
HAL Id: hal-00731299
https://hal.science/hal-00731299

Submitted on 12 Sep 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A new formulation to estimate the variance of model
prediction: application to near infrared spectroscopy

calibration
E. Fernandez-Ahumada, J.M. Roger, B. Palagos

To cite this version:
E. Fernandez-Ahumada, J.M. Roger, B. Palagos. A new formulation to estimate the variance of model
prediction: application to near infrared spectroscopy calibration. Analytica Chimica Acta, 2012, 721,
p. 28 - p. 34. �10.1016/j.aca.2012.01.044�. �hal-00731299�

https://hal.science/hal-00731299
https://hal.archives-ouvertes.fr


A new formulation to estimate the variance of

model prediction. Application to near infrared

spectroscopy calibration

E. FERNANDEZ-AHUMADA* ? J.M. ROGER*, B. PALAGOS*

*Cemagref BP 5095 - 34033 Montpellier Cedex1 France

Abstract

Evaluation of uncertainty a�ecting predictions is a major trend in analytical chem-

istry and chemometrics. Several approximate expressions and resampling methods

have been proposed for the estimation of prediction uncertainty when using mul-

tivariate calibration. This article proposes a new expression for the variance of

prediction, adapted to near infrared spectroscopy speci�cities and particularly to

the spectral error structure, induced by the high colinearity of the variables. The

proposed analytical expression enables a detailed evaluation of the di�erent con-

tributions and components of uncertainty a�ecting the model. An application to

real data of feedstu� near infrared spectra related to protein content has shown its

advantages.
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1 Introduction

Many decisions in di�erent human activities (industrial, commercial, scien-

ti�c, healthcare, safety, environmental) are based on analytical results. These

results must be reported with some indication of their quality, so that assess-

ment of their reliability is enabled [1]. In metrology, there are di�erent terms

to characterize the quality of a method or an instrument, such as reproducibil-

ity, repeatability, accuracy, precision, trueness and uncertainty. De�nitions of

all these terms can be found elsewhere [2]. This paper focuses on the uncer-

tainty whose formal de�nition in the Guide to the Expression of Uncertainty

in Measurement is as follows: "parameter associated with the result of a mea-

surement that characterizes the dispersion of the values that could reasonably

be attributed to the measurand" [3].

For the case of near infrared (NIR) spectroscopy where multivariate calibra-

tion is commonly used to construct a predictive model on the basis of multi-

ple predictor variables, the predicted value is incomplete without a statement

about its uncertainty. In the chemometrics-oriented literature, considerable

attention has been paid to prediction uncertainty estimation. According to

recent reviews [4], there are two basic ways of estimating prediction uncer-

tainty, namely, error propagation and resampling strategies. Error propaga-

tion leads to closed-form expressions where di�erent assumptions are con-

sidered but which provide a platform for evaluating the di�erent sources of

uncertainty. Resampling is essentially a black box approach which, however,

is often more accurate because fewer approximations are taken into account.

The theory of error propagation has provided the framework from which many
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authors have developed multiple expressions. These expressions are the result

of evaluating each source of uncertainty associated to model inputs and consid-

ering its contribution. Most of the existing approximate expressions have been

developed with a Partial Least Squares (PLS) regression model but there exist

some works which used other methods such as Principal Component Regres-

sion (PCR) [5], [6] or Arti�cial Neural Networks (ANNs) [7]. First expressions

proposed by Hoskuldsson [8], Phatak et al.[9] and Denham [10] assumed the

hypothesis of negligible errors in the predictor variables. The expression of

Holkuldsson was then adopted by the American Society of Testing and Ma-

terials (ASTM), considering that data were not mean-centred. Those works

were expanded by Faber and Kowalski [11] who included errors in the predic-

tor variables under the general errors-in-variables (EIV) model. A drawback

of their approach is that the original expression is derived under the assump-

tion that the errors in the predictor variables have constant variance (the

homoscedastic case). Later on Faber and Bro [12] proposed a new expression

which accommodated for heteroscedastic and correlated errors. But in fact,

the expression was derived under the assumption that the errors in predictor

variables are identically and independently distributed (i.i.d.) and the authors

conjectured that it applied to most types of heteroscedasticity.

In spectroscopy, error measurements in predictors are unlikely to be uncor-

related and with constant variance. That is the reason why the purpose of

this study is the proposal of a new prediction uncertainty expression for linear

calibration models, where these issues are considered.

The idea of the new proposal is to build an expression as general as possible

where the minimum of hypotheses are assumed. The procedure, as for other

approximate expressions, is based on the classical EIV model, aiming at con-
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sidering all sources of uncertainty a�ecting predictors, the dependent variable

and model coe�cients. The expression may be used for evaluating the model.

It is an analytical expression which enables to characterize the di�erent sources

of uncertainty a�ecting the model. For the case of near infrared spectra, these

sources might be the instrument (repeatability, reproducibility), the sampling,

deviation of Lambert Beer's law, etc. The aim of this new expression is to give

the basis to calculate the overall uncertainty depending on di�erent types of

error sources.

The paper is organised as follows: �rst, a theoretical section reminds the most

complete expression found in literature, considering the assumptions taken

into account. Then the new expression is proposed. A discussion and inter-

pretation of both expressions is provided. Material and methods section gives

details on the real data set used for comparison of both expressions when

di�erent types of errors are evaluated and the procedure followed to estimate

each term of expressions. Next section shows the main results obtained from

the comparison of both expressions. Their performance is also assessed from

estimates obtained using a resampling method. A discussion of all these results

is provided. Last section contains the most important conclusions achieved.

2 Theory

2.1 Notations and theoretical recalls

Capital bold characters will be used for matrices, e.g. A ; small bold characters

for column vectors, e.g. ai will denote the i
th column of A ; row vectors will be

denoted by the transpose notation, e.g. aT

j will denote the jth row of A. Non
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bold characters will be used for scalars, e.g. matrix elements aij or indices i. If

needed, matrix dimensions will be indicated as indexes, e.g A(N×P ). The trace

of a square matrix A will be noted tr(A).

Any measured or estimated quantity (scalar a or vector a) is assumed to be a

random variable and will be noted as â or â. The random part of these entities,

which carries the errors, will be noted as δa or δa and the true (unknown)

part as ǎ or ǎ, so that :

â = ǎ+ δa or â = ǎ + δa (1)

Operator Var() will denote the variance-covariance matrix of a random vector

and Var() will denote the variance of a random scalar variable. From equation

(1), Var(â) = Var(δa) and V ar(â) = V ar(δa). For clarity reasons, Var(δa)

could be noted as Σa and Var(δa) could be noted as σ2
a.

Let k be a �xed (not random) vector, u and v two random vectors. The

following formulae are recalled:

Var(kTu) = kTΣuk (2)

Var(u± v) = Σu + Σv ± 2Cov(u,v) (3)

Where Cov(u,v) is the matrix containing the covariances between all the

components of u and those of v.

If δu and δv are independent, the following relation is veri�ed:

Var(δuTδv) = tr(ΣuΣv) (4)

5
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The vector b(P×1) is the regression vector between the P predictors of x and

the response y, calibrated on N samples, so that:

ŷ = (x̂− x̂c)
Tb̂ + ŷc = ẑTb̂ + ŷc (5)

where xc and yc correspond to the mean sample of the learning set and z =

x− xc.

The scenario is covered under the so-called classical errors-in-variables (EIV)

model ([13]) :

ŷ= y̌ + δy (6)

ẑ = ž + δz (7)

Substituting eq. (6) and eq. (7) into eq. (5) results in the following equation:

ŷ = žTb̌ + δzTb̌ + žTδb + δzTδb + y̌c + δyc (8)

2.2 Classical approach

In the literature ([11], [14]) the following assumptions are considered:

C1: Measurement errors are independently and identically distributed (i.i.d.)

with zero mean and constant variance

C2: Error characteristics of the prediction objects are the same as the ones

of training objects

C3: The product of errors (random parts of an entity) is neglected

C4: b̂ is independent of x̂c and ŷc

Hypothesis (C1) yields Var(δx) = σ2
xI, where I is an appropriate dimensioned

identity matrix. By applying all the other hypotheses on eq. (8), the following

6
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expression stands for the variance of the estimation ŷ:

Var(ŷ) = 0 +
(

1 +
1

N

)
b̌2σ2

x + žTVar(δb)ž + 0 + 0 +
σ2
lab

N
(9)

where σ2
lab is the laboratory variance, a�ecting the y reference. Equation (9)

yields:

Var(ŷ) =
(

1 +
1

N

)
b̌2σ2

x + žTΣbž +
σ2
lab

N

In practice, to evaluate this expression, true values are replaced by measured

or estimated values, yielding:

Var(ŷ) =
(

1 +
1

N

)
b̂2σ2

x + ẑTΣbẑ +
σ2
lab

N
(10)

The above expression will be referred to in the following as the classical ex-

pression.

2.3 New proposal

In this study, the following hypotheses are supposed to be ful�lled:

N1: Measurement errors have zero mean

N2=C2: Error characteristics of the prediction objects are the same as the

ones of training objects

N3: δz and δb are independent

N4=C4: b̂ is independent of x̂c and ŷc.

7
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Considering the hypotheses (N3) and (N4), each term of the sum of equation

(8) is independent of the others. Thus, all the covariance terms are null and

the variance of ŷ is given by:

Var(ŷ) = 0 + b̌TVar(δz)b̌ + žTVar(δb)ž + Var(δzTδb) + 0 +
σ2
lab

N
(11)

But

Var(δz) = Var(δx− δxc) (12)

= Var(δx) + Var(δxc)− 2Cov(δx, δxc) (13)

Since it is di�cult to establish the independence of δx and δxc, it is considered

that if they are dependent, they both vary in the same sense. Thus, their

covariance is either null or positive. By the way, neglecting the covariance

terms will at the best be ine�ective and at the worst give an overestimation

of the variance. The expression (13) becomes:

Var(δz) = Var(δx) + Var(δxc) (14)

Var(δz) = Var(δx) +
1

N
Var(δx) (15)

Var(δz) =
(

1 +
1

N

)
Var(δx) (16)

Equation (11) then becomes:

Var(ŷ) =
(

1 +
1

N

)
b̌TVar(δx)b̌ + žTVar(b̂)ž + Var(δzTδb) +

σ2
lab

N
(17)

Using the hypothesis (N3) on δz and δb and combining eq. (4), eq. (16), and

eq. (17) yields:

Var(ŷ) =
(

1 +
1

N

)
b̌TΣxb̌ + žTΣbž +

(
1 +

1

N

)
tr(ΣxΣb) +

σ2
lab

N
(18)

8

Author-produced version of the article published in Analytica Chimica Acta, 2012, 721, 28-34. 
The original publication is available at http://www.sciencedirect.com/ 
Doi: 10.1016/j.aca.2012.01.044



Like for the classical approach, true values are replaced by measured or es-

timated values. This yields the following expression, reordered to match the

classical one:

Var(ŷ) =
(

1 +
1

N

)
b̂TΣxb̂ + ẑTΣbẑ +

σ2
lab

N
+
(

1 +
1

N

)
tr(ΣxΣb) (19)

The above expression will be referred to in the following as the new expression.

2.4 Theoretical discussion

2.4.1 Discussion of the hypotheses

Hypothesis (N1), assuming that the measurement errors have zero mean, is a

minimal assumption. On the contrary, hypothesis (C1) is very restrictive and

rarely ful�lled in spectrometry, especially when baselines occur. With this type

of noise, the errors a�ecting each variable of x are very dependent of the others

and do not present constant variance.

Hypotheses (C2) and (N2) assume that the measurement conditions are the

same when calibrating and when predicting. That means that this study

mainly addresses the problem at the calibration stage and does not cover

the case of robustness against unknown in�uence factors.

The hypothesis (C3) is classically stated in error propagation schemes; it as-

sumes that product of errors can be neglected on the basis that errors are

small. In the new formulation, this hypothesis has been replaced by the hy-

pothesis (N3), which enabled the calculation of a new term: tr(ΣxΣb).

Hypotheses (C4) and (N4) assume that the model coe�cients are independent

9
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from the centre. In other words, that means that the slope and the o�set of

the model are independent.

2.4.2 Term by term discussion of the two expressions

The �rst term of both expressions expresses the propagation of the error part

of x through the model b. The classical expression may misestimate this term

for two reasons : (i) it does not take into account the relationship between

the space spanned by Σx and the model; (ii) it does not take into account

the correlations between the variables of x, which are particularly intense in

spectrometry. In the new expression, the vectorial structure of this term is

respected, instead of the classical expression, which considers only the norm

of the vectors. It is then likely that the new expression will better manage the

structured errors, like the baselines.

The second term is identical in the two expressions. It reveals how the mod-

elling error δb is ampli�ed by the vector x. In the new expression, it has a

similar form to the �rst term, contrary to the classical expression.

The third term is identical in the two expressions. It expresses the explicit

contribution of the error of the reference value y, through the calculation of

the model centre yc. It should be noticed that this laboratory error also a�ects

the second term implicitly, through Σb.

The fourth term of the new expression has no correspondence in the classical

one, which neglects the products of errors. The matrix ΣxΣb represents the

intersection of the two spaces spanned by δx and δb. The quantity tr(ΣxΣb)

measures the common part of the instances of δx and δb.

10
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3 Material and methods

3.1 Description of the data

Data set consisted of N = 385 samples of compound feedstu�s with pro-

tein content as reference data. Measurements were performed at P = 656

wavelengths in the visible and near infrared region (380 to 1690 nm) with

the instrument located on a conveyor belt. For each sample, 10 spectra were

acquired, which gave N blocks of 10 repetitions. The reference protein con-

tent was determined by Kjeldahl method, with a standard error of laboratory

σlab = 0.2% (σ2
lab = 0.04%2). Two matrices of spectra were considered for

calculations: Xrep(10N × P ) which contained all the spectra and X(N × P )

which contained the spectra averaged over blocks of repetitions. The vector

y(N × 1) contained the protein content values.

The following preprocessings were applied to the data:

• RAW: no preprocessing

• DTR: the linear trend was estimated by means of a linear regression on each

spectrum and then removed

• SNV: the spectra were centred and normalized by their standard deviation

• D2: the spectra were replaced by their second derivative, calculated by Sav-

itsky and Golay algorithm, with a width of 42 nm and a polynomial order

of 3.

• D2SNV: the spectra were processed by D2 and then by SNV

• SNVD2: the spectra were processed by SNV and then by D2

11
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3.2 Description of calculations

All calculations were performed and programmed with Matlab version 7.1.0

(The Mathworks, Inc.).

3.2.1 Estimation of terms

Several parameters needed to be estimated in order to obtain an approxima-

tion of each term. These parameters were b̂, Σx (new proposal), σ2
x (classical

expression) and Σb. Depending on the type of error evaluated, some of these

parameters were estimated di�erently. Errors studied in this paper were: sam-

ple speci�c error and repeatability. What we have called "sample speci�c error"

is the error intrinsic of each sample which causes the �tting error. It is like a

bias of each sample which cannot be reduced by replicating the measurements.

It is an error depending only on the sample and not on the measurement. This

error can come from x and / or y, but in this paper only in�uence from x has

been considered. The other kind of error evaluated is the repeatability of the

spectral measurement regarding sample presentation.

The model b̂ between the spectra of X and the protein contents of y was

estimated by means of a PLS regression (SIMPLS algorithm). Cross validation

was used for the choice of the optimal number of latent variables.

For the evaluation of the sample speci�c error (δxss):

• For each spectrum xi of X, an ideal spectrum x̃i was calculated by means

of a kernel centred on its yi value and applied on the other samples, like

explained in [15]. Then, δxss was estimated as the di�erence between x̃i and
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xi. A matrix containing all these di�erences was built and referred to as S.

The matrix Σx was calculated as the covariance matrix of S. The variance

σ2
x was calculated as the mean of the diagonal elements of Σx.

• Σb was extracted from the bootstrap calculations detailed in (3.2.2).

• σ2
lab was considered to be estimated by replicates and provided by the lab-

oratory which performed the analysis.

For the evaluation of the repeatability error (δxrep):

• Matrix Xrep was centred by blocks of 10 repetitions and the matrix obtained

was referred to as R. To obtain an estimation of Σx, the covariance matrix

of R was calculated. For the estimation of σ2
x, the mean of the diagonal

elements of Σx was considered.

• Σb was extracted from the bootstrap calculations detailed in 3.2.2.

• σ2
lab was considered to be estimated by replicates and provided by the lab-

oratory which performed the analysis.

Once all these parameters were estimated, their values were injected in equa-

tions 10 and 19 to calculate the terms of classical and new expressions. As

term 2 depends on the individual, its median value was retained.

3.2.2 Variance estimation by resampling

Bootstrap was used as resampling method to obtain a general variance value,

where no assumptions were considered. In the following it will be noted as BS

variance. The bootstrap procedure used performed n drawing with replace-

ment of n samples.

For the sample speci�c errors, the procedure was similar to a cross-validation:

13
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• all blocks were averaged to suppress the repeatability error

• each block was successively kept out from the others

• the other blocks were bootstrapped and used for developing a model

• the model was applied on the block kept out

For the repeatability errors, the following process was used:

• a bootstrap on the N initial blocks came up with a set of N new blocks

{I1, I2, ..., IN}

• a bootstrap was performed inside each block

• a random error with distribution N(0;σ2
lab) was added to each y value

• the {I1, I2, ..., IN} blocks were used for calibration, and the others for the

test. Two versions of model were calculated. The �rst one was calculated on

the N averaged spectra and the second one on the 10N individual spectra.

At the end of 1000 iterations, the variance of predictions was calculated.

4 Results and discussion

Both expressions presented here are intended to give an estimation of V ar(ŷ)

for each prediction. Nonetheless, only the second term of both expressions

(which is identical in classical and new forms) depends on the sample. All

the other terms are related to global characteristics of data and model. Thus,

the new expression would not present a very high added value for individual

uncertainty. Then, as explained in 3.2.1, results will show the median value of

uncertainty calculated on the whole calibration set, enabling the discussion to

be focused on the estimation of the global uncertainty.

14
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Table 1 presents the variances calculated for sample speci�c errors by both

classical and new expressions, according to the di�erent preprocessings. Re-

sults obtained by resampling and the mean squared error of calibration (MSEC)

are also presented.

First, the row containing results from resampling method (BS variance) is

studied. These values can be considered as representing the true variance since

this method uses no approximation. These BS variance values show that most

of pretreatments do not produce a variance much lower than the raw model.

One can notice that low variances are observed for linear pretreatments as D2,

DTR or even RAW. The lowest value is obtained for D2SNV. Thus, the hy-

pothesis could be put forward that the sample speci�c spectral error is made

up mainly of an additive e�ect like a baseline, and secondly of a slight mul-

tiplicative e�ect. It should also be noticed that the highest values of variance

are obtained when SNV is used as the single pretreatment or in �rst position

before D2. That con�rms the prevalence of the additive e�ect in the sample

speci�c error.

Regarding the BS variance and MSEC, the same trend is observed. The lowest

MSEC are obtained when D2 is applied as unique pretreatment or in �rst

position followed by SNV. Model performance with DTR is similar to RAW,

which could be explained by assuming that DTR is a light pretreatment. As

found for the BS variance, application of SNV clearly degrades the model. The

accordance observed between the BS variance and MSEC validates the way

this variance is estimated.

Results with the new expression show a good agreement with those of the BS

variance, values of both methods are very close to each other, independently of

15
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the pretreatment applied. However values obtained with the classical expres-

sion are always overestimated, very far from the BS variance and with high

sensitivity to the applied pretreatment. The explanation of these results lies

in the estimation of �rst term and especially because of the C1 hypothesis.

With this hypothesis, the norm of spectral measurement errors is considered.

This implies that only the magnitude of the noise a�ects the estimation. By

contrast, the new expression takes into account also the structure of the noise

through Σx. The fact of taking into account this structure enables the model to

orthogonalize itself, possibly, against the noise. An example of this behaviour

is illustrated in Figure (1). Under C1 hypothesis, the noise is represented as a

sphere which cannot be orthogonal to the model and the dependence between

the model and the noise does not a�ect the �rst term. On the contrary, if Σx

presents a low dimension, as usually in spectrometry, under N1 hypothesis the

model can be orthogonal to this noise and the �rst term can be reduced.

Also in terms of comparison of the two analytical expressions, it is worth noting

that the fourth term, only present in the new expression, has an important

weight in the �nal result (always more than 10 % of the whole variance). It is

also noticeable that, in the present application, the third term, related to the

direct e�ect of the standard laboratory error, is completely negligible.

Analyzing in depth each term of the new expression for each pretreatment,

several comments can be stated:

For all pretreatments, �rst term is the most important one, representing be-

tween 78 and 85 % of the sum, whilst the importance of the second term

varies between 4.7 and 6.3 % and the fourth one between 10.3 and 15.3 % of

the whole variance.
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The highest values of �rst term were always observed when SNV was involved.

The explanation of this observation can be found in the correction performed

by SNV, which is especially employed to reduce multiplicative e�ects. However

the e�ects present in the data seem to be mostly additive ones and with

reduced dimension (e.g. a simple baseline). Thus, the SNV spoils the result

because the normalization it performs converts the existing linear noise into

a non-linear one, which cannot be handled properly by the model. The lowest

value of �rst term was obtained for D2. With this pretreatment, the spectral

error becomes less important in magnitude, decreasing the classical approach

terms; and also in structure, decreasing the new expression terms. For RAW

and DTR, average values of �rst term were observed. From these results, it can

be concluded that the model itself without pretreatment is able to partially

manage the sample speci�c error. Actually, the vector b is partially orthogonal

to the space spanned by this noise.

Second term is considered as a median value of the distance between the

spectrum and the model centre, weighted by the model noise. It depends

mainly on three factors: (i) the length of the centred spectra z, which is related

to the classical concept of leverage, (ii) the norm of Σb and (iii) the colinearity

between z and Σb. Fourth term represents the dependency between two noise

spaces: spectral noise and model noise. Many di�erent parameters can a�ect

these terms. Among others, one may think that if there is model over�tting

and/or an important part of the spectral noise is used by the model, second

term and fourth term will show high values. This statement can be illustrated

with examples shown in Table 1:

• The regression with D2 managed to obtain a model quite insensitive to noise.

The pretreatment was e�ective, but it probably removed some information
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forcing the model to over�t the data. Consequently, its second and fourth

terms are among the highest values.

• For the DTR model, second and fourth terms presented the lowest values.

This model is the simplest, with a good performance in terms of variance

and probably not over�tted.

• The SNVD2 model can be considered the most over�tted according to sec-

ond and fourth terms and it also presents the highest variance. In this case,

it seems that the pretreatment created a non-linear noise which prevented

a good model adjustment.

Analyzing results concerning repeatability errors (Table 2 and 3), the �rst

observation is that BS variance is less important than that of sample speci�c

error. The order of magnitude of BS variance for the repeatability error is less

than 1%, against more than 2% for sample speci�c error. This result implies,

for the case studied here, that errors dealing with sample presentation are less

important than those concerning model lack of �t, such as the presence of

unknown compounds, deviations of Lambert Beer's law, etc.

As for sample speci�c error, the model which used SNVD2 shows the highest

BS variance value. For the case of models on averaged spectra (Table 2), the

BS variance presents an extremely high value (1.83), comparable to variances

obtained for sample speci�c errors. Thus, applying SNV in �rst position makes

second derivative harmful.

It is also observed, contrary to what was found for sample speci�c errors, that

uncertainties obtained with D2 and D2SNV pretreatments were not better

that those of simpler models (RAW and DTR). The hypothesis may be put

forward that the repeatability error is more complex than the sample speci�c
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one.

It is important to note that uncertainties of models performed on averaged

spectra are higher than uncertainties of model developed keeping repetitions.

This result shows that regression, if repetitions are kept, is able to develop

a model partially independent of repeatability error. By contrast, this is not

possible when using averaged spectra because a large part of the repeatability

error is removed.

It is also worth noting that the more complex is the model, the bigger is the

di�erence between uncertainties of models on averaged spectra and uncertain-

ties of models with repetitions. The ratio is 1.1 for RAW, 1.15 for DTR and

3.0 when SNVD2 pretreatment is applied.

For the case of models performed on averaged spectra (Table 2), estimations

obtained with the new expression are less sensitive to pretreatments than those

of the classical approach. Compared to the BS variance, the uncertainty of the

new expression is not always close to it and most of times, underestimated.

The explanation of this phenomenon may be found in the violation of hypoth-

esis N2: objects used in calibration (averaged spectra) are not comparable to

objects used in test (individual spectra). Thus, in the following, all comments

will be referred to the case of calibration and test performed on individual

spectra (Table 3).

Regarding Table 3, estimations obtained with the new expression show very

close agreement with results of BS variance. On the other hand, estimations

obtained with the classical approach are overestimated except for the cases

of complex models (SNVD2 and D2SNV) where the underestimation can be

explained by the missing fourth term.
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Concerning the analysis of new expression terms:

First term for repeatability errors (Table 3) is not systematically higher than

the others, as observed for sample speci�c errors (Table 1). That implies that

uncertainty due to propagation of repeatability error through the model is

comparable to the e�ect of modelling errors. Since second term is of the same

order than for sample speci�c error, the explanation may be found in the

reduction of �rst term.

Fourth term is not negligible in any case (more than 10% of the total result

for all pretreatments). For cases of SNVD2 and D2, fourth term is even the

highest. The same explanations found for sample speci�c errors can be ad-

dressed here. For the model with SNVD2, the presence of non-linear noise

makes the model very complex; and for the model with D2, the pretreatment

has removed important information which provokes model over�tting.

Conclusion

The uncertainty that a�ects the model predictions is of major importance in

analytical chemistry. However, no clear expression of this uncertainty is fully

adapted to the case of NIR spectrometry. This article proposes a new expres-

sion for the variance of the prediction adapted to any linear calibration models,

like e.g. PLS. This formulation respects the speci�cities of spectrometry and

particularly the spectral error structure which is induced by the high colinear-

ity of the variables. Four terms appear in this expression: (i) the ampli�cation

of the spectral error by the model; (ii) the ampli�cation of the model error by

the spectrum; (iii) the direct impact of the laboratory error; (iv) the depen-
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dency between spectral error and model error. An application to real data of

feedstu� NIR spectra related to protein content has shown the ability of this

new expression to manage di�erent types of errors. The estimated values of

the uncertainty was in total accordance with those yielded by a resampling

method. The analysis of the four terms showed that they provide complemen-

tary information on the model behaviour. Further applications of this new

expression to other problems should be carried out to exploit the knowledge

it yields. New �gure of merits based on the four terms could be created to

better qualify the calibration models.
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Table 1

Estimations of the prediction variance for the sample speci�c error, according to

di�erent pretreatement and di�erent methods of estimation.

Pretreatment RAW DTR SNV D2 D2SNV SNVD2

Number of LV 14 13 15 15 12 11

C
la
ss
ic
al

T1
(
1 + 1

N

)
b2σ2x 763.36 41.31 200.21 27.36 8.64 8.99

T2 zTΣbz 0.13 0.11 0.14 0.14 0.12 0.15

T3
σ2
lab
N 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

Sum 763.49 41.43 200.35 27.50 8.77 9.14

N
ew

T1
(
1 + 1

N

)
bTΣxb 1.99 1.97 2.39 1.74 2.00 2.64

T2 zTΣbz 0.13 0.11 0.14 0.14 0.12 0.15

T3
σ2
lab
N 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

T4
(
1 + 1

N

)
tr(ΣxΣb) 0.32 0.24 0.30 0.34 0.31 0.39

Sum 2.44 2.32 2.84 2.22 2.43 3.18

BS variance 2.42 2.32 2.71 2.42 2.18 3.16

MSEC 1.85 1.84 2.05 1.55 1.57 2.14
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Table 2

Estimations of the prediction variance for the repeatability error, according to di�er-

ent pretreatement and di�erent methods of estimation. The models were calculated

on averaged samples.

Pretreatment RAW DTR SNV D2 D2SNV SNVD2

Number of LV 14 13 15 15 12 11

C
la
ss
ic
al

T1
(
1 + 1

N

)
b2σ2x 11.04 0.57 1.31 0.65 0.28 0.22

T2 zTΣbz 0.14 0.11 0.14 0.12 0.13 0.16

T3
σ2
lab
N 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

Sum 11.18 0.68 1.45 0.77 0.41 0.38

N
ew

T1
(
1 + 1

N

)
bTΣxb 0.21 0.25 0.31 0.21 0.39 0.53

T2 zTΣbz 0.14 0.11 0.14 0.12 0.13 0.16

T3
σ2
lab
N 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

T4
(
1 + 1

N

)
tr(ΣxΣb) 0.03 0.03 0.07 0.14 0.06 0.26

Sum 0.39 0.39 0.53 0.48 0.58 0.95

BS variance 0.43 0.44 0.65 0.84 0.71 1.83
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Table 3

Estimations of the prediction variance for the repeatability error, according to di�er-

ent pretreatement and di�erent methods of estimation. The models were calculated

on individual samples.

Pretreatment RAW DTR SNV D2 D2SNV SNVD2

Number of LV 14 13 15 15 12 11

C
la
ss
ic
al

T1
(
1 + 1

N

)
b2σ2x 9.67 0.61 1.21 0.62 0.28 0.22

T2 zTΣbz 0.18 0.14 0.18 0.17 0.16 0.18

T3
σ2
lab
N 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

Sum 9.85 0.74 1.38 0.79 0.43 0.41

N
ew

T1
(
1 + 1

N

)
bTΣxb 0.15 0.18 0.19 0.11 0.26 0.22

T2 zTΣbz 0.18 0.14 0.18 0.17 0.16 0.18

T3
σ2
lab
N 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

T4
(
1 + 1

N

)
tr(ΣxΣb) 0.05 0.04 0.07 0.15 0.06 0.22

Sum 0.37 0.36 0.44 0.43 0.48 0.62

BS variance 0.39 0.38 0.46 0.37 0.49 0.54
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Fig. 1. Schematic example of di�erence between N1 and C1 hypothesis. On the left,

with N1 hypothesis, the structure of the noise is taken into account, and the model

can be almost orthogonal to the error space. On the right, with C1 hypothesis, the

noise space is assumed to be spherical, then the model cannot be orthogonal to the

error space.
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