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Evaluation of uncertainty aecting predictions is a major trend in analytical chemistry and chemometrics. Several approximate expressions and resampling methods have been proposed for the estimation of prediction uncertainty when using multivariate calibration. This article proposes a new expression for the variance of prediction, adapted to near infrared spectroscopy specicities and particularly to the spectral error structure, induced by the high colinearity of the variables. The proposed analytical expression enables a detailed evaluation of the dierent contributions and components of uncertainty aecting the model. An application to real data of feedstu near infrared spectra related to protein content has shown its advantages.

Introduction

Many decisions in dierent human activities (industrial, commercial, scientic, healthcare, safety, environmental) are based on analytical results. These results must be reported with some indication of their quality, so that assessment of their reliability is enabled [START_REF]Evaluation of measurement data -guide to the expression of uncertainty in measurement[END_REF]. In metrology, there are dierent terms to characterize the quality of a method or an instrument, such as reproducibility, repeatability, accuracy, precision, trueness and uncertainty. Denitions of all these terms can be found elsewhere [START_REF] Zeaiter | [END_REF]. This paper focuses on the uncertainty whose formal denition in the Guide to the Expression of Uncertainty in Measurement is as follows: "parameter associated with the result of a measurement that characterizes the dispersion of the values that could reasonably be attributed to the measurand" [START_REF]Eurachem/citac guide, quantifying uncertainty in analytical measurement[END_REF].

For the case of near infrared (NIR) spectroscopy where multivariate calibration is commonly used to construct a predictive model on the basis of multiple predictor variables, the predicted value is incomplete without a statement about its uncertainty. In the chemometrics-oriented literature, considerable attention has been paid to prediction uncertainty estimation. According to recent reviews [START_REF] Geladi | Some recent trends in the calibration literature[END_REF], there are two basic ways of estimating prediction uncertainty, namely, error propagation and resampling strategies. Error propagation leads to closed-form expressions where dierent assumptions are considered but which provide a platform for evaluating the dierent sources of uncertainty. Resampling is essentially a black box approach which, however, is often more accurate because fewer approximations are taken into account.

The theory of error propagation has provided the framework from which many 2 authors have developed multiple expressions. These expressions are the result of evaluating each source of uncertainty associated to model inputs and considering its contribution. Most of the existing approximate expressions have been developed with a Partial Least Squares (PLS) regression model but there exist some works which used other methods such as Principal Component Regression (PCR) [START_REF] Isaksson | Eect of multiplicative scatter correction (msc) and 21[END_REF], [START_REF] Egan | Measurement of carboxyhemoglobin in forensic blood samples using uv-visible spectrometry and improved principal component regression[END_REF] or Articial Neural Networks (ANNs) [START_REF] Chryssolouris | Condence interval prediction for neural network models[END_REF]. First expressions proposed by Hoskuldsson [START_REF] Höskuldsson | Pls regression methods[END_REF], Phatak et al. [START_REF] Phatak | An approach to interval estimation in partial least squares regression[END_REF] and Denham [START_REF] Denham | Prediction intervals in partial least squares[END_REF] assumed the hypothesis of negligible errors in the predictor variables. The expression of Holkuldsson was then adopted by the American Society of Testing and Materials (ASTM), considering that data were not mean-centred. Those works were expanded by Faber and Kowalski [START_REF] Faber | Propagation of measurement errors for the validation of predictions obtained by principal component regression and partial least squares[END_REF] who included errors in the predictor variables under the general errors-in-variables (EIV) model. A drawback of their approach is that the original expression is derived under the assumption that the errors in the predictor variables have constant variance (the homoscedastic case). Later on Faber and Bro [START_REF] Faber | Standard error of prediction for multiway pls: 1. background and a simulation study[END_REF] proposed a new expression which accommodated for heteroscedastic and correlated errors. But in fact, the expression was derived under the assumption that the errors in predictor variables are identically and independently distributed (i.i.d.) and the authors conjectured that it applied to most types of heteroscedasticity.

In spectroscopy, error measurements in predictors are unlikely to be uncorrelated and with constant variance. That is the reason why the purpose of this study is the proposal of a new prediction uncertainty expression for linear calibration models, where these issues are considered.

The idea of the new proposal is to build an expression as general as possible where the minimum of hypotheses are assumed. The procedure, as for other approximate expressions, is based on the classical EIV model, aiming at con-sidering all sources of uncertainty aecting predictors, the dependent variable and model coecients. The expression may be used for evaluating the model.

It is an analytical expression which enables to characterize the dierent sources

of uncertainty aecting the model. For the case of near infrared spectra, these sources might be the instrument (repeatability, reproducibility), the sampling, deviation of Lambert Beer's law, etc. The aim of this new expression is to give the basis to calculate the overall uncertainty depending on dierent types of error sources.

The paper is organised as follows: rst, a theoretical section reminds the most complete expression found in literature, considering the assumptions taken into account. Then the new expression is proposed. A discussion and interpretation of both expressions is provided. Material and methods section gives details on the real data set used for comparison of both expressions when dierent types of errors are evaluated and the procedure followed to estimate each term of expressions. Next section shows the main results obtained from the comparison of both expressions. Their performance is also assessed from estimates obtained using a resampling method. A discussion of all these results is provided. Last section contains the most important conclusions achieved.

Theory

Notations and theoretical recalls

Capital bold characters will be used for matrices, e.g. A ; small bold characters for column vectors, e.g. a i will denote the i th column of A ; row vectors will be denoted by the transpose notation, e.g. a T j will denote the j th row of A. Non bold characters will be used for scalars, e.g. matrix elements a ij or indices i. If needed, matrix dimensions will be indicated as indexes, e.g A (N ×P ) . The trace of a square matrix A will be noted tr(A).

Any measured or estimated quantity (scalar a or vector a) is assumed to be a random variable and will be noted as a or a. The random part of these entities, which carries the errors, will be noted as δa or δa and the true (unknown) part as ǎ or ǎ, so that :

a = ǎ + δa or a = ǎ + δa (1) 
Operator Var() will denote the variance-covariance matrix of a random vector and Var() will denote the variance of a random scalar variable. From equation [START_REF]Evaluation of measurement data -guide to the expression of uncertainty in measurement[END_REF], Var( a) = Var(δa) and V ar( a) = V ar(δa). For clarity reasons, Var(δa) could be noted as Σ a and Var(δa) could be noted as σ 2 a .

Let k be a xed (not random) vector, u and v two random vectors. The following formulae are recalled:

Var(k T u) = k T Σ u k (2) 
Var(u ± v) = Σ u + Σ v ± 2Cov(u, v) (3) 
Where Cov(u, v) is the matrix containing the covariances between all the components of u and those of v.

If δu and δv are independent, the following relation is veried: The vector b (P ×1) is the regression vector between the P predictors of x and the response y, calibrated on N samples, so that:

Var(δu T δv) = tr(Σ u Σ v ) (4) 
y = ( x -x c ) T b + y c = z T b + y c (5) 
where x c and y c correspond to the mean sample of the learning set and z =

xx c .

The scenario is covered under the so-called classical errors-in-variables (EIV) model ( [START_REF] Kapteyn | Identication in the linear errors in variables model[END_REF]) :

y = y + δy (6) 
z = ž + δz (7) 
Substituting eq. ( 6) and eq. ( 7) into eq. ( 5) results in the following equation:

y = žT b + δz T b + žT δb + δz T δb + yc + δy c (8) 

Classical approach

In the literature ( [START_REF] Faber | Propagation of measurement errors for the validation of predictions obtained by principal component regression and partial least squares[END_REF], [START_REF] Zhang | A comparison of dierent methods to estimate prediction uncertainty using partial least squares (pls): A practitioner's perspective[END_REF]) the following assumptions are considered:

C1: Measurement errors are independently and identically distributed (i.i.d.)

with zero mean and constant variance C2: Error characteristics of the prediction objects are the same as the ones of training objects C3: The product of errors (random parts of an entity) is neglected C4: b is independent of x c and y c Hypothesis (C1) yields Var(δx) = σ 2 x I, where I is an appropriate dimensioned identity matrix. By applying all the other hypotheses on eq. ( 8), the following expression stands for the variance of the estimation y:

Var( y) = 0 + 1 + 1 N b2 σ 2 x + žT Var(δb)ž + 0 + 0 + σ 2 lab N (9) 
where σ 2 lab is the laboratory variance, aecting the y reference. Equation (9) yields:

Var( y) = 1 + 1 N b2 σ 2 x + žT Σ b ž + σ 2 lab N
In practice, to evaluate this expression, true values are replaced by measured or estimated values, yielding:

Var( y) = 1 + 1 N b 2 σ 2 x + z T Σ b z + σ 2 lab N (10) 
The above expression will be referred to in the following as the classical expression.

New proposal

In this study, the following hypotheses are supposed to be fullled: Considering the hypotheses (N3) and (N4), each term of the sum of equation ( 8) is independent of the others. Thus, all the covariance terms are null and the variance of y is given by:

Var( y) = 0 + bT Var(δz) b + žT Var(δb)ž + Var(δz T δb) + 0 + σ 2 lab N (11) 
But

Var(δz) = Var(δx -δx c ) (12) 
= Var(δx)

+ Var(δx c ) -2Cov(δx, δx c ) (13) 
Since it is dicult to establish the independence of δx and δx c , it is considered that if they are dependent, they both vary in the same sense. Thus, their covariance is either null or positive. By the way, neglecting the covariance terms will at the best be ineective and at the worst give an overestimation of the variance. The expression (13) becomes:

Var(δz) = Var(δx) + Var(δx c ) (14) 
Var(δz) = Var(δx) + 1 N Var(δx) (15) 
Var(δz) = 1 + 1 N Var(δx) (16) 
Equation ( 11) then becomes:

Var( y) = 1 + 1 N bT Var(δx) b + žT Var( b)ž + Var(δz T δb) + σ 2 lab N (17) 
Using the hypothesis (N3) on δz and δb and combining eq. ( 4), eq. ( 16), and eq. ( 17) yields:

Var( y) = 1 + 1 N bT Σ x b + žT Σ b ž + 1 + 1 N tr(Σ x Σ b ) + σ 2 lab N (18) 
Like for the classical approach, true values are replaced by measured or estimated values. This yields the following expression, reordered to match the classical one:

Var( y) = 1 + 1 N b T Σ x b + z T Σ b z + σ 2 lab N + 1 + 1 N tr(Σ x Σ b ) (19) 
The above expression will be referred to in the following as the new expression. Hypotheses (C2) and (N2) assume that the measurement conditions are the same when calibrating and when predicting. That means that this study mainly addresses the problem at the calibration stage and does not cover the case of robustness against unknown inuence factors.

The hypothesis (C3) is classically stated in error propagation schemes; it assumes that product of errors can be neglected on the basis that errors are small. In the new formulation, this hypothesis has been replaced by the hypothesis (N3), which enabled the calculation of a new term: tr(Σ x Σ b ).

Hypotheses (C4) and (N4) assume that the model coecients are independent 9

Author-produced version of the article published in Analytica Chimica Acta, 2012, 721, 28-34. The original publication is available at http://www.sciencedirect.com/ Doi: 10.1016/j.aca.2012.01.044 from the centre. In other words, that means that the slope and the oset of the model are independent. wavelengths in the visible and near infrared region (380 to 1690 nm) with the instrument located on a conveyor belt. For each sample, 10 spectra were acquired, which gave N blocks of 10 repetitions. The reference protein content was determined by Kjeldahl method, with a standard error of laboratory

σ lab = 0.2% (σ 2 lab = 0.04% 2 )
. Two matrices of spectra were considered for calculations: X rep (10N × P ) which contained all the spectra and X(N × P ) which contained the spectra averaged over blocks of repetitions. The vector y(N × 1) contained the protein content values.

The following preprocessings were applied to the data:

• RAW: no preprocessing

• DTR: the linear trend was estimated by means of a linear regression on each spectrum and then removed

• SNV: the spectra were centred and normalized by their standard deviation • D2: the spectra were replaced by their second derivative, calculated by Savitsky and Golay algorithm, with a width of 42 nm and a polynomial order of 3.

• D2SNV: the spectra were processed by D2 and then by SNV

• SNVD2: the spectra were processed by SNV and then by D2 11 Author-produced version of the article published in Analytica Chimica Acta, 2012, 721, 28-34. The original publication is available at http://www.sciencedirect.com/ Doi: 10.1016/j.aca.2012.01.044

Description of calculations

All calculations were performed and programmed with Matlab version 7.1.0 (The Mathworks, Inc.).

Estimation of terms

Several parameters needed to be estimated in order to obtain an approximation of each term. These parameters were b, Σ x (new proposal), σ 2

x (classical expression) and Σ b . Depending on the type of error evaluated, some of these parameters were estimated dierently. Errors studied in this paper were: sample specic error and repeatability. What we have called "sample specic error" is the error intrinsic of each sample which causes the tting error. It is like a bias of each sample which cannot be reduced by replicating the measurements.

It is an error depending only on the sample and not on the measurement. This error can come from x and / or y, but in this paper only inuence from x has been considered. The other kind of error evaluated is the repeatability of the spectral measurement regarding sample presentation.

The model b between the spectra of X and the protein contents of y was estimated by means of a PLS regression (SIMPLS algorithm). Cross validation was used for the choice of the optimal number of latent variables.

For the evaluation of the sample specic error (δx ss ):

• For each spectrum x i of X, an ideal spectrum x i was calculated by means of a kernel centred on its y i value and applied on the other samples, like explained in [START_REF] Zeaiter | Dynamic orthogonal projection. a new method to maintain the on-line robustness of multivariate calibrations. application to nir-based monitoring of wine fermentations[END_REF]. Then, δx ss was estimated as the dierence between x i and x i . A matrix containing all these dierences was built and referred to as S.

The matrix Σ x was calculated as the covariance matrix of S. The variance σ 2

x was calculated as the mean of the diagonal elements of Σ x .

• Σ b was extracted from the bootstrap calculations detailed in (3.2.2).

• σ 2 lab was considered to be estimated by replicates and provided by the laboratory which performed the analysis.

For the evaluation of the repeatability error (δx rep ):

• Matrix X rep was centred by blocks of 10 repetitions and the matrix obtained was referred to as R. To obtain an estimation of Σ x , the covariance matrix of R was calculated. For the estimation of σ 2

x , the mean of the diagonal elements of Σ x was considered.

• Σ b was extracted from the bootstrap calculations detailed in 3.2.2.

• σ 2 lab was considered to be estimated by replicates and provided by the laboratory which performed the analysis.

Once all these parameters were estimated, their values were injected in equations 10 and 19 to calculate the terms of classical and new expressions. As term 2 depends on the individual, its median value was retained.

Variance estimation by resampling

Bootstrap was used as resampling method to obtain a general variance value, where no assumptions were considered. In the following it will be noted as BS variance. The bootstrap procedure used performed n drawing with replacement of n samples.

For the sample specic errors, the procedure was similar to a cross-validation: 13
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• all blocks were averaged to suppress the repeatability error

• each block was successively kept out from the others

• the other blocks were bootstrapped and used for developing a model

• the model was applied on the block kept out For the repeatability errors, the following process was used:

• a bootstrap on the N initial blocks came up with a set of N new blocks {I 1 , I 2 , ..., I N } • a bootstrap was performed inside each block

• a random error with distribution N (0; σ 2 lab ) was added to each y value • the {I 1 , I 2 , ..., I N } blocks were used for calibration, and the others for the test. Two versions of model were calculated. The rst one was calculated on the N averaged spectra and the second one on the 10N individual spectra.

At the end of 1000 iterations, the variance of predictions was calculated.

Results and discussion

Both expressions presented here are intended to give an estimation of V ar( y) for each prediction. Nonetheless, only the second term of both expressions (which is identical in classical and new forms) depends on the sample. All the other terms are related to global characteristics of data and model. Thus, the new expression would not present a very high added value for individual uncertainty. Then, as explained in 3.2.1, results will show the median value of uncertainty calculated on the whole calibration set, enabling the discussion to be focused on the estimation of the global uncertainty. Table 1 presents the variances calculated for sample specic errors by both classical and new expressions, according to the dierent preprocessings. Results obtained by resampling and the mean squared error of calibration (MSEC) are also presented.

First, the row containing results from resampling method (BS variance) is studied. These values can be considered as representing the true variance since this method uses no approximation. These BS variance values show that most of pretreatments do not produce a variance much lower than the raw model.

One can notice that low variances are observed for linear pretreatments as D2, DTR or even RAW. The lowest value is obtained for D2SNV. Thus, the hypothesis could be put forward that the sample specic spectral error is made up mainly of an additive eect like a baseline, and secondly of a slight multiplicative eect. It should also be noticed that the highest values of variance are obtained when SNV is used as the single pretreatment or in rst position before D2. That conrms the prevalence of the additive eect in the sample specic error.

Regarding the BS variance and MSEC, the same trend is observed. The lowest MSEC are obtained when D2 is applied as unique pretreatment or in rst position followed by SNV. Model performance with DTR is similar to RAW, which could be explained by assuming that DTR is a light pretreatment. As found for the BS variance, application of SNV clearly degrades the model. The accordance observed between the BS variance and MSEC validates the way this variance is estimated.

Results with the new expression show a good agreement with those of the BS variance, values of both methods are very close to each other, independently of the pretreatment applied. However values obtained with the classical expression are always overestimated, very far from the BS variance and with high sensitivity to the applied pretreatment. The explanation of these results lies in the estimation of rst term and especially because of the C1 hypothesis.

With this hypothesis, the norm of spectral measurement errors is considered. This implies that only the magnitude of the noise aects the estimation. By contrast, the new expression takes into account also the structure of the noise through Σ x . The fact of taking into account this structure enables the model to orthogonalize itself, possibly, against the noise. An example of this behaviour is illustrated in Figure [START_REF]Evaluation of measurement data -guide to the expression of uncertainty in measurement[END_REF]. Under C1 hypothesis, the noise is represented as a sphere which cannot be orthogonal to the model and the dependence between the model and the noise does not aect the rst term. On the contrary, if Σ x presents a low dimension, as usually in spectrometry, under N1 hypothesis the model can be orthogonal to this noise and the rst term can be reduced. Also in terms of comparison of the two analytical expressions, it is worth noting that the fourth term, only present in the new expression, has an important weight in the nal result (always more than 10 % of the whole variance). It is also noticeable that, in the present application, the third term, related to the direct eect of the standard laboratory error, is completely negligible.

Analyzing in depth each term of the new expression for each pretreatment, several comments can be stated: For all pretreatments, rst term is the most important one, representing between 78 and 85 % of the sum, whilst the importance of the second term varies between 4.7 and 6.3 % and the fourth one between 10.3 and 15.3 % of the whole variance.
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The highest values of rst term were always observed when SNV was involved.

The explanation of this observation can be found in the correction performed by SNV, which is especially employed to reduce multiplicative eects. However the eects present in the data seem to be mostly additive ones and with reduced dimension (e.g. a simple baseline). Thus, the SNV spoils the result because the normalization it performs converts the existing linear noise into a non-linear one, which cannot be handled properly by the model. The lowest value of rst term was obtained for D2. With this pretreatment, the spectral error becomes less important in magnitude, decreasing the classical approach terms; and also in structure, decreasing the new expression terms. For RAW and DTR, average values of rst term were observed. From these results, it can be concluded that the model itself without pretreatment is able to partially manage the sample specic error. Actually, the vector b is partially orthogonal to the space spanned by this noise.

Second term is considered as a median value of the distance between the spectrum and the model centre, weighted by the model noise. It depends mainly on three factors: (i) the length of the centred spectra z, which is related to the classical concept of leverage, (ii) the norm of Σ b and (iii) the colinearity between z and Σ b . Fourth term represents the dependency between two noise spaces: spectral noise and model noise. Many dierent parameters can aect these terms. Among others, one may think that if there is model overtting and/or an important part of the spectral noise is used by the model, second term and fourth term will show high values. This statement can be illustrated with examples shown in Table 1: • The regression with D2 managed to obtain a model quite insensitive to noise.

The pretreatment was eective, but it probably removed some information forcing the model to overt the data. Consequently, its second and fourth terms are among the highest values.

• For the DTR model, second and fourth terms presented the lowest values. This model is the simplest, with a good performance in terms of variance and probably not overtted.

• The SNVD2 model can be considered the most overtted according to second and fourth terms and it also presents the highest variance. In this case, it seems that the pretreatment created a non-linear noise which prevented a good model adjustment.

Analyzing results concerning repeatability errors (Table 2 and3), the rst observation is that BS variance is less important than that of sample specic error. The order of magnitude of BS variance for the repeatability error is less than 1%, against more than 2% for sample specic error. This result implies, for the case studied here, that errors dealing with sample presentation are less important than those concerning model lack of t, such as the presence of unknown compounds, deviations of Lambert Beer's law, etc.

As for sample specic error, the model which used SNVD2 shows the highest BS variance value. For the case of models on averaged spectra (Table 2), the BS variance presents an extremely high value (1.83), comparable to variances obtained for sample specic errors. Thus, applying SNV in rst position makes second derivative harmful. It is also observed, contrary to what was found for sample specic errors, that uncertainties obtained with D2 and D2SNV pretreatments were not better that those of simpler models (RAW and DTR). The hypothesis may be put forward that the repeatability error is more complex than the sample specic one.

It is important to note that uncertainties of models performed on averaged spectra are higher than uncertainties of model developed keeping repetitions.

This result shows that regression, if repetitions are kept, is able to develop a model partially independent of repeatability error. By contrast, this is not possible when using averaged spectra because a large part of the repeatability error is removed.

It is also worth noting that the more complex is the model, the bigger is the dierence between uncertainties of models on averaged spectra and uncertainties of models with repetitions. The ratio is 1.1 for RAW, 1.15 for DTR and 3.0 when SNVD2 pretreatment is applied.

For the case of models performed on averaged spectra (Table 2), estimations obtained with the new expression are less sensitive to pretreatments than those of the classical approach. Compared to the BS variance, the uncertainty of the new expression is not always close to it and most of times, underestimated.

The explanation of this phenomenon may be found in the violation of hypothesis N2: objects used in calibration (averaged spectra) are not comparable to objects used in test (individual spectra). Thus, in the following, all comments will be referred to the case of calibration and test performed on individual spectra (Table 3).

Regarding Table 3, estimations obtained with the new expression show very close agreement with results of BS variance. On the other hand, estimations obtained with the classical approach are overestimated except for the cases of complex models (SNVD2 and D2SNV) where the underestimation can be explained by the missing fourth term.

Concerning the analysis of new expression terms:

First term for repeatability errors (Table 3) is not systematically higher than the others, as observed for sample specic errors (Table 1). That implies that uncertainty due to propagation of repeatability error through the model is comparable to the eect of modelling errors. Since second term is of the same order than for sample specic error, the explanation may be found in the reduction of rst term.

Fourth term is not negligible in any case (more than 10% of the total result for all pretreatments). For cases of SNVD2 and D2, fourth term is even the highest. The same explanations found for sample specic errors can be addressed here. For the model with SNVD2, the presence of non-linear noise makes the model very complex; and for the model with D2, the pretreatment has removed important information which provokes model overtting.

Conclusion

The uncertainty that aects the model predictions is of major importance in analytical chemistry. However, no clear expression of this uncertainty is fully adapted to the case of NIR spectrometry. This article proposes a new expression for the variance of the prediction adapted to any linear calibration models, like e.g. PLS. This formulation respects the specicities of spectrometry and particularly the spectral error structure which is induced by the high colinearity of the variables. Four terms appear in this expression: (i) the amplication of the spectral error by the model; (ii) the amplication of the model error by the spectrum; (iii) the direct impact of the laboratory error; (iv) the depen-20
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N1:

  Measurement errors have zero mean N2=C2: Error characteristics of the prediction objects are the same as the ones of training objects N3: δz and δb are independent N4=C4: b is independent of x c and y c .

2. 4

 4 Theoretical discussion 2.4.1 Discussion of the hypotheses Hypothesis (N1), assuming that the measurement errors have zero mean, is a minimal assumption. On the contrary, hypothesis (C1) is very restrictive and rarely fullled in spectrometry, especially when baselines occur. With this type of noise, the errors aecting each variable of x are very dependent of the others and do not present constant variance.

2. 4 . 2

 42 Term by term discussion of the two expressions The rst term of both expressions expresses the propagation of the error part of x through the model b. The classical expression may misestimate this term for two reasons : (i) it does not take into account the relationship between the space spanned by Σ x and the model; (ii) it does not take into account the correlations between the variables of x, which are particularly intense in spectrometry. In the new expression, the vectorial structure of this term is respected, instead of the classical expression, which considers only the norm of the vectors. It is then likely that the new expression will better manage the structured errors, like the baselines. The second term is identical in the two expressions. It reveals how the modelling error δb is amplied by the vector x. In the new expression, it has a similar form to the rst term, contrary to the classical expression. The third term is identical in the two expressions. It expresses the explicit contribution of the error of the reference value y, through the calculation of the model centre y c . It should be noticed that this laboratory error also aects the second term implicitly, through Σ b . The fourth term of the new expression has no correspondence in the classical one, which neglects the products of errors. The matrix Σ x Σ b represents the intersection of the two spaces spanned by δx and δb. The quantity tr(Σ x Σ b )measures the common part of the instances of δx and δb.
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	3 Material and methods
	3.1 Description of the data
	Data set consisted of N = 385 samples of compound feedstus with pro-
	tein content as reference data. Measurements were performed at P = 656

Table 1

 1 Estimations of the prediction variance for the sample specic error, according to dierent pretreatement and dierent methods of estimation.Author-produced version of the article published in Analytica Chimica Acta, 2012, 721, 28-34. The original publication is available at http://www.sciencedirect.com/ Doi: 10.1016/j.aca.2012.01.044

		Pretreatment	RAW	DTR	SNV	D2	D2SNV SNVD2
		Number of LV	14	13	15	15	12	11
		T1	1 + 1 N b 2 σ 2 x	763.36 41.31 200.21 27.36	8.64	8.99
	Classical	T2 T3	z T Σ b z σ 2 lab N	0.13 0.0001 0.0001 0.0001 0.0001 0.0001 0.11 0.14 0.14 0.12	0.15 0.0001
		Sum		763.49 41.43 200.35 27.50	8.77	9.14
		T1	1 + 1 N b T Σ x b	1.99	1.97	2.39	1.74	2.00	2.64
		T2	z T Σ b z	0.13	0.11	0.14	0.14	0.12	0.15
	New	T3	σ 2 lab N	0.0001 0.0001 0.0001 0.0001 0.0001	0.0001
		T4	1 + 1 N tr(Σ x Σ b )	0.32	0.24	0.30	0.34	0.31	0.39
		Sum		2.44	2.32	2.84	2.22	2.43	3.18
			BS variance	2.42	2.32	2.71	2.42	2.18	3.16
			MSEC	1.85	1.84	2.05	1.55	1.57	2.14
					24			

Table 2

 2 Estimations of the prediction variance for the repeatability error, according to dierent pretreatement and dierent methods of estimation. The models were calculated on averaged samples.Author-produced version of the article published in Analytica Chimica Acta, 2012, 721, 28-34. The original publication is available at http://www.sciencedirect.com/ Doi: 10.1016/j.aca.2012.01.044

		Pretreatment	RAW	DTR	SNV	D2	D2SNV SNVD2
		Number of LV	14	13	15	15	12	11
		T1	1 + 1 N b 2 σ 2 x	11.04	0.57	1.31	0.65	0.28	0.22
	Classical	T2 T3	z T Σ b z σ 2 lab N	0.14 0.0001 0.0001 0.0001 0.0001 0.0001 0.11 0.14 0.12 0.13	0.16 0.0001
		Sum		11.18	0.68	1.45	0.77	0.41	0.38
		T1	1 + 1 N b T Σ x b	0.21	0.25	0.31	0.21	0.39	0.53
		T2	z T Σ b z	0.14	0.11	0.14	0.12	0.13	0.16
	New	T3	σ 2 lab N	0.0001 0.0001 0.0001 0.0001 0.0001	0.0001
		T4	1 + 1 N tr(Σ x Σ b )	0.03	0.03	0.07	0.14	0.06	0.26
		Sum		0.39	0.39	0.53	0.48	0.58	0.95
			BS variance	0.43	0.44	0.65	0.84	0.71	1.83
					25			

Table 3

 3 Estimations of the prediction variance for the repeatability error, according to dierent pretreatement and dierent methods of estimation. The models were calculated on individual samples. Schematic example of dierence between N1 and C1 hypothesis. On the left, with N1 hypothesis, the structure of the noise is taken into account, and the model can be almost orthogonal to the error space. On the right, with C1 hypothesis, the noise space is assumed to be spherical, then the model cannot be orthogonal to the error space.27Author-produced version of the article published in Analytica Chimica Acta, 2012, 721, 28-34. The original publication is available at http://www.sciencedirect.com/ Doi: 10.1016/j.aca.2012.01.044

		Pretreatment	RAW	DTR	SNV	D2	D2SNV SNVD2
		Number of LV	14	13	15	15	12	11
		T1	1 + 1 N b 2 σ 2 x	9.67	0.61	1.21	0.62	0.28	0.22
	Classical	T2 T3	z T Σ b z σ 2 lab N	0.18 0.0001 0.0001 0.0001 0.0001 0.0001 0.14 0.18 0.17 0.16	0.18 0.0001
		Sum		9.85	0.74	1.38	0.79	0.43	0.41
		T1	1 + 1 N b T Σ x b	0.15	0.18	0.19	0.11	0.26	0.22
		T2	z T Σ b z	0.18	0.14	0.18	0.17	0.16	0.18
	New	T3	σ 2 lab N	0.0001 0.0001 0.0001 0.0001 0.0001	0.0001
		T4	1 + 1 N tr(Σ x Σ b )	0.05	0.04	0.07	0.15	0.06	0.22
		Sum		0.37	0.36	0.44	0.43	0.48	0.62
			BS variance	0.39	0.38	0.46	0.37	0.49	0.54

Author-produced version of the article published in Analytica Chimica Acta, 2012, 721, 28-34. The original publication is available at http://www.sciencedirect.com/ Doi: 10.1016/j.aca.2012.01.044
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