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Abstract

We establish some inequalities for the second moment

1

|K|

Z

K

|x|22dx

of a convex body K under various assumptions on the position of K.

1 Introduction

The starting point of this paper is the article [2], where it was shown that if all the
extreme points of a convex body K in R

n have Euclidean norm greater than r > 0,
then

1

|K|

∫

K

|x|22dx >
r2

9n
(1)

where |x|2 stands for the Euclidean norm of x and |K| for the volume of K.

We improve here this inequality showing that the optimal constant is
r2

n + 2
,

with equality for the regular simplex, with vertices on the Euclidean sphere of
radius r. We also prove the same inequality under the different condition that K
is in Löwner position. More generally, we investigate upper and lower bounds on
the quantity

C2(K) :=
1

|K|

∫

K

|x|22dx , (2)

under various assumptions on the position of K. Some hypotheses on K are neces-
sary because C2(K) is not homogeneous, one has C2(λK) = λ2C2(K).
Let n > 2. We denote by Kn the set of all convex bodies in R

n, i.e. the set of
compact convex sets with non empty interior and by ∆n the regular simplex in R

n
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with vertices in Sn−1, the Euclidean unit sphere. For K ∈ Kn, we denote by gK ,
its centroid,

gK =
1

|K|

∫

K

xdx.

Under these notations we prove the following theorem.

Theorem 1.1. Let r > 0, K ∈ Kn such that all its extreme points have Euclidean
norm greater than r. Then

C2(K) =
1

|K|

∫

K

|x|22dx > C2(r∆
n) +

(

n + 1

n + 2

)

|gK |22 =
r2 + (n + 1)|gK |22

n + 2
.

Moreover, if K is a polytope there is equality if and only if K is a simplex with its
vertices on the Euclidean sphere of radius r.

In Theorem 1.1, for a general K, we don’t have a characterization of the equal-
ity case because we deduce it by approximation from the case of polytopes. We
conjecture that the equality case is still the same.

Notice that the condition imposed on K that all its extreme points have Eu-
clidean norm greater than r is unusual. For example, if K has positive curvature,
it is equivalent to either K ⊃ rBn

2 or K ∩ rBn
2 = ∅. Moreover, this hypothe-

sis is not continuous with respect to the Hausdorff distance. Indeed, if we define
P = conv(∆n, x), where x /∈ ∆n is a point very close to the centroid of a facet of
∆n then the distance of ∆n and P is very small but the point x will be an extreme
point of P of Euclidean norm close to 1/n, i.e. much smaller than 1, the Euclidean
norm of the vertices of ∆n.

Other conditions on the position of K may be imposed. To state it, let us first
recall the classical definitions of John and Löwner position. Let K ∈ Kn. We say
that K is in John position if the ellipsoid of maximal volume contained in K is
Bn

2 . We say that K is in Löwner position if the ellipsoid of minimal volume that
contains K is Bn

2 .
It was proved by Guédon in [5] (see also [6]) that if K ∈ Kn satisfies gK = 0 and

if K∩(−K) is in Löwner position (which is equivalent to say that Bn
2 is the ellipsoid

of minimal volume containing K and centered at the origin) then C2(K) ≥ C2(∆
n).

Using the same ideas, we prove the following theorem.

Theorem 1.2. Let K be a convex body in Löwner position. Then

n

n + 2
= C2(B

n
2 ) ≥ C2(K) ≥ C2(∆

n) +
(n + 1)2

n(n + 2)
|gK |22 =

n + (n + 1)2|gK |22
n(n + 2)

.

Moreover, if K is symmetric, then

n

n + 2
= C2(B

n
2 ) ≥ C2(K) ≥ C2(B

n
1 ) =

2n

(n + 1)(n + 2)
.
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Let K be a convex body in John position. Then

n

n + 2
= C2(B

n
2 ) ≤ C2(K) ≤ C2(n∆n) + 2

(

n + 1

n + 2

)

|gK |22 =
n2 + 2(n + 1)|gK |22

n + 2
.

Moreover, if K is symmetric, then

n

n + 2
= C2(B

n
2 ) ≤ C2(K) ≤ C2(B

n
∞) =

n

3
.

The inequalities involving the Euclidean ball in Theorem 1.2 are deduced from
the following proposition.

Proposition 1.3. Let K be a convex body.

1. If K ⊂ Bn
2 and 0 ∈ K then C2(K) ≤ C2(B

n
2 ) = n

n+2 with equality if and only

if K = {tx; 0 ≤ t ≤ 1, x ∈ S}, where S ⊂ Sn−1.

2. If K ⊃ Bn
2 then C2(K) ≥ C2(B

n
2 ) = n

n+2 , with equality if and only K = Bn
2 .

In view of Proposition 1.3, it could be conjectured that for every centrally
symmetric convex bodies K, L such that K ⊂ L one has C2(K) ≤ C2(L). But this
is not the case. It can be seen already in dimension 2, by taking

L = conv((a, 0), (−a, 0), (0, 1), (0,−1))

K = {(x, y) ∈ L; |y| ≤ 1/2}

with a large enough. Indeed, C2(L) = 1+a2

6 and C2(K) = 5+15a2

72 .
The paper is organized as follows. In §2, we gather some background material

needed in the rest of the paper. We prove Theorem 1.1 in §3, Theorem 1.2 in §4
and Proposition 1.3 in §5.

Acknowledgment. We would like to thank B. Maurey and O. Guédon for dis-
cussions.

2 Preliminaries

As mentioned before the quantity C2(K) is not affine invariant. Let us investigate
the behaviour of C2(K) under affine transform. We start with translations. For
a ∈ R

n, and K ∈ Kn, one has

C2(K − a) =
1

|K|

∫

K

|x − a|22dx = C2(K) − 2〈gK , a〉 + |a|22.

Hence
C2(K − gK) = C2(K) − |gK |22 (3)
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minimizes C2(K − a) among translation a ∈ R
n. Let T be a non-singular linear

transform, then

C2(TK) =
1

|TK|

∫

TK

|x|22dx =
1

|K|

∫

K

|Tx|22dx.

The preceding quantity may be computed in terms of C2(K) if K is in isotropic
position (see below).

2.1 Decomposition of identity

Let u1, . . . , uN be N points in the unit sphere Sn−1. We say that they form a
representation of the identity if there exist c1, . . . cN positive integers such that

I =

N
∑

i=1

ciui ⊗ ui and

N
∑

i=1

ciui = 0.

Notice that in this case, one has, for x ∈ R
n

x =

N
∑

i=1

ci〈x, ui〉ui, |x|22 =

N
∑

i=1

ci〈x, ui〉2 and

N
∑

i=1

ci = n. (4)

Moreover, for any linear map T on R
n, its Hilbert-Schmidt norm is given by

‖T‖2
HS := tr(T ⋆T ) =

N
∑

i=1

ci〈ui, T
⋆Tui〉 =

N
∑

i=1

ci|Tui|22.

If A is an affine transformation and T its linear part, i.e. A(x) = T (x)+A(0), then

N
∑

i=1

ci|Aui|22 = ‖T‖2
HS + n|A(0)|22 . (5)

Indeed,

N
∑

i=1

ci|Aui|22 =

N
∑

i=1

ci|Tui + A(0)|22 = ‖T‖2
HS + 2

N
∑

i=1

ci〈Tui, A(0)〉 +

N
∑

i=1

ci|A(0)|22

= ‖T‖2
HS + n|A(0)|22 .

2.2 John, Löwner and isotropic positions

Let K ∈ Kn. Recall that K is in John position if the ellipsoid of maximal volume
contained in K is Bn

2 and that K is in Löwner position if the ellipsoid of minimal
volume that contains K is Bn

2 . The following theorem ([7], see also [1]) characterizes
these positions.
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Theorem 2.1. Let K ∈ Kn. Then K is in John position if and only if Bn
2 ⊆ K

and there exist u1, . . . , uN ∈ ∂K ∩ Sn−1 that form a representation of identity.

Also K is in Löwner position if and only if Bn
2 ⊇ K and there exist u1, . . . , uN ∈

∂K ∩ Sn−1 that form a representation of identity.

Let K ∈ Kn. We say that K is in isotropic position if |K| = 1, gK = 0 and

∫

K

〈x, θ〉2dx = L2
K ,∀ θ ∈ Sn−1 . (6)

If K is in isotropic position then C2(K) = nL2
K . Note that the isotropic position

is unique up to orthogonal transformations and that for any convex body K ∈ Kn

there exist an affine transformation A such that AK is in isotropic position (see [9]
or [4]). The quantity LK is called the isotropic constant of K.
For any non singular linear transform T on R

n,

∫

K

〈x, Tx〉dx = L2
KtrT .

In particular if K is isotropic and T ∈ GLn then

C2(TK) =
1

|K|

∫

K

|Tx|22dx = L2
KtrT ∗T =

‖T‖2
HS

n
C2(K) . (7)

From the arithmetic geometric inequality, it implies that C2(TK) ≥ |det(T )| 2

n C2(K).
With (3), it gives, as it is well known, that the isotropic position minimizes C2(AK)
among affine transforms A that preserve volume.

3 Proof of Theorem 1.1

We start with the following

Lemma 3.1. For every n > 1

C2(∆
n) =

1

n + 2
.

Proof: The volume of the regular simplex ∆n with vertices u1, . . . , un+1 in Sn−1 is

|∆n| =

√
n + 1

n!

(

n + 1

n

)
n

2

.

Let f(t) = |{x ∈ ∆n : 〈x, u1〉 = t}|. One has

f(t) =

(

n − 1

n + 1

)

n−1

2

|∆n−1|(1−t)n−11[− 1

n
,1](t) = |∆n|

(

n

n + 1

)n

n(1−t)n−11[− 1

n
,1](t) .
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Hence, by Fubini

1

|∆n|

∫

∆n

〈x, u1〉2dx =
1

|∆n|

∫ 1

− 1

n

t2f(t)dt =
1

n(n + 2)
.

Since λ∆n is in isotropic position for some λ > 0 we conclude that

C2(∆
n) =

1

|∆n|

∫

∆n

|x|22dx =
n

|∆n|

∫

∆n

〈x, u1〉2dx =
1

n + 2
.

2

Lemma 3.2. Let S = conv(x1, . . . , xn+1) ⊂ R
n be a non degenerate simplex. Then

C2(S) =
1

n + 1

(

n+1
∑

i=1

|xi|22

)

C2(∆
n) + |gS |22(1 − C2(∆

n)).

In particular, if
1

n + 1

n+1
∑

i=1

|xi|22 ≥ r2 then

C2(S) ≥ r2C2(∆
n) +

(

n + 1

n + 2

)

|gS |22.

Remark: This implies that a non degenerate simplex S = conv(x1, . . . , xn+1) such

that |xi|2 ≥ r for all i satisfies C2(S) ≥ C2(r∆
n) = r2

n+2 , with equality if and only
if |xi|2 = r for all i and gS = 0. In dimension 2, these conditions for equality imply
that S is regular but in dimension n ≥ 3, it is not the case anymore. For example
in dimension 3, if one takes the regular simplex and that one moves symmetrically
two vertices along the geodesic between them to make them closer and if one does
the same to the two other opposite vertices then the centroid stays at 0 and the
vertices stay on the sphere. In any dimension n ≥ 4, one chooses the north pole as
the first vertex of our simplex and the n other vertices are the vertices of a simplex
in dimension n− 1, which is not regular and satisfies the equality case, we put this
simplex in an horizontal hyperplane in such a way that the centroid is at 0.

Proof. Let A be an affine map such that S = A∆n and denote by T its linear part.
One has gS = Ag∆n = A(0), hence A = T + gS and S = gS + T∆n. Denote by
ui ∈ Sn−1 the vertices of ∆n, so that xi = gS + Tui, for 1 ≤ i ≤ n + 1. Hence, by
(3) and (7)

C2(S) = |gS |22 + C2(T∆n) = |gS |22 +
‖T‖2

HS

n
C2(∆

n)

Since u1, . . . , un+1 form a decomposition of identity

I =
n

n + 1

n+1
∑

i=1

ui ⊗ ui,
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one has

‖T‖2
HS =

n

n + 1

n+1
∑

i=1

|Tui|22 =
n

n + 1

n+1
∑

i=1

|Aui|22 − n|gS |22.

Therefore, we get the equality. The inequality is obvious. �

Proof of Theorem 1.1 We first consider the case where K is a polytope. Let us
prove by induction on the dimension that there exists non degenerate simplices
S1, . . . , Sm with the following properties: K =

⋃m
i=1 Si, the interiors of Si and Sj

are mutually disjoint for i 6= j and the vertices of the Si’s are among the vertices
of K.

In dimension two, it is enough to fix a vertex x of K, to consider the edges
∆1, . . . ,∆m which don’t contain x and to choose Si = conv(x,∆i), for i = 1, . . . ,m.

Assuming that the property has been proved in dimension n − 1, let us prove
it in dimension n. We proceed in the same way as in dimension two. Let x be
a fixed vertex of K. Let F1, . . . , FN be the facets of K which don’t contain x.
From the induction hypothesis, we can split each of them into simplices with the
required properties. Let ∆1, . . . ,∆m be the collection of these simplices. Then it
is not difficult to check that the simplices Si = conv(x,∆i), for i = 1, . . . ,m have
the required properties.

Now we may apply Lemma 3.2 to the Si’s and we get

C2(K) =
1

|K|

m
∑

i=1

|Si|C2(Si) ≥ 1

|K|

m
∑

i=1

|Si|
(

r2C2(∆
n) +

(

n + 1

n + 2

)

|gSi
|22
)

= r2C2(∆
n) +

(

n + 1

n + 2

) m
∑

i=1

|Si|
|K| |gSi

|22

Then we use the convexity of the function x 7→ |x|22 to deduce that

C2(K) ≥ r2C2(∆
n) +

(

n + 1

n + 2

)

∣

∣

∣

∣

∣

m
∑

i=1

|Si|
|K|gSi

∣

∣

∣

∣

∣

2

2

= r2C2(∆
n) +

(

n + 1

n + 2

)

|gK |22.

This proves the inequality. If there is equality then from the strict convexity of
the function x 7→ |x|22 one deduces that gSi

= gK , for every i. Since the Si’s have
disjoint interiors, this implies that there is only one of them. Hence K is a simplex
and its vertices have Euclidean norm r.
Let us prove the general case. Let K be a convex body such that such that all its
extreme points have Euclidean norm greater than r. Then there is a sequence of
polytopes (Pn)n converging to K in the Hausdorff metric in Kn such that for every
n ∈ N , the extreme points of Pn have Euclidean norm greater than r. Since C2 is
continuous with respect to the Hausdorff distance we get the inequality for K. 2
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4 Proof of Theorem 1.2

As in [5], our main tools are the following inequalities proved by Milman-Pajor [9] in
the symmetric case and by Kannan-Lovász and Simonovits [8] in the non-symmetric
case. Recall that if K is a convex body and u ∈ R

n, the support function of K is
defined by

hK(u) = sup
x∈K

〈x, u〉.

Lemma 4.1. Let K be a convex body and u ∈ Sn−1.
1) If K is symmetric then

2hK(u)2

(n + 1)(n + 2)
≤ 1

|K|

∫

K

〈x, u〉2dx ≤ hK(u)2

3
,

with equality on the left hand side if and only if K is a double-cone in direction u,
which means that there exists x in R

n and a symmetric convex body L in u⊥ such
that 〈x, u〉 6= 0 and K = conv(L, x,−x) and equality in the right hand side if and
only if K is cylinder in direction u, which means that there exists x in R

n and a
symmetric convex body L in u⊥ such that 〈x, u〉 6= 0 and K = L + [−x, x].
2) If gK = 0 then

hK(u)2

n(n + 2)
≤ 1

|K|

∫

K

〈x, u〉2dx ≤ nhK(u)2

n + 2
,

with equality on the left hand side if and only if K is a cone in direction u, which
means that there exists x in R

n and a convex body L in u⊥ such that 〈x, u〉 > 0,
gL = 0 and K = conv(L, x) − x

n and equality in the right hand side if and only if
K is cone in direction −u.

Notice that the proof of 1) given in [9] is beautiful and elementary but the proof
of 2) given in [8] is not as simple, it used the much more elaborated tool called the
localization lemma. A simple proof of 2) was given in [3] but since it is not easily
available, we reproduce it partially here for completeness.

Proof of of 2): With a change of variable, we may assume that |K| = 1 and
hK(u) = 1. Let f(t) = |{x ∈ K; 〈x, u〉 = t}|. The support of f is [−hK(−u), hK(u)]
and from Brunn’s theorem, f1/(n−1) is concave on its support. Moreover, from
Fubini, for any continuous function φ on R

∫

K

φ(〈x, u〉)dx =

∫ ∞

−∞

φ(t)f(t)dt.

Since |K| = 1 we have
∫

f = 1 and since gK = 0,
∫

tf(t)dt = 0. Define

g1(t) =
nn+1

(n + 1)n
(1 − t)n−11[− 1

n
,1] , g2(t) =

n

(n + 1)n
(t + n)n−11[−n,1].
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Then the functions g
1/(n−1)
i are affine on their support and satisfy

∫

gi = 1 and
∫

tgi(t)dt = 0. Let h1 = f − g1 and h2 = g2 − f . Assume that hi 6= 0. Since
∫

hi =
∫

thi = 0, the function hi changes sign at least twice at si < ti for i = 1, 2.
Moreover because of the concavity of f1/(n−1), the function hi is negative in (si, ti)
and positive outside. By looking at its variations, one sees that the function

Wi(t) :=

∫ t

−∞

∫ s

−∞

hi(x)dxds

is non-negative on its support. Integrating by part twice and assuming that φ is
twice differentiable and convex one has

∫

φ(t)hi(t)dt =

∫

φ′′(t)Wi(t)dt ≥ 0.

Therefore
∫

φ(t)g1(t)dt ≤
∫

φ(t)f(t)dt ≤
∫

φ(t)g2(t)dt. For φ(t) = t2, we get the
inequality. If there is equality for example in the left hand side then W1 = 0, thus
h1 = 0, hence f = g1, from the equality case in Brunn’s theorem we deduce that
all the sets {x ∈ K; 〈x, u〉 = t} are homothetic. 2

Using Lemma 4.1, we prove the following proposition.

Proposition 4.2. Let K be a convex body such that there exist vectors u1, . . . , um ∈
Sn−1, with hK(ui) = 1 which form a representation of identity I =

∑m
i=1 ciui ⊗ ui,

with
∑m

i=1 ciui = 0.
1) If K is symmetric then

2n

(n + 1)(n + 2)
= C2(B

n
1 ) ≤ C2(K) ≤ C2(B

n
∞) =

n

3
.

2) In general one has

1

n + 2
+

|gK |22
n(n + 2)

≤ C2(K) − |gK |22 ≤ n2

n + 2
+

n

n + 2
|gK |22.

Proof: 1) Using the decomposition of identity, we deduce that

C2(K) =
1

|K|

∫

K

|x|22dx =

m
∑

i=1

ci
1

|K|

∫

K

〈x, ui〉2dx.

We apply the preceding lemma to the vectors ui and use that hK(ui) = 1 to get

2n

(n + 1)(n + 2)
≤ C2(K) ≤ n

3
.

For K = Bn
1 or K = Bn

∞, the calculation is trivial but we could also check that we
are in the case of equality of Lemma 4.1.
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2) One has

C2(K) − |gK |22 =
1

|K|

∫

K−gK

|x|22dx =

m
∑

i=1

ci
1

|K|

∫

K−gK

〈x, ui〉2dx.

We apply the preceding lemma to the vectors ui

C2(K) − |gK |22 ≤
m
∑

i=1

ci
n

n + 2
hK−gK

(ui)
2 =

n

n + 2

m
∑

i=1

ci(hK(ui) − 〈gK , ui〉)2.

Since hK(ui) = 1 and
∑

ciui = 0

C2(K) − |gK |22 ≤ n

n + 2
(n + |gK |22).

The lower estimate follows in the same way. �

Theorem 1.2 follows from Proposition 1.3 and Proposition 4.2.

5 Proof of Proposition 1.3

We first state and prove a standard lemma that we shall use in the proof.

Lemma 5.1. Let K be a Borel set such that 0 < |K| < +∞, ϕ : R+ → R+ be a
non-decreasing function and λ = (|K|/|Bn

2 |)1/n. Then

1

|K|

∫

K

ϕ(|x|2)dx ≥ 1

|Bn
2 |

∫

Bn

2

ϕ(λ|x|2)dx = n

∫ 1

0

ϕ(λr)rn−1dr.

Proof: One has |λBn
2 | = |K|, hence |K \ (λBn

2 )| = |(λBn
2 ) \ K| Since ϕ is non-

decreasing, we deduce that
∫

K\(λBn

2
)

ϕ(|x|2)dx ≥ ϕ(λ)|K \ (λBn
2 )| = ϕ(λ)|(λBn

2 ) \ K| ≥
∫

(λBn

2
)\K

ϕ(|x|2)dx.

Therefore
∫

K

ϕ(|x|2)dx =

∫

K∩(λBn

2
)

ϕ(|x|2)dx +

∫

K\(λBn

2
)

ϕ(|x|2)dx ≥
∫

λBn

2

ϕ(|x|2)dx.

Two changes of variables finish the proof. 2

Proof of Proposition 1.3:

1) Let ‖ · ‖K be the gauge function of K, i.e. ‖x‖K = inf{t > 0;x ∈ tK}, for
every x ∈ R

n. Since K ⊂ Bn
2 one has |x|2 ≤ ‖x‖K , for every x ∈ R

n. Hence

∫

K

|x|22dx ≤
∫

K

‖x‖2
Kdx =

∫

K

∫ ‖x‖K

0

2tdtdx =

∫ 1

0

2t|{x ∈ K; ‖x‖K ≥ t}|dt

= |K|
∫ 1

0

2t(1 − tn)dt = |K| n

n + 2
.
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This gives the inequality. If there is equality then ‖x‖K = |x|2 for every x ∈ K
hence {x; ‖x‖K = 1} = K ∩ Sn−1 := S therefore K = {tx; 0 ≤ t ≤ 1, x ∈ S}, with
S ⊂ Sn−1.

2) Applying Lemma 5.1 to ϕ(t) = t2, we deduce that

C2(K) =
1

|K|

∫

K

|x|22dx ≥ λ2C2(B
n
2 ) =

( |K|
|Bn

2 |

)
2

n

C2(B
n
2 ).

If we assume that K ⊃ Bn
2 then it follows that C2(K) ≥ C2(B

n
2 ), with equality if

and only if K = Bn
2 , which is the content of the second part of Proposition 1.3. 2
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