear than during a compression.

V. DISCUSSION AND CONCLUSION

We have shown in this paper that the present model
silica glass exhibits a robust mechanical response. Ove-
rall, our results reproduce all the main features of the
mechanical behaviour of amorphous silica. In hydrostatic
compression the anomalous elastic softening of the Bulk
Modulus with pressure is recovered. The loading history
affects the structure and the mechanical response only if
the system exceeds the yield threshold which is 11 GPa
for the pristine sample. The yield threshold is the maxi-
mum pressure reached in the single load, after the initial
threshold has been exceeded. It increases with the den-
sification of the sample. This corresponds to the strain
hardening which has been evidenced experimentally [15].
Cyclic loading however converges to the single load be-
haviour when the previous maximum pressure is approa-
ched from below, thus showing that the system keeps
somehow the structural memory of its initially densified
state. The cyclic behaviour also refered to as microplas-
ticity [44], is reminiscent of a first order phase transi-
tion observed in the dynamics of many other disordered
systems [63]. We understand it here by the discordance
between Local and Macroscopic Bulk Modulus, and the
occurrence of micro-instabilities.

In shear, we obtain reasonable values both for the mo-
dulus and the yield threshold. We evidence that the shear
stress threshold decreases with pressure as expected. The
reason is the suppression of shear softening when the sys-
tem is homogeneized by irreversible compression.

As already mentioned, the present model emulates the
complex mechanical response of silica reasonably well al-
though it is not a quantitative model. In particular we
note that the very low value of the Poisson coefficient is
not rendered correctly here.

One of the salient features of our results is the presence
of small scale jumps both for one shot and for cyclic loa-
dings. These jumps are plastic rearrangements at small
scale, which occur between nearby configurations. Simi-
lar jumps are also known at larger lengthscales in some

bistable cristalline phases [7]. They lead to open loops
in reversible compression curves because of the dissipa-
tion associated with the jumps due to internal friction. In
this paper, we have shown that these dissipative jumps
are directly responsible for the anomalous behaviour of
the Bulk Modulus with pressure.

It is expected that the jumps are clearly visible here
because of 1) the small scale of the sample and the good
pressure resolution 2) the nearly zero temperature. At
non-zero temperature, thermal activation would contri-
bute to wash out the jumps. In particular, the recovery
of the pristine volume after annealing at temperatures si-
gnificantly below the glass transition temperature could
actually be due to the thermal activation of such jumps
out of higher energy configuration [38].

Evidence of structural changes at high pressures is
shown in the permanent densification and in the evo-
lution of intertetrahedral angles upon compression, in
agreement with experiments. In addition, it is shown here
that these structural changes affect the mechanical res-
ponse (stress-strain behaviour) and especially the stress
overshoot characteristic of the occurrence of a perma-
nent shear band. The shear stress overshoot tends to
disappear at higher densification, when the system has
experienced pressures larger than the macroscopic yield
threshold. Our study has shown clearly that this new
behaviour is directly related to the spatial homogeniza-
tion of the displacement field. The departure from the
homogeneous displacement field is more pronounced at
small pressures. The effect of pressure in our model silica
glass, is thus to homogeneize the mechanical response :
the shear at imposed pressures would give rise proba-
bly to smooth stress-strain behaviour and homogeneous
displacement fields. We have not been able however to
connect the displacement field to the structural changes
in our sample. The silica sample has a natural tendency
to densify. But the microscopic origin of this behaviour
is far from been clearly established.

Note finally that all these results have been obtained
on a model silica glass. The use of this model was en-
couraged by the very promising comparison with expe-
rimental results. This study has been performed at very
low temperature in order to emphasize the pure geome-
trical effects on the mechanical response of the sample,
and compare it to previously measured data. The ad-
dition of thermal noise could affect them strongly, as
well as the use of more realistic quenching rates however
not reachable presently by Molecular Dynamics Simula-
tions. Further studies on shear at constant pressure and
on soda-lime glasses are under way. Indeed the atomic
mechanisms evidenced here can be very sensitive to the
chemical composition of the glass. As shown experimen-
tally, the mechanical behaviour would probably be very
different for example for soda-lime glasses [23, 30] where
the presence of cations repealling each other is not favou-
rable to densification. The quantitative comparison with
Silicate Glasses will be the subject of a future study [52].
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