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Abstract. In the theory of nonlinear Schrödinger equations, it is expected that the solutions will
either spread out because of the dispersive effect of the linear part of the equation or concentrate
at one or several points because of nonlinear effects. In some remarkable cases, these behaviors
counterbalance and special solutions that neither disperse nor focus appear, the so-called standing

waves. For the physical applications as well as for the mathematical properties of the equation,
a fundamental issue is the stability of waves with respect to perturbations. Our purpose in these
notes is to present various methods developed to study the existence and stability of standing waves.
We prove the existence of standing waves by using a variational approach. When stability holds,
it is obtained by proving a coercivity property for a linearized operator. Another approach based
on variational and compactness arguments is also presented. When instability holds, we show by a
method combining a Virial identity and variational arguments that the standing waves are unstable
by blow-up.
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1 Introduction

In these notes, we consider the following nonlinear Schrödinger equation

i∂tu+ ∆u+ |u|p−1u = 0. (1.1)

Equation (1.1) arises in various physical and biological contexts, for example in non-
linear optics, for Bose-Einstein condensates, in the modelling of the DNA structure,
etc. We refer the reader to [14, 73] for more details on the physical background and
references.

Here, the unknown u is a complex valued function of t ∈ R and x ∈ R
N for N > 1

u : R × R
N → C.

In most of the applications, t stands for the time and x for the space variable, but
sometimes it can be the converse, for example in nonlinear optics. The number i is the
imaginary unit (i2 = −1), ∂t is the first derivative with respect to the time t, ∆ denotes
the Laplacian with respect to the space variable x (∆ =

∑N
j=1

∂2

∂x2
j

). Finally, p ∈ R is

such that p > 1, which means that the equation is superlinear.
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To simplify the exposition, we have restricted ourselves to the study of nonlinear
Schrödinger equations with a power-type nonlinearity, but one can also consider more
general versions of these equations, see [14, 73] and the references cited therein.

The purpose of theses notes is to study the properties of particular solutions of (1.1)
of the form eiωtϕ(x) with ω ∈ R and ϕ satisfying

− ∆ϕ+ ωϕ− |ϕ|p−1ϕ = 0. (1.2)

Such solutions are called standing waves. They are part of a more general class of
solutions arising for various nonlinear equations like Korteweg-de Vries, Klein-Gordon
or Kadomtsev-Petviashvili equations. These equations enjoy special solutions whose
profile remains unchanged under the evolution in time. These special solutions are
called solitary waves or solitons (see [14, 18, 20, 73] for an overview of physical and
mathematical questions around solitary waves).

This kind of phenomena was discovered in 1834 by John Scott Russel. The Scottish
engineer was supervising work in a canal near Edinburgh when he observed that the
brutal stop of a boat in the canal was creating a wave that does not seem to vanish.
Indeed, he was able to follow this wave horseback on a distance of several miles. His
life long, he studied this surprising phenomenon but without being able to give it a
theoretical justification. In fact, most of the scientists of that time did believe that such
a wave, which does not disperse, could not exist. The first theoretical justification of the
existence of solitary waves was given by Korteweg and de Vries in 1895. They derived
an equation for the motion of water admitting solitary wave solutions. But one had to
wait until the 1950’s to see the beginning of an intensive research from mathematicians
and physicists about solitary waves.

Heuristically, such solutions appear because of the balance of two contradictory
effects: the dispersive effect of the linear part, which tends to flatten the solution as
time goes on (see Figure 1), and the focusing effect of the nonlinearity, which tends to
concentrate the solution, provided the initial datum is large enough (see Figure 2). For

Figure 1. Dispersive effect.

some special initial data, each effect compensates the other and the general profile of
the initial data remains unchanged (see Figure 3).

In the study of standing waves, two types of questions arise naturally.

(i) Do standing waves exist, i.e. does (1.2) admit nontrivial solutions? If yes, what
kind of properties for the solutions of (1.2) can be shown: Are they regular, what
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Figure 2. Focusing effect.

Figure 3. Balance between dispersion and focusing.

is their decay at infinity, can we find variational characterizations for at least some
of these solutions?

(ii) If standing waves exist, are they stable (in a sense to be made precise) as solutions
of (1.1)? If they are unstable, what is the nature of instability?

The first type of questions is related to the study of existence of solutions for semili-
near elliptic problems. The methods used in this context are often of variational nature
and solutions are obtained by minimization under constraint or with min-max argu-
ments. The second type of questions concerns the dynamics of the evolution equation.
Nevertheless, both problems are intimately related. Indeed, informations of variational
nature on the solutions of the stationary equation are essential to derive stability or
instability results.

The rest of these notes is divided into four sections and an appendix. We first give
basic results on the Cauchy problem for (1.1) in Section 2. In Section 3, we study the
existence of standing waves. Section 4 is devoted to stability whereas Section 5 deals
with instability. The proof of a stability criterion is given in the appendix.

Notations. The space of complex measurable functions whose r-th power is integrable
will be denoted by Lr(RN ) and its standard norm by ‖ · ‖Lr(RN ). When r = 2, the
space L2(RN ) will be endowed with the real inner product

(u, v)2 = Re
∫

RN

uv̄dx for u, v ∈ L2(RN ).
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The space of functions from Lr(RN ) whose distribution derivatives of order less than
or equal to m are elements of Lr(RN ) will be denoted by Wm,r(RN ). If m = 1 and
r = 2, we shall denote W 1,2(RN ) by H1(RN ), its usual norm by ‖ · ‖H1(RN ) and the
duality product between the dual space H−1(RN ) and H1(RN ) by 〈·, ·〉. If m = r = 2,
we denote W 2,2(RN ) by H2(RN ).

For notational convenience, we shall sometimes identify a function and its value at
some point. For example, we shall write eiωtϕ(x) for the function (t, x) 7→ eiωtϕ(x).
Similarly, we shall say that |x|v ∈ L2(RN ) if the function x 7→ |x|v(x) belongs to
L2(RN ). For a solution u of (1.1) we shall denote by u(t) the function x 7→ u(t, x).
Therefore, depending on the context, u may denote either a map from R to some func-
tional space or a map from R × R

N to C.
We make the convention that when we take a subsequence of a sequence (vn) we

denote it again by (vn).
The letter C will denote various positive constants whose exact values may change

from line to line but are not essential in the course of the analysis.

2 The Cauchy problem

For the physical properties of the model as well as for the mathematical study of the
equation, it is interesting to look for quantities conserved along the time. At least
formally, equation (1.1) admits three conserved quantities. The first one is the mass or
charge: If u satisfies (1.1) with initial datum u(0) = u0 then

Q(u(t)) :=
1
2
‖u(t)‖2

L2(RN ) = Q(u0). (2.1)

The conservation of mass is obtained from multiplying (1.1) with ū, integrating over
R
N and taking the imaginary part. The second conserved quantity is the energy (mul-

tiply (1.1) by ∂tū, integrate over R
N and take the real part),

E(u(t)) :=
1
2
‖∇u(t)‖2

L2(RN ) −
1

p+ 1
‖u(t)‖p+1

Lp+1(RN )
= E(u0). (2.2)

Finally, multiplying (1.1) by ∇ū, integrating over R
N and taking the real part, we

obtain the conservation of momentum,

M(u(t)) := Im
∫

RN

u(t)∇ū(t)dx = M(u0).

Among these three conserved quantities, the mass and the energy are real-valued, but
the momentum may be complex-valued, which makes it less convenient to use.

To benefit from the conserved quantities, it is natural to search solutions of (1.1)
in function spaces where these quantities are well-defined. Consequently, we look
for solutions of (1.1) in H1(RN ) and restrict the range of p to be subcritical for the
Sobolev embedding of H1(RN ) into Lp+1(RN ), i.e. 1 < p < 1 + 4

N−2 if N > 3 and
1 < p < +∞ if N = 1, 2. Then we have the following result concerning the well-
posedness of the Cauchy problem for (1.1) (see [14] and the references cited therein).
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Proposition 2.1. Let 1 < p < 1 + 4
N−2 if N > 3 and 1 < p < +∞ if N = 1, 2. For

every u0 ∈ H1(RN ) there exists a unique maximal solution u of (1.1), Tmin ∈ [−∞, 0),
Tmax ∈ (0,+∞] such that u(0) = u0 and

u ∈ C((Tmin, T
max);H1(RN )) ∩ C1((Tmin, T

max);H−1(RN )).

Furthermore, we have the conservation of charge, energy and momentum: For all

t ∈ (Tmin, T
max),

Q(u(t)) = Q(u0), E(u(t)) = E(u0), M(u(t)) = M(u0). (2.3)

Finally, we have the blow-up alternative:

• If Tmin > −∞, then limt↓Tmin ‖∇u(t)‖2
L2(RN ) = +∞.

• If Tmax < +∞, then limt↑Tmax ‖∇u(t)‖2
L2(RN ) = +∞.

From now on, it will be understood that 1 < p < 1+ 4
N−2 ifN > 3 and 1 < p < +∞

if N = 1, 2.
In view of Proposition 2.1, it is natural to ask under which circumstances global

existence holds or blow-up occurs. The following proposition gives an answer to the
question of global existence.

Proposition 2.2. If 1 < p < 1 + 4
N , then (1.1) is globally well-posed, i.e. for any

solution u given by Proposition 2.1, Tmin = −∞ and Tmax = +∞.

The proof of Proposition 2.2 relies on the Gagliardo-Nirenberg inequality (see [1]):
There exists a constant C > 0 such that for all v ∈ H1(RN )

‖v‖p+1
Lp+1(RN )

6 C‖∇v‖
N(p−1)

2
L2(RN )

‖v‖p+1−N(p−1)
2

L2(RN )
. (2.4)

Proof of Proposition 2.2. Let 1 < p < 1 + 4
N and u be a solution of (1.1) as in Propo-

sition 2.1. We prove the assertion by contradiction. Assume that Tmax < +∞ and
therefore limt↑Tmax ‖∇u(t)‖2

L2(RN ) = +∞. By (2.4) we have

E(u(t)) > ‖∇u(t)‖2
L2(RN )

(

1
2
− C‖∇u(t)‖

N(p−1)
2 −2

L2(RN )
‖u(t)‖p+1−N(p−1)

2
L2(RN )

)

.

In view of the conservation of charge and energy (see (2.3)), this implies

‖∇u(t)‖2
L2(RN )

(

1 − ‖∇u(t)‖
N(p−1)

2 −2
L2(RN )

)

< C for all t ∈ (Tmin, T
max). (2.5)

Now, since p < 1 + 4
N , we have N(p−1)

2 − 2 < 0 and thus letting ‖∇u(t)‖2
L2(RN ) go to

+∞ when t goes to Tmax leads to a contradiction in (2.5). Arguing in the same way if
Tmin > −∞ leads to the same contradiction and completes the proof.

Concerning blow-up, we can give the following sufficient condition.
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Proposition 2.3. Assume that p > 1 + 4
N and let u0 ∈ H1(RN ) be such that

|x|u0 ∈ L2(RN ) and E(u0) < 0.

Then the solution u of (1.1) corresponding to u0 blows up in finite time for positive and

negative time, that is

Tmin > −∞ and Tmax < +∞.

The proof of Proposition 2.3 relies on the Virial Theorem (the term “Virial Theo-
rem” comes from the analogy to the Virial Theorem in classical mechanics).

Proposition 2.4 (Virial Theorem). Let u0 ∈ H1(RN ) be such that |x|u0 ∈ L2(RN )
and let u be the solution of (1.1) corresponding to u0. Then |x|u(t) ∈ L2(RN ) for all

t ∈ (Tmin, T
max) and the function f : t 7→ ‖xu(t)‖2

L2(RN ) is of class C2 and satisfies

f ′(t) = 4Im
∫

RN

ū(t)x · ∇u(t)dx,

f ′′(t) = 8P (u(t)),

where P is given for v ∈ H1(RN ) by

P (v) := ‖∇v‖2
L2(RN ) −

N(p− 1)

2(p+ 1)
‖v‖p+1

Lp+1(RN )
. (2.6)

The Virial Theorem comes from the work of Glassey [31] in which the identities
for f ′ and f ′′ were formally derived. For a rigorous proof, see [14].

Proof of Proposition 2.3. First, we remark that

P (u(t)) = 2E(u(t)) +
4 −N(p− 1)

2(p+ 1)
‖u(t)‖p+1

Lp+1(RN )
.

Since p > 1 + 4
N , we have in view of the conservation of energy (see (2.3))

P (u(t)) 6 2E(u(t)) = 2E(u0) < 0 for all t ∈ (Tmin, T
max).

Therefore, by Proposition 2.4, we have

d2

dt2
‖xu(t)‖2

L2(RN ) 6 16E(u0) for all t ∈ (Tmin, T
max).

Integrating twice in time gives

‖xu(t)‖2
L2(RN ) 6 8E(u0)t

2 +

(

4Im
∫

RN

ū0x · ∇u0dx

)

t+ ‖xu0‖2
L2(RN ). (2.7)

The right member of (2.7) is a polynomial of order two with the main coefficient neg-
ative. Hence for |t| large the right-hand side of (2.7) becomes negative, which is in
contradiction with ‖xu(t)‖2

L2(RN ) > 0. This implies Tmin > −∞ and Tmax < +∞ and
finishes the proof.
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3 Existence, uniqueness and properties of solitons

We will use the following definition of standing waves for (1.1).

Definition 3.1. A standing wave or soliton of (1.1) is a solution of the form eiωtϕ(x)
with ω ∈ R and ϕ satisfying

{

−∆ϕ+ ωϕ− |ϕ|p−1ϕ = 0,
ϕ ∈ H1(RN ) \ {0}. (3.1)

Many techniques have been developed to study the existence of solutions to prob-
lems of type (3.1) (see e.g. [3]). In this section, we look for solutions of (3.1) by using
variational methods (see e.g. [71] for a general overview).

For the study of solutions of (3.1), we define a functional S : H1(RN ) → R by
setting for v ∈ H1(RN )

S(v) :=
1
2
‖∇v‖2

L2(RN ) +
ω

2
‖v‖2

L2(RN ) −
1

p+ 1
‖v‖p+1

Lp+1(RN )
.

The functional S is often called action. It is standard that S is of class C2 (see, for
example, [78]) and for v ∈ H1(RN ) the Fréchet derivative of S at v is given by

S′(v) = −∆v + ωv − |v|p−1v.

Therefore, ϕ is a solution of (3.1) if and only if ϕ ∈ H1(RN ) \ {0} and S′(ϕ) = 0. In
other words, the nontrivial critical points of S are the solutions of (3.1). Therefore, to
prove existence of solutions of (3.1) it is enough to find a nontrivial critical point of S.

This section is divided as follows. First, we prove that if solutions to (3.1) exist
then they are regular, exponentially decaying at infinity and satisfy some functional
identities. Next, we prove the existence of a nontrivial critical point of S. Finally, we
derive various variational characterizations for some special solutions of (3.1).

3.1 Preliminaries

Before studying existence of solutions to (3.1), it is convenient to prove that, if such
solutions exist, they necessarily enjoy the following properties.

Proposition 3.2. Let ω > 0. If ϕ ∈ H1(RN ) satisfies (3.1), then ϕ is regular and

exponentially decaying. More precisely

(i) ϕ ∈W 3,r(RN ) for all r ∈ [2,+∞), in particular ϕ ∈ C2(RN );

(ii) there exists ε > 0 such that eε|x|(|ϕ| + |∇ϕ|) ∈ L∞(RN ).

Sketch of proof. Point (i) follows from the usual elliptic regularity theory by a boot-
strap argument (see [30]). We just indicate how to initiate the bootstrap and refer to
[14] for a detailed proof. Let ϕ be a solution of (3.1). Suppose that ϕ ∈ Lq(RN ) for
some q > p. Since |ϕ|p−1ϕ ∈ L

q

p (RN ) and ϕ satisfies

− ∆ϕ+ ωϕ = |ϕ|p−1ϕ, (3.2)
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it follows that ϕ ∈ W 2, q

p (RN ). Choosing any q ∈ (p,+∞) if N = 1, 2 and q = 2N
N−2

if N > 3 and repeating the previous argument recursively, we obtain after a finite
number of steps that ϕ ∈ W 2,r(RN ) for any r ∈ [2,+∞). This implies that |ϕ|p−1ϕ ∈
W 1,r(RN ) for any r ∈ [2,+∞) and it follows from (3.2) that ϕ ∈ W 3,r(RN ) for all
r ∈ [2,+∞), hence (i).

If ϕ is radial, i.e. ϕ(x) = ϕ(|x|), then ϕ satisfies

−ϕ′′ − N − 1
r

ϕ′ + ωϕ− |ϕ|p−1ϕ = 0.

Here, we have employed that ∆ϕ = ϕ′′ + N−1
r ϕ′ if ϕ is radial. In this case, the

exponential decay at infinity of ϕ follows from the classical theory of second order
ordinary differential equations (see, for example, [37]). See [14] for a proof of (ii) for
non-radial solutions of (3.1).

Lemma 3.3. If ϕ ∈ H1(RN ) satisfies (3.1), then the following identities hold:

‖∇ϕ‖2
L2(RN ) + ω‖ϕ‖2

L2(RN ) − ‖ϕ‖p+1
Lp+1(RN )

= 0, (3.3)

‖∇ϕ‖2
L2(RN ) −

N(p− 1)

2(p+ 1)
‖ϕ‖p+1

Lp+1(RN )
= 0. (3.4)

In the literature, (3.4) is called the Pohozaev identity, since it was first derived by
Pohozaev in 1965, see [64]. Actually, one can obtain this type of identity for a large
class of nonlinearities, see [9]. The set

{v ∈ H1(RN ); v 6= 0, ‖∇v‖2
L2(RN ) + ω‖v‖2

L2(RN ) − ‖v‖p+1
Lp+1(RN )

= 0} (3.5)

is called the Nehari manifold.

Proof of Lemma 3.3. Let ϕ ∈ H1(RN ) be a solution of (3.1).
To obtain (3.3), we simply multiply (3.1) by ϕ̄ and integrate over R

N .
For the proof of (3.4), recall first that we have defined in the beginning of this

section a C2-functional S : H1(RN ) → R by setting for v ∈ H1(RN )

S(v) :=
1
2
‖∇v‖2

L2(RN ) +
ω

2
‖v‖2

L2(RN ) −
1

p+ 1
‖v‖p+1

Lp+1(RN )

and that if ϕ is a solution of (3.1) then S′(ϕ) = 0.
For λ > 0, let ϕλ(·) := λN/2ϕ(λ·). It follows from straightforward calculations

that
‖∇ϕλ‖2

L2(RN ) = λ2‖∇ϕ‖2
L2(RN ), ‖ϕλ‖2

L2(RN ) = ‖ϕ‖2
L2(RN ),

and ‖ϕλ‖p+1
Lp+1(RN )

= λ
N(p−1)

2 ‖ϕ‖p+1
Lp+1(RN )

.

On the one hand, we have

S(ϕλ) =
λ2

2
‖∇ϕ‖2

L2(RN ) +
ω

2
‖ϕ‖2

L2(RN ) −
λ

N(p−1)
2

p+ 1
‖ϕ‖p+1

Lp+1(RN )
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and
∂

∂λ
S(ϕλ)∣

∣λ=1
= ‖∇ϕ‖2

L2(RN ) −
N(p− 1)

2(p+ 1)
‖ϕ‖p+1

Lp+1(RN )
. (3.6)

On the other hand, we have

∂

∂λ
S(ϕλ)∣

∣λ=1
=

〈

S′(ϕ),
∂ϕλ
∂λ

∣

∣λ=1

〉

(3.7)

and, since ϕ is solution of (3.1), S′(ϕ) = 0, which implies

∂

∂λ
S(ϕλ)∣

∣λ=1
= 0. (3.8)

Combining (3.6) and (3.8) proves (3.4).
Note that the right-hand side of (3.7) is well-defined for ω > 0 since ∂ϕλ

∂λ
∣

∣λ=1
=

1
2ϕ+ x · ∇ϕ is in H1(RN ) because of the regularity and exponential decay of ϕ stated
in Proposition 3.2. If ω 6 0, the previous calculations are only formal. However, it is
possible to give a rigorous proof of (3.4) also for ω 6 0, see [9].

From Lemma 3.3 it is easy to derive a necessary condition for the existence of
solutions to (3.1).

Corollary 3.4. If ω 6 0 then (3.1) has no solution.

Proof. We prove the assertion by contradiction. Let ω 6 0 and suppose that (3.1) has
a solution ϕ ∈ H1(RN ). By (3.3) and (3.4), ϕ satisfies

(N − 2)p− (N + 2)

2(p+ 1)
‖ϕ‖p+1

Lp+1(RN )
= −ω‖ϕ‖2

L2(RN ). (3.9)

Since p < 1 + 4
N−2 if N > 3 and p < +∞ if N = 1, 2, the left-hand side of (3.9) is

negative for any N , whereas the right-hand side is non negative by assumption, which
is a contradiction.

In the rest of these notes, it will be understood that ω > 0.

3.2 Existence

Our main result in this section is the following.

Theorem 3.5. There exists a nontrivial critical point ϕω of S, that is a solution of (3.1).

Several techniques are available to prove the existence of a nontrivial critical point
of S. The functional S is clearly unbounded from above and below, and this prevents to
find a critical point simply by global minimization or maximization. To overcome this
difficulty, other techniques based on minimization under constraint were developed
(see e.g. [8, 9, 17, 64, 70] and the references cited therein). In what follows, we
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present a different approach based on the Mountain Pass Theorem of Ambrosetti and
Rabinowitz [4] and somehow inspired from [38]. This approach was suggested to us
by Louis Jeanjean. We first prove that the functional S has a Mountain Pass geometry.
Thus there exists a Palais-Smale sequence at this level. It clearly converges to a critical
point of S weakly in H1(RN ). Proving that this sequence is non-vanishing and taking
advantage of the translation invariance of (3.1) we get the existence of a nontrivial
critical point.

We define the Mountain Pass level c by setting

c := inf
γ∈Γ

max
s∈[0,1]

S(γ(s)) (3.10)

where Γ is the set of admissible paths:

Γ := {γ ∈ C([0, 1];H1(RN )); γ(0) = 0, S(γ(1)) < 0}. (3.11)

Lemma 3.6. The functional S has a Mountain Pass geometry, i.e. Γ 6= ∅ and c > 0.

Proof. Let v ∈ H1(RN ) \ {0}. Then, for any s > 0,

S(sv) =
s2

2
(‖∇v‖2

L2(RN ) + ω‖v‖2
L2(RN )) −

sp+1

p+ 1
‖v‖p+1

Lp+1(RN )
,

and it is clear that if s is large enough then S(sv) < 0. Let C > 0 be such that S(Cv) <
0 and γ : [0, 1] → H1(RN ) be defined by γ(s) := Csv. Then γ ∈ C([0, 1];H1(RN )),
γ(0) = 0 and S(γ(1)) < 0 ; thus γ ∈ Γ and Γ is nonempty. Now, we clearly have

S(v) >
min{1, ω}

2
‖v‖2

H1(RN ) −
1

p+ 1
‖v‖p+1

Lp+1(RN )

and by the continuous embedding of H1(RN ) into Lp+1(RN ) we find

S(v) >
min{1, ω}

2
‖v‖2

H1(RN ) −
C

p+ 1
‖v‖p+1

H1(RN )
.

Let ε > 0 be small enough to have

δ :=
min{1, ω}ε2

2
− Cεp+1

p+ 1
> 0.

Then for any v ∈ H1(RN ) with ‖v‖H1(RN ) < ε, we have S(v) > 0. This implies
that for any γ ∈ Γ, we have ‖γ(1)‖H1(RN ) > ε, and by continuity of γ there exists
sγ ∈ [0, 1] such that ‖γ(sγ)‖H1(RN ) = ε. Therefore,

max
s∈[0,1]

S(γ(s)) > S(γ(sγ)) > δ > 0.

This implies for the Mountain Pass level c defined in (3.10) that

c > δ > 0,

and thus S has a Mountain Pass geometry.
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Combined with Ekeland’s variational principle (see e.g. [78]), Lemma 3.6 imme-
diately implies the existence of a Palais-Smale sequence at the Mountain Pass level.
More precisely:

Corollary 3.7. There exists a Palais-Smale sequence (un) ⊂ H1(RN ) for S at the

Mountain Pass level c, i.e. (un) satisfies, as n→ +∞,

S(un) → c and S′(un) → 0. (3.12)

To find a critical point for S, we proceed now in two steps: First, we prove that the
sequence (un) is, following the terminology of the concentration-compactness theory
of Lions, non-vanishing; Second, we prove that, up to translations, (un) converges
weakly in H1(RN ) to a nontrivial critical point of S.

Lemma 3.8. The Palais-Smale sequence (un) is non-vanishing: There exist ε > 0,

R > 0 and a sequence (yn) ∈ R
N such that for all n ∈ N we have

∫

BR(yn)

|un|2dx > ε, (3.13)

where BR(y) := {z ∈ R
N : |y − z| < R}.

To prove Lemma 3.8, we will use the following lemma, which is a kind of Sobolev
embedding result (see [50]).

Lemma 3.9. Let R > 0. Then there exists α > 0 and C > 0 such that for any

v ∈ H1(RN ) we have

‖v‖p+1
Lp+1(RN )

6 C

(

sup
y∈RN

∫

BR(y)

|v|2dx
)α

‖v‖2
H1(RN ).

Proof. Let (Qk)k∈N be a sequence of open cubes of R
N of same volume such that

Qk ∩ Ql = ∅ if k 6= l, ∪k∈NQk = R
N and for each k there exists yk with Qk ⊂

BR(yk). By Hölder’s inequality and the embedding of H1(Qk) into Lp+1(Qk), there
exists C > 0 independent of k such that for any v ∈ H1(RN ) we have

∫

Qk

|v|p+1dx 6 C

(∫

Qk

|v|2dx
)α ∫

Qk

(

|∇v|2 + |v|2
)

dx.

with α = N
p+1 − N−2

2 if N > 3 and α = 1 if N = 1, 2. Summing over k ∈ N, this
implies that

‖v‖p+1
Lp+1(RN )

6 C

(

sup
k∈N

∫

Qk

|v|2dx
)α

‖v‖2
H1(RN ).

Now, since for any k there exists yk with Qk ⊂ BR(yk) the conclusion follows.
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Proof of Lemma 3.8. We prove the result by contradiction. Assume that the Palais-
Smale sequence (un) is vanishing, that is for all R > 0 we have

lim
n→+∞

sup
y∈RN

∫

BR(y)

|un|2dx = 0. (3.14)

Let ε > 0. For n large enough, we have
(

supy∈RN

∫

BR(y) |un|2dx
)

< ε thanks to

(3.14). Then Lemma 3.9 implies that, still for n large enough,

S(un) >
1
2
‖∇un‖2

L2(RN ) +
ω

2
‖un‖2

L2(RN ) − ε‖un‖2
H1(RN ),

and therefore

S(un) >

(

min{1, ω}
2

− ε

)

‖un‖2
H1(RN ).

Consequently, taking ε < min{1,ω}
2 , we infer that

(un) is bounded in H1(RN ), (3.15)

which allows to get
〈S′(un), un〉 → 0 as n→ +∞. (3.16)

Combining (3.15) with (3.14) and Lemma 3.9 implies

lim
n→+∞

‖un‖p+1
Lp+1(RN )

= 0.

Consequently, we have

S(un) −
1
2
〈S′(un), un〉 = − p− 1

2(p+ 1)
‖un‖p+1

Lp+1(RN )
→ 0 as n→ +∞. (3.17)

On the other hand, we infer from (3.12) and (3.16) that

S(un) −
1
2
〈S′(un), un〉 → c as n→ +∞,

which is a contradiction with (3.17) since c > 0. Hence, (un) is non-vanishing.

Proof of Theorem 3.5. Let vn := un(·+ yn), where (un) is given by Corollary 3.7 and
(yn) by Lemma 3.8. Since the functional S is invariant under translations in space,
(vn) is still a Palais-Smale sequence for S:

S(vn) → c and S′(vn) → 0. (3.18)

From (3.15) we infer that (vn) is bounded in H1(RN ). Thus there exists v ∈ H1(RN )
such that, possibly for a subsequence only, vn ⇀ v weakly in H1(RN ). From (3.18),
we infer that S′(v) = 0, i.e. v is a critical point for S. To show that v is nontrivial,
we remark that, since the embedding H1(BR(0)) →֒ L2(BR(0)) is compact, (3.13)
implies v 6≡ 0. Setting ϕω := v finishes the proof.
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The following corollary will be useful in the next subsection.

Corollary 3.10. The critical point ϕω is below the level c, i.e. S(ϕω) 6 c.

Proof. First, since S′(ϕω) = 0, we have

S(ϕω) = S(ϕω) − 1
p+ 1

〈S′(ϕω), ϕω〉

=
p− 1

2(p+ 1)

(

‖∇ϕω‖2
L2(RN ) + ω‖ϕω‖2

L2(RN )

)

.

By virtue of weak convergence of (vn) towards ϕω in H1(RN ), this gives

S(ϕω) 6
p− 1

2(p+ 1)
lim inf
n→+∞

(

‖∇vn‖2
L2(RN ) + ω‖vn‖2

L2(RN )

)

. (3.19)

As in (3.16), we have
〈S′(vn), vn〉 → 0 as n→ +∞

and combining with (3.18) and (3.19), we obtain

S(ϕω) 6 lim inf
n→+∞

(

S(vn) −
1

p+ 1
〈S′(vn), vn〉

)

= c,

which completes the proof.

3.3 Variational characterizations

Among the solutions of (3.1), some are of particular interest.

Definition 3.11. A solution ϕ of (3.1) is said to be a ground state or least energy so-

lution if S(ϕ) 6 S(v) for any solution v of (3.1). We define the least energy level m
by

m := inf{S(v); v is a solution of (3.1)}. (3.20)

The set of all least energy solutions is denoted by G:

G := {v ∈ H1(RN ); v is a solution of (3.1) and S(v) = m}. (3.21)

Ground states play an important role in the theory of nonlinear Schrödinger equa-
tions. In particular, in the critical case p = 1+ 4

N , they appear in an essential way in the
derivation of global existence results (see [75]) and in the description of the blow-up
phenomenon (see [57, 58, 59, 60] and the references cited therein).

Proposition 3.12. The solution ϕω of (3.1) found in Theorem 3.5 is a ground state and

it is at the Mountain Pass level c (defined in (3.10)):

S(ϕω) = m = c.
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In addition, ϕω is a minimizer of S on the Nehari manifold (see (3.5)), i.e. it solves the

following minimization problem

d := min{S(v); v ∈ H1(RN ) \ {0}, I(v) = 0} (3.22)

where I(v) := ‖∇v‖2
L2(RN ) + ω‖v‖2

L2(RN ) − ‖v‖p+1
Lp+1(RN )

.

The various variational characterizations of the critical point ϕω of S as a ground
state or as a minimizer of S on the Nehari manifold will be useful when we will deal
with the stability or instability issues.

Before proving Proposition 3.12, we need some preparation.

Lemma 3.13. The following inequality holds:

c 6 d, (3.23)

where c is the Mountain Pass level defined in (3.10) and d is given by (3.22).

Proof. Let v ∈ H1(RN ) \ {0} be such that I(v) = 0. Following [41, 42, 65], the idea
is to construct a path γ in Γ (recall that Γ was defined in (3.11)) such that S reaches its
maximum on γ at v. From the proof of Lemma 3.6, we know that for C large enough
the path γ : [0, 1] → H1(RN ) defined by γ(s) := Csv belongs to Γ. It is easy to see
that

∂

∂s
S(sv) = s(‖∇v‖2

L2(RN ) + ω‖v‖2
L2(RN ) − sp−1‖v‖p+1

Lp+1(RN )
).

Therefore, we have at s = 1

∂

∂s
S(sv)∣

∣s=1
= I(v) = 0,

and consequently,

∂

∂s
S(sv) > 0 if s ∈ (0, 1),

∂

∂s
S(sv) < 0 if s ∈ (1,+∞).

Thus S reaches its maximum on γ at v. This implies

c 6 S(v) for all v ∈ H1(RN ) \ {0} such that I(v) = 0,

which finishes the proof.

Proof of Proposition 3.12. We first recall that, by Corollary 3.10, we have

S(ϕω) 6 c (3.24)

and by Lemma 3.13,
c 6 d. (3.25)
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Now, we remark that, since by (3.3) any solution v of (3.1) satisfies I(v) = 0, we have

d 6 m. (3.26)

Since ϕω is a solution of (3.1), it follows from the definition of the least energy level
m (see (3.20)) that

m 6 S(ϕω). (3.27)

Combining (3.24)–(3.27) gives

S(ϕω) = c = d = m

and completes the proof.

Remark 3.14. For general nonlinearities, the equality m = c between the Mountain
Pass level and the least energy level always holds (see [41, 42]).

3.4 Uniqueness

It turns out that we are able to describe explicitly the set G of ground states (see (3.21)).

Theorem 3.15. There exists a real-valued, positive, spherically symmetric and de-

creasing function Ψ ∈ H1(RN ) such that

G = {eiθΨ(· − y); θ ∈ R, y ∈ R
N}.

Therefore, the ground state is unique up to translations and phase shifts. It would
exceed the scope of these notes to give a proof of Theorem 3.15 and we just indicate
some references. First, a simple and general proof that any complex-valued ground
state ϕ is of the form eiθϕ̃ with θ ∈ R and ϕ̃ a real positive ground state was recently
given in [16] (see also [36]). The fact that all real positive ground states of (3.1) are
radial up to translations was first proved by Gidas, Ni and Nirenberg in 1979 (see [29])
by using the so-called moving planes method. Alternatively, the same result can be
deduce by the method of Lopes [54] which relies on symmetrizations with respect to
suitably chosen hyperplanes combined with a unique continuation theorem. Recently,
Maris [55] developed for the symmetry of minimizers for a large class of problems a
new method that furnishes a simpler proof of radial symmetry of real ground states, see
[12], without even assuming a priori that they are positive. Uniqueness follows from a
result of Kwong [47] in 1989.

Remark 3.16. When N = 1, it turns out that the set of all solutions of (3.1) (not only
those of least energy) is precisely the set of ground states

G = {eiθΨ(· − y); θ ∈ R, y ∈ R
N} = {v; v is a solution of (3.1) }.

Moreover, we are able to give an explicit formula for Ψ:

Ψ(x) =

[

(p+ 1)ω

2
sech2

(

(p− 1)
√
ω

2
x

)]
1

p−1

.

For p = 3 and ω = 1, the shape of Ψ is given in Figure 4.
In higher dimensions, it is known that there exist solutions of (3.1) that are not

ground states (see [8, 10, 52]) and no explicit solution is available.
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Figure 4. The function Ψ for N = 1, p = 3 and ω = 1.

4 Stability

In this section, we will prove that for ϕ ∈ G the standing wave eiωtϕ(x) is stable (in a
sense to be made precise) if 1 < p < 1 + 4

N .
In his report of 1844 [67], Russel was already mentioning the observed remarkable

stability properties of solitary waves. From the mathematical point of view, the concept
of stability that comes naturally in mind for the standing waves eiωtϕ(x) of (1.1) is
stability in the sense of Lyapunov, which means uniformly continuous dependence of
the initial data: For all ε > 0 there exists δ > 0 such that for all u0 ∈ H1(RN ),

‖u0 − ϕ‖H1(RN ) < δ =⇒ ‖u(t) − eiωtϕ‖H1(RN ) < ε for all t,

where u is the maximal solution of (1.1) with u(0) = u0. However, with this definition,
all standing waves would be unstable (see Remark 4.2), which is contradictory with
what is observed for such phenomena. Therefore, we have to look for a different notion
of stability.

The main reason for standing waves being unstable in the sense of Lyapunov is
that (1.1) admits translation and phase shift invariance: If u = u(t, x) is a solution of
(1.1) then for all θ ∈ R and y ∈ R

N , eiθu(·, · − y) is still a solution of (1.1). In some
sense, the equation does not prescribe the behavior of the solutions in the “direction”
of translations and phase shifts. To take this fact into account, we define the concept of
orbital stability, which is Lyapunov stability up to translations and phase shifts.

Definition 4.1. Let ϕ be a solution of (3.1). The standing wave eiωtϕ(x) is said to be
orbitally stable in H1(RN ) if for all ε > 0 there exists δ > 0 such that if u0 ∈ H1(RN )
satisfies ‖u0 − ϕ‖H1(RN ) < δ, then the maximal solution u(t) of (1.1) with u(0) = u0

exists for all t ∈ R and

sup
t∈R

inf
θ∈R

inf
y∈RN

‖u(t) − eiθϕ(· − y)‖H1(RN ) < ε.

Otherwise, the standing wave is said to be unstable.
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Remark 4.2. The concept of orbital stability is optimal in the following sense (see
[14, 15]).

• Space translations are necessary: For a solution ϕ of (3.1), ε > 0 and y ∈ R
N

with |y| = 1, let ϕε(x) := eiεx·yϕ(x). Then it is easy to check that the solution of
(1.1) with initial datum ϕε is

uε(t, x) = eiε(x·y−εt)eiωtϕ(x− 2εty).

We clearly have ϕε → ϕ in H1(RN ) as ε→ 0, but for any ε > 0

sup
t∈R

inf
θ∈R

‖uε(t) − eiθϕ‖H1(RN ) = 2‖ϕ‖H1(RN ).

Conversely, note that if we consider (1.1) in the subspace of H1(RN ) consist-
ing of radial functions, then no space translation can occur and we can omit the
translations in the definition of orbital stability.

• Phase shifts are necessary: For a solution ϕ of (3.1) and ε > 0, let ϕε(x) :=
(1 + ε)

1
p−1ϕ((1 + ε)

1
2x). Then it is easy to check that the solution of (1.1) with

initial datum ϕε is

uε(t, x) = eiω(1+ε)t(1 + ε)
1

p−1ϕ((1 + ε)
1
2x).

We clearly have ϕε → ϕ in H1(RN ) as ε→ 0 but for any ε > 0

sup
t∈R

inf
y∈RN

‖uε(t) − ϕ(· − y)‖H1(RN ) > ‖ϕ‖H1(RN ).

Remark that ϕε is a solution of (3.1) with ω replaced by ω(1 + ε).

The main result of this section is the following.

Theorem 4.3. Let ϕ be a ground state of (3.1). If 1 < p < 1 + 4
N , then the standing

wave eiωtϕ(x) is orbitally stable.

Remark 4.4. The range of p is optimal: We will see in the next section that instability
holds if p > 1 + 4

N .

Remark 4.5. Except for N = 1 where all solutions of (3.1) are ground states, The-
orem 4.3 asserts only the stability of standing waves corresponding to ground states.
It is an open problem to describe the behavior of other standing waves of (1.1) under
perturbations (see nevertheless [33, 74] and the references cited therein).

The first rigorous stability study is due to Benjamin [5] for solitary waves of the
Korteweg-de Vries equation. Roughly speaking, two different approaches are possible
in the study of stability of standing waves. The first one was introduced by Cazenave
[13] and then developed by Cazenave and Lions [15]. It relies on variational and
compactness arguments. The main step in this approach consists in characterizing the
ground states as minimizers of the energy on a sphere of L2(RN ). To use this approach,
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it is essential to have a uniqueness result for ground states as Theorem 3.15, otherwise
a weaker result is obtained: Stability of the set of ground states (see Remark 4.9). The
second approach was introduced by Weinstein [76, 77] (see also [66]) and then con-
siderably generalized by Grillakis, Shatah and Strauss [34, 35]. A criterion based on
a form of coercivity for S′′(ϕ) is derived in this work and allows to prove stability of
standing waves. Sufficient conditions for instability are also given in [34, 35].

The rest of this section is devoted to the proofs of Theorem 4.3. In Subsection 4.1
we present the proof using Cazenave-Lions method and in Subsection 4.2 we present
the proof using Grillakis-Shatah-Strauss method.

4.1 Cazenave-Lions method

The proof of Theorem 4.3 by Cazenave-Lions method relies on the following compact-
ness result.

Proposition 4.6. Let 1 < p < 1 + 4
N . For any τ > 0, define

Στ := {v ∈ H1(RN ); ‖v‖2
L2(RN ) = τ}.

Consider the minimization problem

−ντ := inf{E(v); v ∈ Στ},

where E is the functional defined in (2.2): For v ∈ H1(RN ),

E(v) =
1
2
‖∇v‖2

L2(RN ) −
1

p+ 1
‖v‖p+1

Lp+1(RN )
.

Then ντ < +∞, and if (vn) ⊂ H1(RN ) is such that

‖vn‖2
L2(RN ) → τ and E(vn) → −ντ as n→ +∞,

then there exist a family (yn) ⊂ R
N and a function v ∈ H1(RN ) such that, possibly for

a subsequence only,

vn(· − yn) → v strongly in H1(RN ).

In particular, v ∈ Στ and E(v) = −ντ .

The proof of Proposition 4.6 is based on the concentration-compactness principle
of Lions [50, 51]. We refer to [14, 15] for a detailed proof.

Remark 4.7. For p > 1 + 4
N , it is easy to see that ντ = +∞. Indeed, let v ∈ Στ . Using

the scaled functions vλ(·) := λ
N
2 v(λ·), we obtain ‖vλ‖2

L2(RN ) = ‖v‖2
L2(RN ) = τ , but

limλ→+∞E(vλ) = −∞. Therefore Proposition 4.6 cannot hold in this case.

Next we characterize the ground states of (3.1) as minimizers of the energy on a
sphere of L2(RN ).
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Proposition 4.8. Let 1 < p < 1 + 4
N . Then

(i) there exists τG > 0 such that ‖ϕ‖2
L2(RN ) = τG for all ϕ ∈ G,

(ii) ϕ ∈ G if and only if ϕ ∈ ΣτG and E(ϕ) = −ντG .

Sketch of proof. Point (i) follows immediately from Theorem 3.15. We refer to [14]
for the proof of (ii).

Proof of Theorem 4.3 by Cazenave-Lions method. The result is proved by contradic-
tion. Assume that there exist ε > 0 and two sequences (un,0) ⊂ H1(RN ), (tn) ⊂ R

such that

‖un,0 − ϕ‖H1(RN ) → 0 as n→ +∞, (4.1)

inf
θ∈R

inf
y∈RN

‖un(tn) − eiθϕ(· − y)‖H1(RN ) > ε for all n ∈ N, (4.2)

where un is the maximal solution of (1.1) with initial datum un,0. Set vn(x) :=
un(tn, x). By (4.1) and the conservation of charge and energy (see (2.3)), we have,
as n→ +∞,

‖vn‖2
L2(RN ) = ‖un(tn)‖2

L2(RN ) = ‖un,0‖2
L2(RN ) → ‖ϕ‖2

L2(RN ) = τG (4.3)

E(vn) = E(un(tn)) = E(un,0) → E(ϕ) = −ντG . (4.4)

By (4.3), (4.4) and Proposition 4.6, there exist (yn) ⊂ R
N and v ∈ H1(RN ) such that

‖vn(· − yn) − v‖H1(RN ) → 0 as n→ +∞, (4.5)

v ∈ ΣτG and E(v) = −ντG . (4.6)

By (4.6) and Proposition 4.8 we have v ∈ G. Therefore, by Theorem 3.15, there exist
θ ∈ R and y ∈ R

N such that v = eiθϕ(· − y). Remembering that vn = un(tn) and
substituting this in (4.5), we get

‖un(tn) − eiθϕ(· − (y − yn))‖H1(RN ) → 0 when n→ +∞,

which is a contradiction with (4.2) and finishes the proof.

Remark 4.9. It is essential for the proof of Theorem 4.3 by Cazenave-Lions method
that the set of ground states G can be explicitly described by {eiθΨ(· − y); θ ∈ R, y ∈
R
N} as in Theorem 3.15. This uniqueness result is far from being obvious even with

our simple pure power nonlinearity. For general nonlinearities, such uniqueness re-
sults are usually not available. Without this uniqueness result, one obtains a result
corresponding to a weaker notion of stability: stability of the set G. More precisely,
the concept of stability would read as follows: The set of ground states G is said to
be stable if for all ε > 0 there exists δ > 0 such that if u0 ∈ H1(RN ) satisfies
‖u0 − ϕ‖H1(RN ) < δ for some ϕ ∈ G then

sup
t∈R

inf
ψ∈G

‖u(t) − ψ‖H1(RN ) < ε,

where u is the maximal solution of (1.1) with u(0) = u0.
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4.2 Grillakis-Shatah-Strauss method

The method of Grillakis-Shatah-Strauss is a powerful tool to derive stability or instabil-
ity results. The results in [34, 35] state, roughly speaking, the following: If we consider
a family (ϕω) of solutions of the stationary equation, the standing wave eiωtϕω(x) is
stable if

∂

∂ω
‖ϕω‖2

L2(RN ) > 0 (4.7)

and unstable if
∂

∂ω
‖ϕω‖2

L2(RN ) < 0, (4.8)

provided some spectral assumptions on the linearized operator S′′(ϕω) are satisfied.
Slope conditions of the type (4.7)–(4.8) can easily be checked when the stationary
equation admits some scaling invariance, typically when the nonlinearity is of power
type. For example, in the case of (3.1), it is easy to see that if ϕ1 is a solution of (3.1)
with ω = 1, then the scaling ϕω(·) := ω

1
p−1ϕ1(ω

1
2 ·) provides a family of solutions of

(3.1) for ω ∈ (0,+∞) such that

∂

∂ω
‖ϕω‖2

L2(RN ) > 0 if p < 1 +
4
N
,

∂

∂ω
‖ϕω‖2

L2(RN ) < 0 if p > 1 +
4
N
.

In such situations, the main difficulty is to handle the spectral conditions (see e.g.
[25, 26, 49]). If (3.1) has no scaling invariance, it becomes very difficult to obtain the
slope conditions (4.7)–(4.8) (see nevertheless [27, 28, 56]). An alternative is to use
a stability criterion derived from the work [34]. This stability criterion fits better the
case of general nonlinearities, as in e.g. [19, 23, 24, 40, 44, 46]. See also [72] for
a review of the different ways to obtain stability for general nonlinearities thanks to
Grillakis-Shatah-Strauss’ results.

Although theses notes are restricted to nonlinear Schrödinger equations with power-
type nonlinearities, our goal is to provide the reader with methods applicable in rather
general situations and this is why we choose to present the proof of Theorem 4.3 using
the following stability criterion.

Proposition 4.10 (Stability criterion). Let ϕ be a solution of (3.1). Suppose that there

exists δ > 0 such that for all v ∈ H1(RN ) satisfying the following orthogonality

conditions

(v, ϕ)2 = (v, iϕ)2 =

(

v,
∂ϕ

∂xj

)

2

= 0 for all j = 1, ..., N (4.9)

we have

〈S′′(ϕ)v, v〉 > δ‖v‖2
H1(RN ). (4.10)

Then the standing wave eiωtϕ(x) is orbitally stable in H1(RN ).
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Let us heuristically explain why the assumptions of Proposition 4.10 lead to sta-
bility. The idea comes from the theory of Lyapunov stability for an equilibrium in
dynamical systems. A good candidate for a Lyapunov functional would be the func-
tional S. Indeed, let us suppose for a moment that the coercivity condition (4.10) holds
for any v ∈ H1(RN ) (this is not the case, as we will see in the sequel). Let u be a
solution of (1.1) with initial datum u0 close to ϕ in H1(RN ). A Taylor expansion gives

S(u(t)) − S(ϕ) = 〈S′(ϕ), u(t) − ϕ〉 +
1
2
〈S′′(ϕ)(u(t) − ϕ), u(t) − ϕ〉

+o(‖u(t) − ϕ‖2
H1(RN )).

Since ϕ is a solution of (3.1), S′(ϕ) = 0. Combined with (4.10), this would give, for
some constant C > 0 independent of t,

S(u(t)) − S(ϕ) > C‖u(t) − ϕ‖2
H1(RN ). (4.11)

Since S is a conserved quantity this would give an upper bound on ‖u(t) − ϕ‖H1(RN ),
hence stability. Of course, as we already know (see Remark 4.2), this cannot hold
because stability is possible only up to translations and phase shifts. In fact, translation
and phase shift invariance generates, as we will see in the sequel, a kernel for S′′(ϕ) of
the form

ker{S′′(ϕ)} = span
{

iϕ,
∂ϕ

∂xj
; j = 1, ..., N

}

.

To avoid this kernel, we require the coercivity condition (4.10) only for v ∈ H1(RN )
satisfying

(v, iϕ)2 =

(

v,
∂ϕ

∂xj

)

2

= 0 for all j = 1, ..., N,

which allows phase shifts and translations in the right-hand side of (4.11). The other
orthogonality condition (v, ϕ)2 = 0 is related to the conservation of mass. Indeed,
since the mass is conserved, the evolution takes place, in some sense, in the tangent
space of the sphere of L2(RN ) at ϕ and therefore it is enough to ask for S to satisfy the
coercivity condition (4.10) on this tangent space to get stability. The rigorous proof of
Proposition 4.10 is involved and we have postponed it to the appendix.

In view of Proposition 4.10, it is clear that Theorem 4.3 follows immediately from
the following proposition.

Proposition 4.11. Let 1 < p < 1 + 4
N and ϕ be a ground state of (3.1). Then there

exists δ > 0 such that for all w ∈ H1(RN ) satisfying

(w,ϕ)2 = (w, iϕ)2 =

(

w,
∂ϕ

∂xj

)

2

= 0 for all j = 1, ..., N (4.12)

we have

〈S′′(ϕ)w,w〉 > δ‖w‖2
H1(RN ).
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Before giving the proof of Proposition 4.11, some preparation is necessary. First,
from Theorem 3.15, we can assume without loss of generality that the ground state ϕ is
real, positive, and radial. Note that uniqueness is not involved here. It is convenient to
splitw in the real and imaginary part. We setw = u+iv for real-valued u, v ∈ H1(RN ).
Then the operator S′′(ϕ) can be separated into a real and an imaginary part L1 and L2

such that
〈S′′(ϕ)w,w〉 = 〈L1u, u〉 + 〈L2v, v〉 .

Here, L1 and L2 are two bounded operators defined onH1(RN ) restricted to real valued
functions, with values in H−1(RN ), and given by

L1u = −∆u+ ωu− pϕp−1u,

L2v = −∆v + ωv − ϕp−1v.

Until the end of this subsection, the functions considered will be real-valued. In partic-
ular, H1(RN ) and L2(RN ) will be restricted to real-valued functions.

Proposition 4.11 follows immediately from the two following lemmas.

Lemma 4.12. There exists δ1 > 0 such that for all u ∈ H1(RN ) satisfying

(u, ϕ)2 =

(

u,
∂ϕ

∂xj

)

2

= 0 for all j = 1, ..., N

we have

〈L1u, u〉 > δ1‖u‖2
H1(RN ).

Lemma 4.13. There exists δ2 > 0 such that for all v ∈ H1(RN ) satisfying

(v, ϕ)2 = 0

we have

〈L2v, v〉 > δ2‖v‖2
H1(RN ).

It is not hard to see that the operators L1 and L2 admit as Friedrich extensions (see
e.g. [43]) two unbounded self-adjoint operators L̃1 and L̃2 from L2(RN ) to L2(RN )
with domain H2(RN ).

The proofs of Lemmas 4.12 and 4.13 rely on the analysis of the spectra of L̃1 and
L̃2. The following lemma gives the general structure of these spectra.

Lemma 4.14. The spectra of L̃1 and L̃2 consist of essential spectrum in [ω,+∞) and

of a finite number of eigenvalues of finite multiplicity in (−∞, ω′] for all ω′ < ω.

Proof. We first remark that since L̃1 and L̃2 are self-adjoint operators, their spectra lie
on the real line.

The spectra of L̃1 and L̃2 are bounded from below. Indeed, for all u ∈ H1(RN ) we
have

〈L2u, u〉 = ‖∇u‖2
L2(RN ) + ω‖u‖2

L2(RN ) −
∫

RN

ϕp−1u2dx

> ‖∇u‖2
L2(RN ) + ω‖u‖2

L2(RN ) − p

∫

RN

ϕp−1u2dx = 〈L1u, u〉 .
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Since ϕ ∈ L∞(RN ), there exists C > 0, independent of u, such that

p

∫

RN

ϕp−1u2dx 6 C‖u‖2
L2(RN )

and therefore
〈L2u, u〉 > 〈L1u, u〉 > (ω − C)‖u‖2

L2(RN ).

Now, since ϕ is exponentially decaying, L̃1 and L̃2 are compactly perturbed ver-
sions of

−∆ + ω : H2(RN ) ⊂ L2(RN ) → L2(RN ).

It is well-known that the essential spectrum of −∆ + ω is σess(−∆ + ω) = [ω,+∞),
thus, by Weyl’s Theorem (see e.g. [43]),

σess(L̃1) = σess(L̃2) = [ω,+∞).

Since, for j = 1, 2, σ(L̃j)\σess(L̃j) consists of isolated eigenvalues of finite multiplic-
ity and σ(L̃j) is bounded from below, this completes the proof of the Lemma.

From now on, we consider L1 and L2 separately. We begin with L2.

Lemma 4.15. There exists δ̃2 > 0 such that for all v ∈ H1(RN ) with (v, ϕ)2 = 0, we

have

〈L2v, v〉 > δ̃2‖v‖2
L2(RN ).

Proof. We remark that L2ϕ = S′(ϕ) = 0 since ϕ is a solution of (3.1). This means that
0 is an eigenvalue ofL2 with ϕ as an eigenfunction. But ϕ > 0 and it is well-known (see
e.g. [11]) that this implies that 0 is the first simple eigenvalue of L̃2. Let v ∈ H1(RN )
be such that (v, ϕ)2 = 0. Then, by the min-max characterization of eigenvalues (see
e.g. [11]), there exists δ̃2 > 0 independent of v (in fact, δ̃2 is the second eigenvalue of
L̃2) such that

〈L2v, v〉 > δ̃2‖v‖2
L2(RN ).

Proof of Lemma 4.13. The proof is carried out by contradiction. Assume the existence
of a sequence (vn) ⊂ H1(RN ) such that

‖∇vn‖2
L2(RN ) + ω‖vn‖2

L2(RN ) = 1, (vn, ϕ)2 = 0 and 〈L2vn, vn〉 → 0 as n→ +∞.

Since ‖vn‖2
H1(RN ) ≤ max{ω, ω−1}(‖∇vn‖2

L2(RN ) + ω‖vn‖2
L2(RN )), (vn) is bounded in

H1(RN ) and there exists v ∈ H1(RN ) such that

vn ⇀ v weakly in H1(RN ).

In particular, we have (v, ϕ)2 = 0 and by Lemma 4.15

〈L2v, v〉 > 0. (4.13)
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By the Sobolev embedding of H1(RN ) into L2q(RN ), we have v2
n ⇀ v2 weakly in

Lq(RN ) for some q ∈ (1, 2⋆/2). Since ϕ is exponentially decaying, we have ϕp−1 ∈
Lq

′

(RN ), where q′ is the conjugate exponent of q, 1
q + 1

q′ = 1. Therefore
∫

RN

ϕp−1v2
ndx→

∫

RN

ϕp−1v2dx as n→ +∞. (4.14)

From (4.14) and by weak lower semi-continuity of the H1(RN )-norm, we infer that

〈L2v, v〉 6 lim inf
n→+∞

〈L2vn, vn〉 = 0. (4.15)

Combined with (4.13), (4.15) implies 〈L2v, v〉 = 0 and, since (ϕ, v)2 = 0, by Lemma
4.15 we obtain

v ≡ 0. (4.16)

On the other hand,

0 = lim inf
n→+∞

〈L2vn, vn〉 = 1 −
∫

RN

ϕp−1v2dx.

Hence
∫

RN ϕp−1v2dx = 1, a contradiction with (4.16).

We now turn our attention to L1. The proof of Lemma 4.12 is more delicate, essen-
tially because the spectrum of L̃1 contains nonpositive eigenvalues. Furthermore, ϕ is
no longer an eigenfunction. We first deal with the negative eigenvalues of L̃1.

Lemma 4.16. The operator L̃1 has only one negative eigenvalue −λ1 with a corre-

sponding eigenfunction e1 ∈ H2(RN ) such that ‖e1‖L2(RN ) = 1.

Proof. Let S̃ : H1(RN ) → R be the restriction of S to real-valued functions. It is not
hard to see that ϕ is also a Mountain Pass critical point of S̃. Then it is well-known
(see, for example, [3]) that the Morse index of S̃ at ϕ is at most 1 (recall that the Morse
index is the number of negative eigenvalues of S̃′′(ϕ)). We remark that L1 = S̃′′(ϕ).
Therefore L̃1 has at most one negative eigenvalue. On the other hand,

〈L1ϕ,ϕ〉 = ‖∇ϕ‖2
L2(RN ) + ω‖ϕ‖2

L2(RN ) − p‖ϕ‖p+1
Lp+1(RN )

= −(p− 1)‖ϕ‖p+1
Lp+1(RN )

< 0

where the second equality follows from the Nehari identity (3.3). Therefore, L̃1 has ex-
actly one negative eigenvalue −λ1 and we can pick up an eigenfunction e1 ∈ H2(RN )
such that ‖e1‖L2(RN ) = 1.

The following result originates from the work of Weinstein [76].

Lemma 4.17. The second eigenvalue of L̃1 is 0 and

Z := ker L̃1 = span
{

∂ϕ

∂xj
; j = 1, ..., N

}

.
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It is out of reach in these notes to give a complete proof of Lemma 4.17, therefore
we only give a partial proof and refer to [2] for a complete proof.

Partial proof of lemma 4.17. We remember that ϕ satisfies

− ∆ϕ+ ωϕ− ϕp = 0. (4.17)

Differentiating (4.17) with respect to xj gives

−∆
∂ϕ

∂xj
+ ω

∂ϕ

∂xj
− pϕp−1 ∂ϕ

∂xj
= 0.

This is allowed because ϕ ∈ W 3,2(RN ) implies ∂ϕ
∂xj

∈ H2(RN ). Hence 0 is an eigen-

value of L̃1 and

span
{

∂ϕ

∂xj
; j = 1, ..., N

}

⊂ ker L̃1.

We admit that the reverse inclusion also holds.

Lemma 4.18. The space H1(RN ) can be decomposed into H1(RN ) = E1 ⊕ Z ⊕ E+

where E1 = span{e1} and E+ is the image of the spectral projection corresponding to

the positive part of the spectrum of L̃1.

Note that in the direct sum E1 ⊕ Z ⊕ E+ the spaces are mutually orthogonal with
respect to the inner product of L2(RN ).

Proof of Lemma 4.18. The assertion follows immediately from Lemmas 4.14, 4.16,
4.17 and the spectral decomposition theorem (see e.g. [43, p. 177]).

Lemma 4.19. For all u ∈ H1(RN ) \ {0} satisfying

(u, ϕ)2 =

(

u,
∂ϕ

∂xj

)

2

= 0 for all j = 1, ..., N (4.18)

we have

〈L1u, u〉 > 0. (4.19)

Proof. Let u ∈ H1(RN ) satisfying (4.18). We first look for a function ψ such that

L1ψ = −ωϕ.

To do this, we use the scaled functions ϕλ defined by ϕλ(·) := λ
1

p−1ϕ(λ
1
2 ·) for λ > 0.

The functions ϕλ satisfy
− ∆ϕλ + ωλϕλ − ϕpλ = 0. (4.20)

Differentiating (4.20) with respect to λ gives at λ = 1

−∆ψ + ωψ − pϕp−1ψ = −ωϕ
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for ψ := ∂ϕλ

∂λ
∣

∣λ=1
= 1

p−1ϕ+ 1
2x · ∇ϕ. Note that ψ ∈ H1(RN ) since x · ∇ϕ ∈ H1(RN )

by Proposition 3.2. Furthermore, since ϕ is radial, ϕ is even in each xj . Therefore, ψ
is also even in each xj whereas ∂ϕ

∂xj
is odd in xj . This implies

(

ψ,
∂ϕ

∂xj

)

2

= 0 for all j = 1, ..., N.

We decompose u and ψ with respect to H1(RN ) = E1 ⊕Z⊕E+: There exist α, β ∈ R

and ξ, η ∈ E+ such that

u = αe1 + ξ,

ψ = βe1 + η.

If α = 0, then ξ 6≡ 0 since u 6≡ 0, and we have

〈L1u, u〉 = 〈L1ξ, ξ〉 > 0.

Therefore, u satisfies (4.19). Now, we suppose α 6= 0. We easily find:

〈L1ψ,ψ〉 = −ω
(

ϕ,
1

p− 1
ϕ+

1
2
x · ∇ϕ

)

2

= −ω
(

1
p− 1

‖ϕ‖2
L2(RN ) +

1
2

∫

RN

ϕx · ∇ϕdx
)

.

With integration by parts, it is easy to see that
∫

RN

ϕx · ∇ϕdx = −N‖ϕ‖2
L2(RN ) −

∫

RN

ϕx · ∇ϕdx.

Therefore,
∫

RN ϕx · ∇ϕdx = −N
2 ‖ϕ‖2

L2(RN ) and

〈L1ψ,ψ〉 = −ω
(

1
p− 1

− N

4

)

‖ϕ‖2
L2(RN ).

Since ω > 0 and p < 1 + 4
N this implies

〈L1ψ,ψ〉 < 0

and thus β 6= 0.
On E+, L1 defines a positive definite quadratic form. Thus we have the Cauchy-

Schwarz inequality for ξ, η ∈ E+

〈L1ξ, η〉2
6 〈L1ξ, ξ〉 〈L1η, η〉 .

Now,

〈L1u, u〉 = −α2λ1 + 〈L1ξ, ξ〉 > −α2λ1 +
〈L1ξ, η〉2

〈L1η, η〉
. (4.21)
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But
0 = −ω (ϕ, u)2 = 〈L1ψ, u〉 = −αβλ1 + 〈L1ξ, η〉 .

Thus
〈L1ξ, η〉 = αβλ1.

This gives

−α2λ1 +
〈L1ξ, η〉2

〈L1η, η〉
= −α2λ1 +

α2β2λ2
1

〈L1η, η〉

= −α2λ1 +
α2β2λ2

1

β2λ1 + 〈L1ψ,ψ〉

=
−α2λ1 〈L1ψ,ψ〉

〈L1η, η〉
> 0.

Combined with (4.21) this finishes the proof.

Proof of Lemma 4.12. The proof of Lemma 4.12 follows the same lines as the proof of
Lemma 4.13. We omit the details.

5 Instability

In this section, we will prove that if 1 + 4
N 6 p < 1 + 4

N−2 then the standing waves are
unstable by blow-up in finite time. More precisely, for any ground state ϕ ∈ G, we will
find initial data, as close to ϕ as we want, such that the solutions of (1.1) corresponding
to these initial data will all blow up in finite time. As in Proposition 2.3, our basic
tool will be the Virial Theorem (Proposition 2.4). However, since the energy of the
ground state is nonnegative, it is not possible to argue directly as in Proposition 2.3. To
overcome this difficulty, we follow the approach of [48], which is a recent improvement
of the method introduced by Berestycki and Cazenave in [6, 7]. At the heart of this
method is a new variational characterization of the ground states as minimizers of the
action S on constraints related to the Pohozaev identity (3.4). Compare to [6, 7], the
mean feature of the approach of [48] is that we do not need to solve directly a new
minimization problem; instead, we take advantage of the variational characterizations
of the ground states obtained in Section 3.

Before stating our results, we give a precise definition of instability by blow-up.

Definition 5.1. Let ϕ be a solution of (3.1). We say that the standing wave eiωtϕ(x) is
unstable by blow-up in finite time if for all ε > 0 there exists uε,0 ∈ H1(RN ) such that

‖uε,0 − ϕ‖H1(RN ) < ε

but the corresponding maximal solution uε of (1.1) in the interval (T εmin, T
max
ε ) satisfies

T εmin > −∞, Tmax
ε < +∞ and thus

lim
t↓T ε

min

‖uε(t)‖H1(RN ) = +∞ and lim
t↑Tmax

ε

‖uε(t)‖H1(RN ) = +∞.
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We start with the simplest case: p = 1+ 4
N . The following result is due to Weinstein

[75].

Theorem 5.2. Let p = 1 + 4
N . Then for every solution ϕ of (3.1) the standing wave

eiωtϕ(x) is unstable by blow-up in finite time.

Proof. First, we remark that since p = 1 + 4
N , E(v) = P (v) (recall that P was defined

in (2.6)) for all v ∈ H1(RN ). From Pohozaev identity (3.4), we have

E(ϕ) = P (ϕ) = 0.

Let uε,0 be defined by uε,0 := (1 + ε)ϕ. Then it is easy to see that E(uε,0) < 0. In
view of the exponential decay of ϕ (see Proposition 3.2), we have |x|uε,0 ∈ L2(RN ).
The conclusion follows from Proposition 2.3.

We consider now the general case.

Theorem 5.3. Let p > 1 + 4
N . For all ϕ ∈ G the standing wave eiωtϕ(x) is unstable by

blow-up in finite time.

Remark 5.4. Theorem 5.2 asserts the instability of standing waves corresponding to
any solution of (3.1) whereas Theorem 5.3 concerns only standing waves correspond-
ing to ground states. It is still an open problem to prove instability by blow-up for
any solution of (3.1) if p > 1 + 4

N (see [74] for a review of related results and open
problems).

For the proof of Theorem 5.3 it is not possible to mimic the proof of Theorem 5.2.
Indeed, for p > 1 + 4

N , the identity E(v) = P (v) does not hold any more. Moreover,
for ϕ ∈ G, E(ϕ) > 0, which prevents to use Proposition 2.3.

The scaling vλ(·) := λN/2v(λ·) will play an important role in the proof. In the
following lemma, we investigate the behavior of different functionals under the scaling.

Lemma 5.5. Let v ∈ H1(RN )\{0} be such that P (v) 6 0. Then there exists λ0 ∈ (0, 1]
such that

(i) P (vλ0) = 0,

(ii) λ0 = 1 if and only if P (v) = 0,

(iii) ∂
∂λS(vλ) = 1

λP (vλ),

(iv) ∂
∂λS(vλ) > 0 for λ ∈ (0, λ0) and ∂

∂λS(vλ) < 0 for λ ∈ (λ0,+∞),

(v) λ 7→ S(vλ) is concave on (λ0,+∞).

Proof. A simple calculation leads to

P (vλ) = λ2‖∇v‖2
H1(RN ) − λ

N(p−1)
2

N(p− 1)

2(p+ 1)
‖v‖p+1

Lp+1(RN )
.
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Recalling that N(p−1)
2 > 2 (because of p > 1 + 4

N ) we infer that P (vλ) > 0 for λ small
enough. Thus, by continuity of P , there must exist λ0 ∈ (0, 1] such that P (vλ0) = 0.
Hence (i) is proved. If λ0 = 1, it is clear that P (v) = 0. Conversely, suppose that
P (v) = 0. Then

P (vλ) = λ2P (v) +
(

λ2 − λ
N(p−1)

2

) N(p− 1)

2(p+ 1)
‖v‖p+1

Lp+1(RN )

=
(

λ2 − λ
N(p−1)

2

) N(p− 1)

2(p+ 1)
‖v‖p+1

Lp+1(RN )
,

and, since N(p−1)
2 > 2, this implies that P (vλ) > 0 for all λ ∈ (0, 1). Hence (ii)

follows. From a simple calculation, we obtain

∂

∂λ
S(vλ) = λ‖∇v‖2

H1(RN ) − λ
N(p−1)

2 −1N(p− 1)

2(p+ 1)
‖v‖p+1

Lp+1(RN )

= λ−1P (vλ).

Hence (iii) is shown. To see (iv), we remark that

P (vλ) = λ2λ−2
0 P (vλ0) +

(

λ2λ
N(p−1)

2 −2
0 − λ

N(p−1)
2

)

N(p− 1)

2(p+ 1)
‖v‖p+1

Lp+1(RN )

= λ2
(

λ
N(p−1)

2 −2
0 − λ

N(p−1)
2 −2

)

N(p− 1)

2(p+ 1)
‖v‖p+1

Lp+1(RN )
.

Therefore, since N(p−1)
2 − 2 > 0, P (vλ) > 0 for λ < λ0 and P (vλ) < 0 for λ > λ0.

Combined with (iii), this gives (iv). Finally,

∂2

∂λ2S(vλ) = ‖∇v‖2
L2(RN ) − λ

N(p−1)
2 −2

(

N(p− 1)

2
− 1
)

N(p− 1)

2(p+ 1)
‖v‖p+1

Lp+1(RN )

= λ−2P (vλ) − λ
N(p−1)

2 −2
(

N(p− 1)

2
− 2
)

N(p− 1)

2(p+ 1)
‖v‖p+1

Lp+1(RN )

which implies that ∂2

∂λ2S(vλ) < 0 for λ > λ0 since N(p−1)
2 > 2, hence (v) follows.

The proof of Theorem 5.3 runs in three steps. First, we derive a new variational
characterization for the ground states of (3.1). Then we use this characterization to
define a set I, invariant under the flow of (1.1), such that any initial datum in I gives
rise to a blowing up solution of (1.1). Finally, we prove that the ground states can be
approximated by sequences of elements of I.

We consider the following minimization problem:

dM := inf
v∈M

S(v),

where the constraint M is given by

M := {v ∈ H1(RN ) \ {0};P (v) = 0, I(v) 6 0}.
Recall that I was defined in Proposition 3.12.
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Lemma 5.6. The following equality holds:

m = dM,

where m is the least energy level defined in (3.20).

Proof. Let ϕ ∈ G. Since from Lemma 3.3 we have I(ϕ) = P (ϕ) = 0, it is clear that
ϕ ∈ M. Therefore S(ϕ) > dM and thus

m > dM. (5.1)

Now, let v ∈ M. If I(v) = 0 then S(v) > m by Proposition 3.12. Suppose that
I(v) < 0. We use the scaling vλ(·) := λN/2v(λ·). Then

I(vλ) = λ2‖∇v‖2
L2(RN ) + ω‖v‖2

L2(RN ) − λ
N(p−1)

2 ‖v‖p+1
Lp+1(RN )

implies limλ→0 I(vλ) = ω‖v‖2
L2(RN ) > 0. By continuity of I , there exists λ1 < 1 such

that I(vλ1) = 0. Therefore, by Proposition 3.12,

m 6 S(vλ1). (5.2)

From P (v) = 0 and Lemma 5.5, we deduce that

S(vλ1) < S(v). (5.3)

Combining (5.2) and (5.3) gives m 6 S(v), hence

m 6 dM. (5.4)

The conclusion follows from (5.1) and (5.4)

Now, we define the set I by:

I := {v ∈ H1(RN ); I(v) < 0, P (v) < 0, S(v) < m},

and use Lemma 5.6 to prove that I is invariant under the flow of (1.1).

Lemma 5.7. If u0 ∈ I then the corresponding maximal solution u in (Tmin, T
max) of

(1.1) satisfies u(t) ∈ I for all t ∈ (Tmin, T
max).

Proof. Let u0 ∈ I and u be the corresponding maximal solution of (1.1) in (Tmin, T
max).

Since S is a conserved quantity for (1.1),

S(u(t)) = S(u0) < m for all t ∈ (Tmin, T
max). (5.5)

The assertion is proved by contradiction. Suppose that there exists t such that

I(u(t)) > 0.
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Then by the continuity of I and u there exists t0 such that

I(u(t0)) = 0.

By Proposition 3.12, this implies

S(u(t0)) > m,

which is a contradiction with (5.5). Therefore

I(u(t)) < 0 for all t ∈ (Tmin, T
max). (5.6)

Finally, suppose that for some t ∈ (Tmin, T
max)

P (u(t)) > 0.

Still by continuity, there exists t1 such that

P (u(t1)) = 0.

From (5.6), we also have I(u(t1)) < 0, and thus by Lemma 5.6

S(u(t1)) > m,

which is another contradiction. Therefore

P (u(t)) < 0 for all t ∈ (Tmin, T
max)

and this completes the proof.

Lemma 5.8. Let u0 ∈ I and u be the corresponding maximal solution of (1.1) in

(Tmin, T
max). Then there exists δ > 0 independent of t such that P (u(t)) < −δ for all

t ∈ (Tmin, T
max).

Proof. Let t ∈ (Tmin, T
max) and define v := u(t) and vλ(·) := λN/2v(λ·). By Lemma

5.5, there exists λ0 < 1 such that P (vλ0) = 0. If I(vλ0) 6 0, we keep λ0, otherwise if
I(vλ0) > 0 there exists λ̃0 ∈ (λ0, 1) such that I(vλ̃0

) = 0 and we replace λ0 by λ̃0. In
any case, by Proposition 3.12 or Lemma 5.6,

S(vλ0) > m. (5.7)

Now, by (v) in Lemma 5.5,

S(v) − S(vλ0) > (1 − λ0)
∂

∂λ
S(vλ)∣

∣λ=1
. (5.8)

From (iii) in Lemma 5.5, we obtain that

∂

∂λ
S(vλ)∣

∣λ=1
= P (v). (5.9)
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Furthermore, P (v) < 0 and λ0 ∈ (0, 1) implies

(1 − λ0)P (v) > P (v). (5.10)

Combining (5.7)–(5.10) gives

S(v) −m > P (v).

Let −δ := S(v) −m. Then δ > 0 since v ∈ I and δ is independent of t since S is a
conserved quantity. In conclusion, for any t ∈ (Tmin, T

max),

P (u(t)) < −δ

and this ends the proof.

Lemma 5.9. Let u0 ∈ I be such that |x|u0 ∈ L2(RN ). Then the corresponding max-

imal solution u of (1.1) in (Tmin, T
max) blows up in finite time, i.e. Tmin > −∞,

Tmax < +∞ and

lim
t↓Tmin

‖u(t)‖H1(RN ) = +∞ and lim
t↑Tmax

‖u(t)‖H1(RN ) = +∞.

Proof. By Lemma 5.8, there exists δ > 0 such that

P (u(t)) < −δ for all t ∈ (Tmin, T
max).

Remembering from Proposition 2.4 that ∂2

∂t2 ‖xu(t)‖2
L2(RN ) = 8P (u(t)) we get by inte-

grating twice in time

‖xu(t)‖2
L2(RN ) 6 −4δt2 + C(t+ 1).

As in the proof of Proposition 2.3, this leads to a contradiction for large |t|. Therefore
Tmin > −∞, Tmax < +∞ and by Proposition 2.1

lim
t↓Tmin

‖u(t)‖H1(RN ) = +∞ and lim
t↑Tmax

‖u(t)‖H1(RN ) = +∞.

Proof of Theorem 5.3. In view of Lemma 5.9, all that remains to do is to find a se-
quence in I converging to ϕ in H1(RN ). We define ϕλ(·) := λN/2ϕ(λ·). Then, by
Lemma 5.5,

I(ϕλ) < 0, P (ϕλ) < 0, S(ϕλ) < m,

thus ϕλ ∈ I for all 0 < λ < 1. Furthermore, by Proposition 3.2, ϕ is exponentially
decaying and so is ϕλ. Therefore, |x|ϕλ ∈ L2(RN ) for all 0 < λ < 1. It is clear that
ϕλ → ϕ when λ → 1 and from Lemma 5.9 ϕλ gives rise to a blowing-up solution of
(1.1) for any 0 < λ < 1. This achieves the proof.
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Remark 5.10. When the nonlinearity is more general, it may be impossible to use the
Virial Theorem to obtain a result of instability by blow-up. In such cases, a good al-
ternative to prove instability would be to follow the method introduced by Shatah and
Strauss in [69] and then developed in [34, 35]. Other methods, based on modifica-
tions of the original idea of Shatah and Strauss, are also available, see for example
[21, 22, 32, 45, 61]. Note that proving instability by these methods does not neces-
sarily provide informations on the long time behavior (blow-up or global existence) of
solutions starting near a standing wave.

Remark 5.11. The type of method employed here to prove instability by blow-up of
standing waves is not restricted to nonlinear Schrödinger equations. See, for example,
[6, 39, 53, 62, 63, 68] and the references cited therein for results on the instability by
blow-up for standing waves of nonlinear Klein-Gordon equations.

6 Appendix

The appendix is devoted to the proof of Proposition 4.10.
For ϕ being a solution of (3.1), we define a tubular neighborhood of ϕ of size ε > 0

in H1(RN ) by

Uε(ϕ) := {v ∈ H1(RN ); inf
θ∈R,y∈RN

‖eiθv(· − y) − ϕ‖H1(RN ) < ε}.

Before proving Proposition 4.10, some preliminaries are needed.

Lemma 6.1. Let ϕ be a solution of (3.1). For all δ > 0 there exists ε > 0 such that if

for θ ∈ R and y ∈ R
N we have

‖eiθϕ(· − y) − ϕ‖L2(RN ) < ε

then |(θ, y)| < δ. Here, | · | denotes the norm in (R/2πZ) × R
N .

Proof. The proof is carried out by contradiction. Let δ > 0 and assume that for all
n ∈ N there exists (θn, yn) such that

‖eiθnϕ(· − yn) − ϕ‖L2(RN ) <
1
n

and |(θn, yn)| > δ.

Possibly for a subsequence only, we have eiθnϕ(· − yn) → ϕ almost everywhere as
n → +∞, and in fact everywhere by regularity of ϕ (see Proposition 3.2). Suppose
that (yn) is unbounded. Then, possibly for a subsequence only, |yn| → +∞, but by
exponential decay of ϕ (see Proposition 3.2), this implies that for all x ∈ R

N ,

eiθnϕ(x+ yn) → 0,

which is a contradiction with ϕ 6≡ 0. Therefore (yn) is bounded and converges up to
a subsequence to some y ∈ R

N . Since each θn can be chosen in [0, 2π), we also have
θn → θ for some θ ∈ [0, 2π). By hypothesis, we have

|(θ, y)| > δ, (6.1)
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but for all x ∈ R
N

eiθϕ(x+ y) = ϕ(x). (6.2)

We claim that (6.2) can hold true only if y = θ = 0. Indeed, let x0 be such that ϕ(x0) 6=
0. If y 6= 0, then limn→+∞ einθϕ(x0 + ny) = ϕ(x0) 6= 0, what is in contradiction with
the decay of ϕ at infinity. Therefore, y = 0 and this immediately implies θ = 0. This
is in contradiction with (6.1) and finishes the proof.

Lemma 6.2. Let ϕ be a solution of (3.1). There exist ε > 0 and two functions σ :
Uε(ϕ) → R and Y : Uε(ϕ) → R

N such that for all v ∈ Uε(ϕ)

‖eiσ(v)v(· − Y (v)) − ϕ‖L2(RN ) = inf
θ∈R,y∈RN

‖eiθv(· − y) − ϕ‖L2(RN ).

Furthermore, the function w := eiσ(v)v(· − Y (v)) satisfies

(w, iϕ)2 =

(

w,
∂ϕ

∂xj

)

2

= 0 for all j = 1, ..., N. (6.3)

Proof. For the sake of simplicity, we assume that ϕ is real-valued and radial. Let
Φ : R × R

N ×H1(RN ) → R be defined by

Φ(θ, y, v) :=
1
2
‖eiθv(· − y) − ϕ‖2

L2(RN ) =
1
2
‖v − e−iθϕ(· + y)‖2

L2(RN )

and let F : R × R
N ×H1(RN ) → R

N+1 be the derivative of Φ with respect to (θ, y):

F (θ, y, v) := Dθ,yΦ(θ, y, v) =















(

eiθv(· − y), iϕ
)

2

−
(

eiθv(· − y), ∂ϕ∂x1

)

2
...

−
(

eiθv(· − y), ∂ϕ
∂xN

)

2















.

We have F (0, 0, ϕ) = 0 and

Dθ,yF (0, 0, ϕ) =















‖ϕ‖2
L2(RN ) (0)

‖ ∂ϕ∂x1
‖2
L2(RN )

. . .

(0) ‖ ∂ϕ
∂xN

‖2
L2(RN )















,

where (0) means that all the off-diagonal entries are 0. Since ϕ is a solution of (3.1),
ϕ is non zero and therefore ‖ϕ‖2

L2(RN ) > 0 and ‖ ∂ϕ∂xj
‖2
L2(RN ) > 0 for all j = 1, ..., N .

Consequently, the matrix Dθ,yF (0, 0, ϕ) is positive definite and by the Implicit Func-
tion Theorem there exists ε > 0, δ > 0 and (σ, Y ) : Vε → Ω, where

Vε := {v ∈ H1(RN ); ‖v − ϕ‖H1(RN ) < ε} and Ω := {(θ, y) ∈ R × R
N ; |(θ, y)| < δ},
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such that for all v ∈ Vε
F (σ(v), Y (v), v) = 0 (6.4)

and
‖eiσ(v)v(· − Y (v)) − ϕ‖L2(RN ) = inf

(θ,y)∈Ω

‖eiθv(· − y) − ϕ‖L2(RN ). (6.5)

Now we extend (6.5) to all (θ, y) ∈ R × R
N . By contradiction, assume that there

exists (θ̃, ỹ) ∈ R × R
N such that |(θ̃, ỹ)| > δ and

‖eiθ̃v(· − ỹ) − ϕ‖L2(RN ) < ‖eiσ(v)v(· − Y (v)) − ϕ‖L2(RN ).

For v ∈ Vε, we have

‖eiθ̃ϕ(·−ỹ)−ϕ‖L2(RN ) < ‖eiθ̃(ϕ(·−ỹ)−v(·−ỹ))‖L2(RN )+‖eiθ̃v(·−ỹ)−ϕ‖L2(RN ) < 2ε.

If ε is small enough, this implies by Lemma 6.1 that |(θ̃, ỹ)| < δ which is a contradic-
tion. Therefore, we have for all v ∈ Vε

‖eiσ(v)v(· − Y (v)) − ϕ‖L2(RN ) = inf
(θ,y)∈R×RN

‖eiθv(· − y) − ϕ‖L2(RN ).

It remains to extend (σ, Y ) to Uε(ϕ). Let v ∈ Uε(ϕ). Then there exists (θ⋆, y⋆) such
that

‖eiθ⋆

v(· − y⋆) − ϕ‖L2(RN ) < ε.

Define
σ(v) := σ(eiθ

⋆

v(· − y⋆)) + θ⋆

and
Y (v) := Y (eiθ

⋆

v(· − y⋆)) + y⋆.

Then it is not hard to see that this definition is independent of the choice of (θ⋆, y⋆) and
allows us to extend (σ, Y ) to Uε(ϕ). The orthogonality relations in (6.3) follow from
the relation (6.4)

Recall that Q was defined in (2.1) and E in (2.2).

Lemma 6.3. Under the hypothesis of Proposition 4.10, there exists ε > 0 and C > 0
such that for all v ∈ Uε(ϕ) satisfying Q(v) = Q(ϕ) we have

E(v) − E(ϕ) > C inf
(θ,y)∈R×RN

‖eiθv(· − y) − ϕ‖2
H1(RN ).

Proof. For the sake of simplicity, we assume that ϕ is radial. Let ε > 0 and v ∈ Uε(ϕ).
For ε small enough, let (σ, Y ) be as in Lemma 6.2 and define

w := eiσ(v)v(· − Y (v)). (6.6)

Then by Lemma 6.2 the function w satisfies

(w, iϕ)2 =

(

w,
∂ϕ

∂xj

)

2

= 0 for all j = 1, ..., N. (6.7)
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Let λ ∈ R and z ∈ H1(RN ) be such that

(z, ϕ)2 = 0 (6.8)

and
w − ϕ = λϕ+ z. (6.9)

Since ϕ is radial up to translations, we have
(

ϕ,
∂ϕ

∂xj

)

2

= 0 for j = 1, ..., N. (6.10)

Combining (6.7), (6.9) and (6.10) we get
(

z,
∂ϕ

∂xj

)

2

= 0 for j = 1, ..., N. (6.11)

Moreover, we have
(ϕ, iϕ)2 = Re(−i‖ϕ‖2

L2(RN )) = 0,

and therefore
(z, iϕ)2 = 0. (6.12)

From (6.8), (6.11) and (6.12) we see that z satisfies the orthogonality conditions in
(4.9) and therefore

〈S′′(ϕ)z, z〉 > δ‖z‖2
H1(RN ). (6.13)

By a Taylor expansion, we obtain

Q(ϕ) = Q(v) = Q(w) = Q(ϕ) + 〈Q′(ϕ), w − ϕ〉 +O(‖w − ϕ‖2
H1(RN )).

But Q′(ϕ) = ϕ and therefore

〈Q′(ϕ), w − ϕ〉 = (ϕ,w − ϕ)2 = (ϕ, λϕ+ z)2 = λ‖ϕ‖2
L2(RN ),

where the last equality follows from (6.8). Consequently,

λ = O(‖w − ϕ‖2
H1(RN )). (6.14)

Now, another Taylor expansion gives

S(v) − S(ϕ) = S(w) − S(ϕ)

= 〈S′(ϕ), w − ϕ〉 + 1
2 〈S′′(ϕ)(w − ϕ), w − ϕ〉 + o(‖w − ϕ‖2

H1(RN )).
(6.15)

Since ϕ is solution of (3.1), we have S′(ϕ) = 0 and therefore

〈S′(ϕ), w − ϕ〉 = 0. (6.16)

Furthermore, from (6.9) we get

〈S′′(ϕ)(w − ϕ), w − ϕ〉 = λ2 〈S′′(ϕ)ϕ,ϕ〉+2λRe 〈S′′(ϕ)ϕ, z〉+〈S′′(ϕ)z, z〉 . (6.17)
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From (6.14) we have

λ2 〈S′′(ϕ)ϕ,ϕ〉 = o(‖w − ϕ‖2
H1(RN )). (6.18)

Since
‖z‖2

H1(RN ) 6 2‖w − ϕ‖2
H1(RN ) + 2λ2‖ϕ‖2

H1(RN ),

we have by (6.14) that

‖z‖2
H1(RN ) = O(‖w − ϕ‖2

H1(RN )), (6.19)

and therefore
2λRe 〈S′′(ϕ)ϕ, z〉 = o(‖w − ϕ‖2

H1(RN )). (6.20)

Combining (6.17), (6.18) and (6.20), we get

〈S′′(ϕ)(w − ϕ), w − ϕ〉 = 〈S′′(ϕ)z, z〉 + o(‖w − ϕ‖2
H1(RN )).

Together with (6.15)–(6.16), this gives

S(v) − S(ϕ) >
1
2
〈S′′(ϕ)z, z〉 + o(‖w − ϕ‖2

H1(RN )). (6.21)

But since Q(v) = Q(ϕ), we have

E(v) − E(ϕ) = S(v) − S(ϕ)

and with (6.13), (6.19) and (6.21), we obtain

E(v) − E(ϕ) >
δ

2
‖w − ϕ‖2

H1(RN ) + o(‖w − ϕ‖2
H1(RN )).

Therefore, we have for ε small enough

E(v) − E(ϕ) >
δ

4
‖w − ϕ‖2

H1(RN ).

Setting C := δ/4 and remembering how w was defined in (6.6) gives

E(v) − E(ϕ) > C inf
(θ,y)∈R×RN

‖eiθv(· − y) − ϕ‖2
H1(RN ),

which finishes the proof.

Proof of Proposition 4.10. The assertion is proved by contradiction. Assume that there
exists un,0 and ε > 0 such that

‖un,0 − ϕ‖H1(RN ) → 0 as n→ +∞ (6.22)

but for all n ∈ N

sup
t∈(Tn

min,T
max
n )

inf
(θ,y)∈R×RN

‖eiθun(t, · − y) − ϕ‖H1(RN ) > ε
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where un is the maximal solution of (1.1) in (Tnmin, T
max
n ) corresponding to u0,n. By

continuity, we can pick up the first time tn such that

inf
(θ,y)∈R×RN

‖eiθun(tn, · − y) − ϕ‖H1(RN ) = ε

In view of (6.22) and the conservation of charge and energy (see (2.3)), it is clear that

E(un(tn)) = E(un,0) → E(ϕ)

Q(un(tn)) = Q(un,0) → Q(ϕ)
as n→ +∞.

Let vn := un(tn)
‖un(tn)‖

L2(RN )
‖ϕ‖L2(RN ). Then

Q(vn) = Q(ϕ), E(vn) → E(ϕ) and ‖vn − un(tn)‖H1(RN ) → 0.

Choosing ε small enough, we can apply Lemma 6.3 to get

inf
(θ,y)∈R×RN

‖eiθvn(· − y) − ϕ‖2
H1(RN ) 6 C(E(vn) − E(ϕ)) → 0.

On the other hand, we have

ε = inf
(θ,y)∈R×RN

‖eiθun(tn, · − y) − ϕ‖H1(RN )

6 inf
(θ,y)∈R×RN

‖eiθvn(· − y) − ϕ‖H1(RN ) + ‖un − vn‖H1(RN ),

which yields a contradiction for n large.
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