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Recursive matrix relations for the complete dynamics of a 3-PRP planar parallel robot are established 

in this paper. Three identical planar legs connecting to the moving platform are located in the same 

vertical plane. Knowing the motion of the platform, we develop first the inverse kinematical problem 

and determine the positions, velocities and accelerations of the robot. Further, the inverse dynamic 

problem is solved using an approach based on the principle of virtual work. Finally, some graphs of 

simulation for the input powers of three actuators and the internal joint forces are obtained. 
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1. INTRODUCTION 

Parallel manipulators are closed-loop mechanisms that consist of separate serial chains connecting the 

fixed base to the moving platform. Compared with serial manipulators, the followings are the potential 

advantages of parallel architectures: higher kinematical precision, lighter weight and better stiffness, greater 

load bearing, stabile capacity and suitable position of arrangement of actuators. Equipped with revolute or 

prismatic actuators, parallel manipulators have a robust construction and can move bodies of large 

dimensions with high velocities and accelerations. That is reason why the devices, which produce translation 

or spherical motion to a platform, technologically are based on the concept of parallel manipulators [1]. 

Over the past two decades, parallel manipulators have received more attention from researches and 

industries. Important companies such as Giddings & Lewis, Ingersoll, Hexel and others have developed them 

as high precision machine tools. Considerable efforts have been devoted to the kinematics and dynamic 

analysis of fully parallel manipulators. Among these, the class of manipulators known as Stewart-Gough 

platform focused great attention (Stewart [2]; Merlet [3]). They are used in flight simulators and more 

recently for Parallel Kinematics Machines. The prototype of Delta parallel robot (Clavel [4]; Tsai and 

Stamper [5]) developed by Clavel at the Federal Polytechnic Institute of Lausanne and by Tsai and Stamper 

at the University of Maryland as well as the Star parallel manipulator (Hervé and Sparacino [6]) are equipped 

with three motors, which train on the mobile platform in a three-degrees-of-freedom general translation 

motion. Angeles [7], Wang and Gosselin [8] analysed the kinematics, dynamics and singularity loci of Agile 

Wrist spherical robot with three actuators. 

Planar parallel robots are useful for manipulating an object on a plane. A mechanism is said to be a 

planar robot if all the moving links in the mechanism perform the planar motions. For a planar mechanism, 

the loci of all points in all links can be drawn conveniently on a plane. In a planar linkage, the axes of all 

revolute joints must be normal to the plane of motion, while the direction of translation of a prismatic joint 

must be parallel to the plane of motion. Bonev, Zlatanov and Gosselin [9] describe several types of singular 

configurations by studying the direct kinematics model of a 3-RPR planar parallel robot with actuated base 

joints. Aradyfio and Qiao [10] examined the inverse kinematics solution for the three different 3-DOF planar 

parallel robots, while Pennock and Kassner [11] present a kinematical study of a planar parallel robot where 

a moving platform is connected to a fixed base by three links, each leg consisting of two binary links and 

three parallel revolute joints. Sefrioui and Gosselin [12] give an interesting numerical solution in the inverse 

and direct kinematics of this kind of planar robot. 
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Using dual-number quaternion algebra, Mohammadi-Daniali et al. [13], [14] present a study of velocity 

relationships and singular conditions for general planar parallel robots. 

2. KINEMATICS ANALYSIS  

A recursive method is introduced in the present paper, to reduce significantly the number of equations 

and computation operations by using a set of matrices for kinematics and complete dynamics of the 3-PRP 

planar parallel robot. Having a closed-loop structure, this robot is a symmetrical mechanism composed of 

three planar kinematical chains with identical topology, all connecting the fixed base to the platform. The 

points
000

,, CBA represent the summits of a triangular base and other three points define the geometry of the 

moving platform. Each leg consists of two links, with one revolute and two prismatic joints. The parallel 

mechanism with seven links )7...,,2,1,( kT
k

consists of three revolute joint and six prismatic joints (Fig. 1).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
                                                                               Fig. 1 The 3-PRP planar parallel robot 
 

In the actuation scheme PRP each prismatic joint is an actively controlled prismatic cylinder. Thus, all 

prismatic actuators can be installed on the fixed base. For the purpose of analysis, we attach a Cartesian 

frame )(
0000

TzyOx to the fixed base with its origin located at triangle centre O , the
0

z axis perpendicular to 

the base and the
0

x axis pointing along the direction
00

BC . Another mobile reference frame
GGG

zyGx is 

attached to the moving platform. The origin of this coordinate central system is located just at the centre G of 

the moving triangle. In what follows we consider that the moving platform is initially located at a central 

configuration, where the platform is not rotated with respect to the fixed base and the mass centre G is at the 

originO of the fixed frame. It is noted that the relative rotation of 
k

T  body with 
1, kk

 angle must be always 

pointing about the direction of
k

z axis. 

One of three active legs (for example leg A ) consists of a prismatic joint, which is as well as a piston 1 

of mass
1

m linked at the
AAA

zyxA
1111

frame, having a rectilinear motion of displacement
A

10
 . Second element 

of the leg is a rigid body 2 linked at the
AAA

zyxA
2222

 frame, having a relative rotation about
A

z
2

axis with the 

angle
A

21
 . It has the mass

2
m and tensor of inertia

2
Ĵ with respect to 

A
T

2
 frame. Finally, a prismatic joint is 

introduced at a planar moving platform as an equilateral triangle with the edge 3
0

ll  , mass
3

m and inertia 

tensor 3
Ĵ  with respect to

3
A , which translate relatively along

A
z

3 axis with the displacement 
A

32
 (Fig. 2). 
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At the central configuration, we also consider that all legs are symmetrically extended and that the angles 

of orientation of three edges of fixed platform are given by 

                                                             
3

,,
3


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CBA
.                                                             (1) 

In the study of the kinematics of robot manipulators, we are interested in deriving a matrix equation 

relating the location of an arbitrary body to the joint variables. We call the matrix


1, kk
a , for example, the 

orthogonal transformation 33  matrix of relative rotation with the angle
A

kk 1, 
 of link

A

k
T around

A

k
z axis. 

Starting from the origin O and pursuing three independent legs
3210

AAAOA ,
3210

BBBOB ,
3210

CCCOC , we 

obtain the following transformation matrices [15] 
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                                                         Fig. 2 Kinematical scheme of first leg A of the mechanism 
 

In the inverse geometric problem, it can be considered that the position of the mechanism is completely 

given through the coordinates
GG

yx
00

, of the mass centre G of the moving platform and the orientation 

angle of the mobile central frame
GGG

zyGx . The orthogonal known rotation matrix of the platform 

from
000

zyOx to 
GGG

zyGx reference system is )(rotR  . We suppose that the position vector of G  centre 
TGGG

yxr ]0[
000




 and the orientation angle , which are expressed by following analytical functions 
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can describe the general absolute motion of the moving platform in its vertical plane. From the conditions 

concerning the orientation of the platform 
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with 
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we obtain the first following relations between angles 
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Six independent variables
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,  ,
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,   will be determined by several vector-loop equations 

as follows 
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Actually, these vector equations mean that  
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The rotations of the compounding elements of each leg (for example the leg A) are characterized by 

recursive relations of following skew-symmetric matrices 
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which are associated to the absolute angular velocities 
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Following relations give the velocities
A

kv 0


of the joints

k
A  

                      
31010

uv
AA 

 , 0
21




A
v ,

33232
uv

AA 
 ,

31,1,0,11,0,11,0

~
uvravav

A

kk

A

kk

A

kkk

A

kkk

A

k




  .                   (13)      

Equations of geometrical constraints (7) and (8) when differentiated with respect to time lead to the 

following matrix conditions of connectivity [16] 
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From these equations, we obtain the relative velocities
AAA

vv
322110

,,  as functions of angular velocity of the 

platform and velocity of mass centre G . The Jacobian matrix given by these conditions of constraints is a 

fundamental element for the analysis of the robot workspace and the configurations of singularities where the 

manipulator becomes uncontrollable [17]. 

Concerning the first leg A , the characteristic virtual velocities are expressed as functions of the pose of 

the mechanism by the general kinematical equations (14), where we add the contributions of successive 

virtual translations during two orthogonal fictitious displacements of the revolute joint
2

A , as follows: 
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Now, let us assume that the robot has successively some virtual motions determined by following sets of 

velocities:  
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These virtual velocities are required into the computation of virtual power and virtual work of all forces 

applied to the component elements of the robot. 

As for the relative accelerations
AAA

322110
,,  of the robot, new conditions of connectivity are obtained by 

the derivative of above equations (14): 
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 The following recursive relations give the angular accelerations A
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

and the accelerations A
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of joints
k

A  

   
31010

u
AA 

  , 0
21




A
 , 

33232
u

AA 
  , 0

10




A
 , 

321
u

A 
  , 0

32




A
  

   
31,0,11,1,31,0,11,0

~
uaaua

T

kk

A

kkk

A

kk

A

kk

A

kkk

A

k




    

     


T

kk

A

k

A

k

A

kkk

A

k

A

k

A

k
aa

1,0,10,10,11,000

~~~~~~ 
31,0,11,1,31,331,1,

~~
2

~~~
uaauuu

T

kk

A

kkk

A

kk

A

kk

A

kk

A

kk 
     

   )3,2,1(,
~

2)
~~~

(
31,31,0,11,1,1,0,10,10,11,0,11,0




kuuaavraa
A

kk

T

kk

A

kkk

A

kk

A

kk

A

k

A

k

A

kkk

A

kkk

A

k


 .           (18) 

3. DYNAMICS EQUATIONS 

The dynamics analysis of parallel robots is complicated because the existence of a spatial kinematical 

structure, which possesses a large number of passive degrees of freedom, dominance of the inertial forces, 

frictional and gravitational components and by the problem linked to real-time control in the inverse 

dynamics. In the context of the real-time control, neglecting the frictions forces and considering the 

gravitational effects, the relevant objective of the complete dynamics is first to determine the input torques or 

forces, which must be exerted by the actuators in order to produce a given trajectory of the end-effector, but 

also to calculate all internal joint forces or torques. 

A lot of works have focused on the dynamics of Stewart platform. Dasgupta and Mruthyunjaya [18] used 

the Newton-Euler approach to develop closed-form dynamic equations of Stewart platform, considering all 

dynamic and gravity effects as well as viscous friction at joints. Tsai [1] presented an algorithm to solve the 

inverse dynamics for a Stewart platform-type using Newton-Euler equations. This commonly known 

approach requires computation of all constraint forces and moments between the links. 

Three independent mechanical systems acting along the planar directions
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  can control the general motion of the moving platform. Knowing 

the position and kinematics state of each link as well as the external forces acting on the 3-PRP planar 

parallel robot, in the present paper we apply the principle of virtual work for the inverse dynamic problem in 

order to establish some definitive recursive matrix relations for the calculus of input torques of the actuators 

and internal forces in the joints. The parallel robot can artificially be transformed in a set of three open 

chains ),,( CBAiC
i

  subject to the constraints. This is possible by cutting each joint for moving platform, 

and takes its effect into account by introducing the corresponding constraint conditions. The first and more 

complicated open tree system includes the first acting link and comprises also the moving platform. 

The wrench of two vectors
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F
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evaluates the influence of the action of the weight gm
k


and of 

other external and internal forces applied to the same element
k

T of the mechanism 
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Now, we compute the force of inertia
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k
F


and the resulting moment of inertia forces
in

k
M


of an arbitrary 

rigid body
k

T of mass k
m with respect to the centre of its first joint: 
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Pursuing the first leg A , for example, two significant recursive relations generate the vectors 
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where one denoted 
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.                                           (22) 

Considering some independent virtual motions of the robot, all virtual displacements and velocities 

should be compatible with the virtual motions imposed by all kinematical constraints and joints at a given 

instant in time. The fundamental principle of the virtual work states that a mechanism is under dynamic 

equilibrium if and only if the virtual work developed by all external, internal and inertia forces vanish during 

any general virtual displacement, which is compatible with the constraints imposed on the mechanism. 

Assuming that frictional forces at the joints are negligible, the virtual work produced by all remaining forces 

of constraint at the joints is zero. 

Total virtual work contributed by the inertia forces and moments of inertia forces
in

k
F


,
in

k
M


, by the 

wrench of known external forces
*

k
F


,
*

k
M


and by the first active force A
f

10


 or some internal joint forces, for 

example, can be written in a compact form, based on the relative virtual velocities. Applying the fundamental 

equations of the parallel robots dynamics [19], the following compact matrix relations results 

                              }{
22122133222131310

CCv

a

BBv

a

AAv

a

AAv

a

TATA
MMFvMuFuf


                                   (23) 

for the input force of first prismatic actuator, 

                             }{
2212213322213221221

CCvBBvAAv

a

AAv

a

TATTA

y
MMFvMuFauf


                         (24) 

for the first joint force and  

                             }{
2212213322213221321

CCvBBvAAv

a

AAv

a

TATTA

z
MMFvMuFauf


                          (25) 

for the second joint force acting in the joint
2

A . The relations (21) - (25) represent the complete inverse 

dynamics model of the 3-PRP planar parallel robot. 
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As application let us consider a 3-PRP planar robot, which has the following geometrical and 

architectural characteristics: 

                                3,3.0,
12

,025.0,0
00000

*

0

*

0
llmOCOBOAlmyx

GG


 
      

                                                         stkgmkgmkgm 3,3,75.0,1
321

 .     

 Assuming that there are no external forces and moments acting on the moving platform, a dynamic 

simulation is based on the computation of three powers
i

p
10

required by each actuator during the platform’s 
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evolution and the internal joint forces
i

z

i

y
ff

2121
, ),,( CBAi  . Using the MATLAB software, a computer 

program was developed to solve the inverse dynamics of the planar parallel robot. To illustrate the algorithm, 

it is assumed that for a period of three second the platform starts at rest from a central configuration and 

rotates or moves along rectilinear directions. 

If the platform’s centre G moves along a vertical trajectory without rotation of platform, the input powers 

of three actuators and some joint forces are calculated by the program and plotted versus time as follows: 

Fig. 3 - Fig. 5. For the second example we consider the rotation motion of the moving platform about
0

z  

horizontal axis with variable angular acceleration while all the other positional parameters are held equal to 

zero (Fig. 6 - Fig. 8). 
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The simulation through the MATLAB program certify that one of the major advantages of the current 

matrix recursive formulation is a reduced number of additions or multiplications and consequently a smaller 

processing time of numerical computation. 

4. CONCLUSIONS 

Within the inverse kinematics analysis some exact relations that give in real-time the position, velocity 

and acceleration of each element of the parallel robot have been established in the present paper. The 

dynamics model takes into consideration the mass, the tensor of inertia and the action of weight and inertia 

force introduced by all compounding elements of the parallel mechanism. 
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Based on the principle of virtual work, this approach can eliminate all forces of internal joints and 

establishes a direct determination of the time-history evolution for the torques required by the actuators and 

the internal forces or torques in joints. Choosing appropriate serial kinematical circuits connecting many 

moving platforms, the present method can easily be applied in forward and inverse mechanics of various 

types of parallel mechanisms, complex manipulators of higher degrees of freedom and particularly hybrid 

structures, when the number of components of the mechanisms is increased.  
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