Matthieu Fradelizi 
  
Grigoris Paouris 
email: grigorispaouris@yahoo.co.uk
  
Carsten Schütt 
email: schuett@math.uni-kiel.de
  
  
  
Simplices in the Euclidean ball

HAL is

Introduction

The starting point of this paper is the article [START_REF] Böröczky | Convex bodies of minimal volume, surface area and mean width with respect to thin shells[END_REF], where it was shown that if all the extreme points of a convex body K in R n have Euclidean norm greater than r > 0, then 1

|K| K |x| 2 2 dx r 2 9n ( 1 
)
where |x| 2 stands for the Euclidean norm of x and |K| for the volume of K.

We improve here this inequality showing that the optimal constant is r 2 n + 2 , with equality for the regular simplex, with vertices on the Euclidean sphere of radius r. We also prove the same inequality under the different condition that K is in Löwner position. More generally, we investigate upper and lower bounds on the quantity

C 2 (K) := 1 |K| K |x| 2 2 dx , (2) 
under various assumptions on the position of K. Some hypotheses on K are necessary because C 2 (K) is not homogeneous, one has C 2 (λK) = λ 2 C 2 (K). Let n 2. We denote by K n the set of all convex bodies in R n , i.e. the set of compact convex sets with non empty interior and by ∆ n the regular simplex in R n with vertices in S n-1 , the Euclidean unit sphere. For K ∈ K n , we denote by g K , its centroid,

g K = 1 |K| K xdx.
Under these notations we prove the following theorem.

Theorem 1.1. Let r > 0, K ∈ K n such that all its extreme points have Euclidean norm greater than r. Then

C 2 (K) = 1 |K| K |x| 2 2 dx C 2 (r∆ n ) + n + 1 n + 2 |g K | 2 2 = r 2 + (n + 1)|g K | 2 2 n + 2 .
Moreover, if K is a polytope there is equality if and only if K is a simplex with its vertices on the Euclidean sphere of radius r.

In Theorem 1.1, for a general K, we don't have a characterization of the equality case because we deduce it by approximation from the case of polytopes. We conjecture that the equality case is still the same.

Notice that the condition imposed on K that all its extreme points have Euclidean norm greater than r is unusual. For example, if K has positive curvature, it is equivalent to either K ⊃ rB n 2 or K ∩ rB n 2 = ∅. Moreover, this hypothesis is not continuous with respect to the Hausdorff distance. Indeed, if we define P = conv(∆ n , x), where x / ∈ ∆ n is a point very close to the centroid of a facet of ∆ n then the distance of ∆ n and P is very small but the point x will be an extreme point of P of Euclidean norm close to 1/n, i.e. much smaller than 1, the Euclidean norm of the vertices of ∆ n .

Other conditions on the position of K may be imposed. To state it, let us first recall the classical definitions of John and Löwner position. Let K ∈ K n . We say that K is in John position if the ellipsoid of maximal volume contained in K is B n 2 . We say that K is in Löwner position if the ellipsoid of minimal volume that contains K is B n 2 . It was proved by Guédon in [START_REF] Guédon | Sections euclidiennes des corps convexes et inégalités de concentration volumique[END_REF] (see also [START_REF] Guédon | On the symmetric average of a convex body[END_REF]) that if K ∈ K n satisfies g K = 0 and if K ∩(-K) is in Löwner position (which is equivalent to say that B n 2 is the ellipsoid of minimal volume containing K and centered at the origin) then

C 2 (K) ≥ C 2 (∆ n ).
Using the same ideas, we prove the following theorem.

Theorem 1.2. Let K be a convex body in Löwner position. Then

n n + 2 = C 2 (B n 2 ) ≥ C 2 (K) ≥ C 2 (∆ n ) + (n + 1) 2 n(n + 2) |g K | 2 2 = n + (n + 1) 2 |g K | 2 2 n(n + 2) . Moreover, if K is symmetric, then n n + 2 = C 2 (B n 2 ) ≥ C 2 (K) ≥ C 2 (B n 1 ) = 2n (n + 1)(n + 2)
.

Let K be a convex body in John position. Then

n n + 2 = C 2 (B n 2 ) ≤ C 2 (K) ≤ C 2 (n∆ n ) + 2 n + 1 n + 2 |g K | 2 2 = n 2 + 2(n + 1)|g K | 2 2 n + 2 .
Moreover, if K is symmetric, then

n n + 2 = C 2 (B n 2 ) ≤ C 2 (K) ≤ C 2 (B n ∞ ) = n 3 .
The inequalities involving the Euclidean ball in Theorem 1.2 are deduced from the following proposition.

Proposition 1.3. Let K be a convex body.

1. If K ⊂ B n 2 and 0 ∈ K then C 2 (K) ≤ C 2 (B n 2 ) = n n+2 with equality if and only if K = {tx; 0 ≤ t ≤ 1, x ∈ S}, where S ⊂ S n-1 . 2. If K ⊃ B n 2 then C 2 (K) ≥ C 2 (B n 2 ) = n n+2 , with equality if and only K = B n 2 .
In view of Proposition 1.3, it could be conjectured that for every centrally symmetric convex bodies K, L such that K ⊂ L one has C 2 (K) ≤ C 2 (L). But this is not the case. It can be seen already in dimension 2, by taking L = conv((a, 0), (-a, 0), (0, 1), (0, -1)) K = {(x, y) ∈ L; |y| ≤ 1/2} with a large enough. Indeed, C 2 (L) = 1+a and C 2 (K) = 5+15a 2 72 . The paper is organized as follows. In §2, we gather some background material needed in the rest of the paper. We prove Theorem 1.1 in §3, Theorem 1.2 in §4 and Proposition 1.3 in §5.
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Preliminaries

As mentioned before the quantity C 2 (K) is not affine invariant. Let us investigate the behaviour of C 2 (K) under affine transform. We start with translations. For a ∈ R n , and K ∈ K n , one has

C 2 (K -a) = 1 |K| K |x -a| 2 2 dx = C 2 (K) -2 g K , a + |a| 2 2 . Hence C 2 (K -g K ) = C 2 (K) -|g K | 2 2 (3) 3 minimizes C 2 (K -a) among translation a ∈ R n .
Let T be a non-singular linear transform, then

C 2 (T K) = 1 |T K| T K |x| 2 2 dx = 1 |K| K |T x| 2 2 dx.
The preceding quantity may be computed in terms of

C 2 (K) if K is in isotropic position (see below).

Decomposition of identity

Let u 1 , . . . , u N be N points in the unit sphere S n-1 . We say that they form a representation of the identity if there exist c 1 , . . . c N positive integers such that

I = N i=1 c i u i ⊗ u i and N i=1 c i u i = 0.
Notice that in this case, one has, for

x ∈ R n x = N i=1 c i x, u i u i , |x| 2 2 = N i=1 c i x, u i 2 and N i=1 c i = n. (4) 
Moreover, for any linear map T on R n , its Hilbert-Schmidt norm is given by

T 2 HS := tr(T ⋆ T ) = N i=1 c i u i , T ⋆ T u i = N i=1 c i |T u i | 2 2 .
If A is an affine transformation and T its linear part, i.e. A(x) = T (x) + A(0), then

N i=1 c i |Au i | 2 2 = T 2 HS + n|A(0)| 2 2 . (5) Indeed, 
N i=1 c i |Au i | 2 2 = N i=1 c i |T u i + A(0)| 2 2 = T 2 HS + 2 N i=1 c i T u i , A(0) + N i=1 c i |A(0)| 2 2 = T 2 HS + n|A(0)| 2 2 .

John, Löwner and isotropic positions

Let K ∈ K n . Recall that K is in John position if the ellipsoid of maximal volume contained in K is B n 2 and that K is in Löwner position if the ellipsoid of minimal volume that contains K is B n 2 .
The following theorem ( [START_REF] John | Extremum problems with inequalities as subsidiary conditions[END_REF], see also [START_REF] Ball | Ellipsoids of maximal volume in convex bodies[END_REF]) characterizes these positions.

Theorem 2.1. Let K ∈ K n . Then K is in John position if and only if B n 2 ⊆ K and there exist u 1 , . . . , u N ∈ ∂K ∩ S n-1 that form a representation of identity. Also K is in Löwner position if and only if B n 2 ⊇ K and there exist u 1 , . . . , u N ∈ ∂K ∩ S n-1 that form a representation of identity.

Let K ∈ K n . We say that K is in isotropic position if |K| = 1, g K = 0 and K x, θ 2 dx = L 2 K , ∀ θ ∈ S n-1 . ( 6 
) If K is in isotropic position then C 2 (K) = nL 2 K .
Note that the isotropic position is unique up to orthogonal transformations and that for any convex body K ∈ K n there exist an affine transformation A such that AK is in isotropic position (see [START_REF] Milman | Isotropic positions and inertia ellipsoids and zonoids of the unit ball of a normed n-dimensional space[END_REF] or [START_REF] Giannopoulos | Notes on isotropic convex bodies[END_REF]). The quantity L K is called the isotropic constant of K. For any non singular linear transform

T on R n , K x, T x dx = L 2 K trT .
In particular if K is isotropic and T ∈ GL n then

C 2 (T K) = 1 |K| K |T x| 2 2 dx = L 2 K trT * T = T 2 HS n C 2 (K) . (7) 
From the arithmetic geometric inequality, it implies that 3), it gives, as it is well known, that the isotropic position minimizes C 2 (AK) among affine transforms A that preserve volume.

C 2 (T K) ≥ | det(T )| 2 n C 2 (K). With (

Proof of Theorem 1.1

We start with the following Lemma 3.1. For every n 1

C 2 (∆ n ) = 1 n + 2
.

Proof: The volume of the regular simplex ∆ n with vertices u 1 , . . . , u n+1 in S n-1 is

|∆ n | = √ n + 1 n! n + 1 n n 2 . Let f (t) = |{x ∈ ∆ n : x, u 1 = t}|. One has f (t) = n -1 n + 1 n-1 2 |∆ n-1 |(1-t) n-1 1 [-1 n ,1] (t) = |∆ n | n n + 1 n n(1-t) n-1 1 [-1 n ,1] (t) .
Hence, by Fubini

1 |∆ n | ∆ n x, u 1 2 dx = 1 |∆ n | 1 -1 n t 2 f (t)dt = 1 n(n + 2)
.

Since λ∆ n is in isotropic position for some λ > 0 we conclude that

C 2 (∆ n ) = 1 |∆ n | ∆ n |x| 2 2 dx = n |∆ n | ∆ n x, u 1 2 dx = 1 n + 2 . 2 Lemma 3.2. Let S = conv(x 1 , . . . , x n+1 ) ⊂ R n be a non degenerate simplex. Then C 2 (S) = 1 n + 1 n+1 i=1 |x i | 2 2 C 2 (∆ n ) + |g S | 2 2 (1 -C 2 (∆ n )).
In particular, if

1 n + 1 n+1 i=1 |x i | 2 2 ≥ r 2 then C 2 (S) ≥ r 2 C 2 (∆ n ) + n + 1 n + 2 |g S | 2 2 .
Remark: This implies that a non degenerate simplex S = conv(x 1 , . . . , x n+1 ) such

that |x i | 2 ≥ r for all i satisfies C 2 (S) ≥ C 2 (r∆ n ) = r 2 n+2
, with equality if and only if |x i | 2 = r for all i and g S = 0. In dimension 2, these conditions for equality imply that S is regular but in dimension n ≥ 3, it is not the case anymore. For example in dimension 3, if one takes the regular simplex and that one moves symmetrically two vertices along the geodesic between them to make them closer and if one does the same to the two other opposite vertices then the centroid stays at 0 and the vertices stay on the sphere. In any dimension n ≥ 4, one chooses the north pole as the first vertex of our simplex and the n other vertices are the vertices of a simplex in dimension n -1, which is not regular and satisfies the equality case, we put this simplex in an horizontal hyperplane in such a way that the centroid is at 0. Proof. Let A be an affine map such that S = A∆ n and denote by T its linear part. One has g S = Ag ∆ n = A(0), hence A = T + g S and S = g S + T ∆ n . Denote by u i ∈ S n-1 the vertices of ∆ n , so that x i = g S + T u i , for 1 ≤ i ≤ n + 1. Hence, by (3) and ( 7)

C 2 (S) = |g S | 2 2 + C 2 (T ∆ n ) = |g S | 2 2 + T 2 HS n C 2 (∆ n )
Since u 1 , . . . , u n+1 form a decomposition of identity

I = n n + 1 n+1 i=1 u i ⊗ u i , one has T 2 HS = n n + 1 n+1 i=1 |T u i | 2 2 = n n + 1 n+1 i=1 |Au i | 2 2 -n|g S | 2 2 .
Therefore, we get the equality. The inequality is obvious.

Proof of Theorem 1.1 We first consider the case where K is a polytope. Let us prove by induction on the dimension that there exists non degenerate simplices S 1 , . . . , S m with the following properties: K = m i=1 S i , the interiors of S i and S j are mutually disjoint for i = j and the vertices of the S i 's are among the vertices of K.

In dimension two, it is enough to fix a vertex x of K, to consider the edges ∆ 1 , . . . , ∆ m which don't contain x and to choose S i = conv(x, ∆ i ), for i = 1, . . . , m.

Assuming that the property has been proved in dimension n -1, let us prove it in dimension n. We proceed in the same way as in dimension two. Let x be a fixed vertex of K. Let F 1 , . . . , F N be the facets of K which don't contain x. From the induction hypothesis, we can split each of them into simplices with the required properties. Let ∆ 1 , . . . , ∆ m be the collection of these simplices. Then it is not difficult to check that the simplices S i = conv(x, ∆ i ), for i = 1, . . . , m have the required properties. Now we may apply Lemma 3.2 to the S i 's and we get

C 2 (K) = 1 |K| m i=1 |S i |C 2 (S i ) ≥ 1 |K| m i=1 |S i | r 2 C 2 (∆ n ) + n + 1 n + 2 |g Si | 2 2 = r 2 C 2 (∆ n ) + n + 1 n + 2 m i=1 |S i | |K| |g Si | 2 2
Then we use the convexity of the function x → |x| 2 2 to deduce that

C 2 (K) ≥ r 2 C 2 (∆ n ) + n + 1 n + 2 m i=1 |S i | |K| g Si 2 2 = r 2 C 2 (∆ n ) + n + 1 n + 2 |g K | 2 2 .
This proves the inequality. If there is equality then from the strict convexity of the function x → |x| 2 2 one deduces that g Si = g K , for every i. Since the S i 's have disjoint interiors, this implies that there is only one of them. Hence K is a simplex and its vertices have Euclidean norm r. Let us prove the general case. Let K be a convex body such that such that all its extreme points have Euclidean norm greater than r. Then there is a sequence of polytopes (P n ) n converging to K in the Hausdorff metric in K n such that for every n ∈ N , the extreme points of P n have Euclidean norm greater than r. Since C 2 is continuous with respect to the Hausdorff distance we get the inequality for K. 2 4 Proof of Theorem 1.2

As in [START_REF] Guédon | Sections euclidiennes des corps convexes et inégalités de concentration volumique[END_REF], our main tools are the following inequalities proved by Milman-Pajor [START_REF] Milman | Isotropic positions and inertia ellipsoids and zonoids of the unit ball of a normed n-dimensional space[END_REF] in the symmetric case and by Kannan-Lovász and Simonovits [START_REF] Kannan | Isoperimetric problems for convex bodies and a localization lemma[END_REF] in the non-symmetric case. Recall that if K is a convex body and u ∈ R n , the support function of K is defined by

h K (u) = sup x∈K x, u . Lemma 4.1. Let K be a convex body and u ∈ S n-1 . 1) If K is symmetric then 2h K (u) 2 (n + 1)(n + 2) ≤ 1 |K| K x, u 2 dx ≤ h K (u) 2 3 ,
with equality on the left hand side if and only if K is a double-cone in direction u, which means that there exists x in R n and a symmetric convex body L in u ⊥ such that x, u = 0 and K = conv(L, x, -x) and equality in the right hand side if and only if K is cylinder in direction u, which means that there exists x in R n and a symmetric convex body L in u ⊥ such that x, u = 0 and

K = L + [-x, x]. 2) If g K = 0 then h K (u) 2 n(n + 2) ≤ 1 |K| K x, u 2 dx ≤ nh K (u) 2 n + 2 ,
with equality on the left hand side if and only if K is a cone in direction u, which means that there exists x in R n and a convex body L in u ⊥ such that x, u > 0, g L = 0 and K = conv(L, x) -x n and equality in the right hand side if and only if K is cone in direction -u.

Notice that the proof of 1) given in [START_REF] Milman | Isotropic positions and inertia ellipsoids and zonoids of the unit ball of a normed n-dimensional space[END_REF] is beautiful and elementary but the proof of 2) given in [START_REF] Kannan | Isoperimetric problems for convex bodies and a localization lemma[END_REF] is not as simple, it used the much more elaborated tool called the localization lemma. A simple proof of 2) was given in [START_REF] Fradelizi | Inégalités fonctionnelles et volume des sections des corps convexes[END_REF] but since it is not easily available, we reproduce it partially here for completeness.

Proof of of 2):

With a change of variable, we may assume that |K| = 1 and

h K (u) = 1. Let f (t) = |{x ∈ K; x, u = t}|. The support of f is [-h K (-u), h K (u)]
and from Brunn's theorem, f 1/(n-1) is concave on its support. Moreover, from Fubini, for any continuous function

φ on R K φ( x, u )dx = ∞ -∞ φ(t)f (t)dt.
Since |K| = 1 we have f = 1 and since g K = 0, tf (t)dt = 0. Define

g 1 (t) = n n+1 (n + 1) n (1 -t) n-1 1 [-1 n ,1] , g 2 (t) = n (n + 1) n (t + n) n-1 1 [-n,1] .
Then the functions g 1/(n-1) i are affine on their support and satisfy g i = 1 and tg i (t)dt = 0. Let h 1 = fg 1 and h 2 = g 2f . Assume that h i = 0. Since h i = th i = 0, the function h i changes sign at least twice at s i < t i for i = 1, 2. Moreover because of the concavity of f 1/(n-1) , the function h i is negative in (s i , t i ) and positive outside. By looking at its variations, one sees that the function

W i (t) := t -∞ s -∞ h i (x)dxds
is non-negative on its support. Integrating by part twice and assuming that φ is twice differentiable and convex one has

φ(t)h i (t)dt = φ ′′ (t)W i (t)dt ≥ 0.
Therefore φ(t)g 1 (t)dt ≤ φ(t)f (t)dt ≤ φ(t)g 2 (t)dt. For φ(t) = t 2 , we get the inequality. If there is equality for example in the left hand side then W 1 = 0, thus h 1 = 0, hence f = g 1 , from the equality case in Brunn's theorem we deduce that all the sets {x ∈ K; x, u = t} are homothetic.

2

Using Lemma 4.1, we prove the following proposition.

Proposition 4.2. Let K be a convex body such that there exist vectors u

1 , . . . , u m ∈ S n-1 , with h K (u i ) = 1 which form a representation of identity I = m i=1 c i u i ⊗ u i , with m i=1 c i u i = 0. 1) If K is symmetric then 2n (n + 1)(n + 2) = C 2 (B n 1 ) ≤ C 2 (K) ≤ C 2 (B n ∞ ) = n 3 . 
2) In general one has

1 n + 2 + |g K | 2 2 n(n + 2) ≤ C 2 (K) -|g K | 2 2 ≤ n 2 n + 2 + n n + 2 |g K | 2 2 .
Proof: 1) Using the decomposition of identity, we deduce that

C 2 (K) = 1 |K| K |x| 2 2 dx = m i=1 c i 1 |K| K x, u i 2 dx.
We apply the preceding lemma to the vectors u i and use that h

K (u i ) = 1 to get 2n (n + 1)(n + 2) ≤ C 2 (K) ≤ n 3 . For K = B n 1 or K = B n
∞ , the calculation is trivial but we could also check that we are in the case of equality of Lemma 4.1.

2) One has

C 2 (K) -|g K | 2 2 = 1 |K| K-g K |x| 2 2 dx = m i=1 c i 1 |K| K-g K x, u i 2 dx.
We apply the preceding lemma to the vectors u i

C 2 (K) -|g K | 2 2 ≤ m i=1 c i n n + 2 h K-g K (u i ) 2 = n n + 2 m i=1 c i (h K (u i ) -g K , u i ) 2 . Since h K (u i ) = 1 and c i u i = 0 C 2 (K) -|g K | 2 2 ≤ n n + 2 (n + |g K | 2 2 ).
The lower estimate follows in the same way.

Theorem 1.2 follows from Proposition 1.3 and Proposition 4.2.

Proof of Proposition 1.3

We first state and prove a standard lemma that we shall use in the proof. Two changes of variables finish the proof. 2

Proof of Proposition 1.3:

1) Let • K be the gauge function of K, i.e. x K = inf{t > 0; x ∈ tK}, for every x ∈ R n . Since K ⊂ B n 2 one has |x| 2 ≤ x K , for every x ∈ R n . Hence

K |x| 2 2 dx ≤ K x 2 K dx = K x K 0 2tdtdx = 1 0 2t|{x ∈ K; x K ≥ t}|dt = |K| 1 0 2t(1 -t n )dt = |K| n n + 2 .
This gives the inequality. If there is equality then x K = |x| 2 for every x ∈ K hence {x; x K = 1} = K ∩ S n-1 := S therefore K = {tx; 0 ≤ t ≤ 1, x ∈ S}, with S ⊂ S n-1 .

2) Applying Lemma 5.1 to ϕ(t) = t 2 , we deduce that

C 2 (K) = 1 |K| K |x| 2 2 dx ≥ λ 2 C 2 (B n 2 ) = |K| |B n 2 | 2 n C 2 (B n 2 ).
If we assume that K ⊃ B n 2 then it follows that C 2 (K) ≥ C 2 (B n 2 ), with equality if and only if K = B n 2 , which is the content of the second part of Proposition 1.3. 2
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 2 
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 6 

Lemma 5 . 1 . 2 | B n 2 ϕ(λ|x| 2 )dx = n 1 0ϕn 2 ϕ

 5122212 Let K be a Borel set such that 0 < |K| < +∞, ϕ : R + → R + be a non-decreasing function and λ= (|K|/|B n 2 |) 1/n . Then 1 |K| K ϕ(|x| 2 )dx ≥ 1 |B n (λr)r n-1 dr. Proof: One has |λB n 2 | = |K|, hence |K \ (λB n 2 )| = |(λB n 2 ) \ K| Since ϕ is nondecreasing, we deduce that K\(λB n 2 ) ϕ(|x| 2 )dx ≥ ϕ(λ)|K \ (λB n 2 )| = ϕ(λ)|(λB n 2 ) \ K| ≥ (|x| 2 )dx.