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Abstract

This note shows that there are close connections between the determinacy of
a stationary state equilibrium and its stability under learning whenever agents
try to estimate both the law of motion of the state variable and the stationary

state value.
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1 Introduction

Although early temporary equilibrium literature highlights that determinacy can be
closely related to stability in the dynamics with learning (Grandmont and Laroque
(1986), (1990), Guesnerie (1992), Guesnerie and Woodford (1991), Marcet and Sar-
gent (1989) or Moore (1993)), many recent examples, following Grandmont (1991),
suggest a lack of link between these properties (Duffy (1994), Evans and Honkapo-
hja (1992), Grandmont and Laroque (1991)). The purpose of this note is to show
that determinacy is in fact a benchmark for stability under learning of a stationary
state rational expectations equilibrium as soon as economic agents try to discover

this equilibrium.

2 A preliminary example

I consider a simple model in which the current state of the system is a real number x,
that depends on the common forecast of the next state z¢, ; and on the predetermined

state x;_1 through the temporary equilibrium relation
’YZC;_l + x4 + (5I‘t_1 = 0, (1)

where v # 0, so that expectations matter. In order to close the model (1), I first
assume perfect foresight, i.e., that the forecast xy,; equals the actual realization x4,

in (1). The resulting dynamics writes
VTip1 + T + 0xi—1 = 0. (2)

It is governed by the two perfect foresight roots A; and Ay of the characteristic poly-
nomial associated with (2). Let [A1| < |A\2| by definition. Let also 143§+ # 0, which
ensures that the stationary state x; = ¥ = 0 is regular. This equilibrium is then said
to be a determinate source if [A;| > 1, a determinate saddle if |A\;| < 1 < |Ag|, and an

indeterminate sink if [As| < 1 (see, e.g., Grandmont and Laroque (1991)).



As Grandmont (1991) first emphasized, agents can learn an indeterminate sta-
tionary state when they try to discover the law of motion of the state variable, i.e.,
the value of some perfect foresight root. Assume indeed that agents a priori believe
that x; = g(t)x;_1 (where g(t) represents the time ¢ estimate of some perfect foresight
root) and accordingly expect xf,; to be equal to g(t)z;. Reintroducing such a forecast

into (1) determines the actual state as a function of the past state,

ze = [=0/(1+79(t)] 211, (3)

provided that 1+ vg(t) # 0. A simple myopic learning rule, which fits the iterative
version of the expectational stability criterion used by Evans and Honkapohja (1992),
consists to take the time ¢ actual growth rate in (3) as time (¢+1) growth rate estimate,

that is,
g(t+1) = =6/(1+4(t)). (4)

The fixed points of (4) are such that g(t + 1) = ¢(¢) and coincide consequently with
the two roots A\; and Ay. Whether agents can locally learn \; (i = 1,2) depends on
the stability properties of the local dynamics with learning, obtained by linearizing

(4) at point g(t) = \; whatever t is,

(g(t +1) = Xi) = (Xi/X;)(g(t) = X), (5)

for j = 1,2 and j # i (I used the identities 1/y = —(A; + Ay) and §/7 = A1 A2 to get
(5)). Tt follows from standard algebra that )\; is locally stable in the learning dynamics
(5) as soon as |A;/A;| < 1, so that Ay is locally stable while Ay is locally unstable in
this dynamics. Therefore, in the long run, the system will evolve according to the law
x; = Ay and will converge towards the stationary state £ = 0 if |A\;| < 1, which

clearly covers the indeterminate sink configuration of (2).

My aim is to show, however, that close connections between determinacy and
stability under learning reappear whenever agents try to discover not only some

perfect foresight root but also the stationary state value, i.e., they believe that
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xy = g(t)r,—1 + Z(t), where Z(t) stands for their time ¢ estimate of the stationary
state value. Given this belief, their forecast z7,, is equal to g(t)z; + Z(t), and, as
described above, the actual dynamics, which comes from reintroducing the agents’

forecast into (1), writes now
Y(g(t)wy + Z(t)) + x4 + 024—1 = 0

e x=[—0/(1L+~v9(t)] ze—1 + [—72(t) /(1 +v9(t))] (6)

provided that 1+ ~vg(t) # 0. According to the myopic learning scheme, agents make
their time (¢ + 1) estimates (g(t + 1), Z(t + 1)) equal to the time ¢ actual realizations

of these two variables in (6), namely,
gt +1) = =5/(1 +9(t)), (7)

and Z(t+1) = —vyx(t)/(1+ vg(t)). (8)

Since (4) and (7) are identical, agents locally discover A\; and the system converges
towards the stationary state only if |\;| < 1. Nevertheless, unlike the previous case
where the learning dynamics was in fact reduced to (7), agents have also to learn the
stationary state value in (8), with ¢g(t) = Ay (observe that z(t) = z(t+1) = z(t) =%
in (8)). They succeed in learning it if and only if

=7/ +7M) <1 1/ +1/9)] = [1/X] < 1. (9)

This shows that the system converges towards the stationary state if and only if both
|A1] < 1 (which comes from (7)) and |A\z] > 1 (which comes from (8)), i.e., if the
stationary state is a determinate saddle. The issue I tackle in the next section is
whether this equivalence between saddle determinacy and stability under learning
may arise in a more general framework than (1). Actually this connection still holds

true if L > 1 predetermined variables enter the temporary equilibrium relation.



3 Omne-Step Forward Looking Models

I shall deal with the model

L

YTy + T+ Z 01— = 0. (10)
=1

The perfect foresight dynamics corresponding to (10) is now governed by (L + 1)
perfect foresight roots Ay, ..., App1 (with [A| < -+ < |Ap41]). If the stationary state
(z = 0) of this dynamics is regular, i.e., 140, +---+d,+ # 0, then it is said to be a
determinate source when |Ar| > 1, a determinate saddle when [A;| < 1 < |A41] and
an indeterminate sink when |Ap.1| < 1. In the sequel, however, I will assume that
agents are not aware of information that would ensure perfect foresight. Instead, as

in the previous section (where L = 1), they believe that

L
Ty = Zgl(t)l“t—l + f(t)» (11)

=1
where the coefficients g;(t) (I = 1,..., L) are the time ¢ estimates of the law of motion

of the state variable, and Z(¢) stands for the time ¢ estimate of the stationary state

value. Given this belief, agents form their forecast by iterating once (11),

L
i =Y g(t) T +3(t). (12)
=1

Recall that, if agents use a myopic learning scheme, their new estimates (g;(t +
1),...,g0(t+1),z(t+1)) are the coefficients that govern the actual dynamics, obtained
by reintroducing the forecast (12) into the temporary equilibrium relation (10). It
is simple to verify that the current state x; is actually related to z;; (I =1,...,L)

according to the law

L

Ty == IZ [(Ygrer (8) +00) /(L + 791 (@)] 2t + [—y2(®) /(L + 791 ()], (13)

with gr41 (t) = 0, and provided that 1+ vg; (¢) # 0. The myopic learning dynamics
then follows directly from (13),

g (t+1) = =(ygrr1 () +0) /(1 +791 (1)), forl=1,..., L, (14)
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and 7t +1) = —y2(t)/(1+ 791 (1)). (15)

As it was already the case for (7) and (8), learning the law of motion, i.e., a fixed point
(g7, ...,g;5) of the L-dimensional system (14), is independent of learning the station-
ary state value in (15). Since the homogenous part of (11) evaluated at (g7, ..., g})
governs the evolution of the state variable restricted to some L-dimensional subspace
of the dynamics with perfect foresight, the roots of the characteristic polynomial asso-
ciated with (11) for g, = g; are any L different perfect foresight roots among (L + 1),
so that (14) admits in fact (L + 1) fixed points. It is shown in Gauthier (1999) that
the set of coefficients (gf,...,g;) corresponding to the L perfect foresight roots of
lowest modulus Ay, ..., Ay is the only one to be locally stable in the learning dynam-
ics (14). The economic system is consequently stable only if [A\;| < 1. As a result,
should agents be aware of the stationary state value, then (15) would disappear from
the learning dynamics and the system could converge towards an indeterminate sink
stationary state. Here, however, and this is the new point, equation (15) matters.

This difference turns out to be of importance as the following result shows.

Proposition. Consider a linear one-step forward looking economy with an arbitrary,
but fized, number of predetermined variables. Then a reqular stationary state equi-
librium is locally stable in the dynamics with learning (14)-(15) if and only it is a
determinate saddle in the dynamics with perfect foresight corresponding to (10), i.e.,

if and only if |Ap| <1 <|Aps1].

Proof. For the stationary state value Z(t) = Z(t + 1) = 0 of the first order linear

difference (15) to be locally stable in the dynamics with learning, it must be the case

that
/‘y
- -1 <1 (16)
‘ L+g1
For t large enough, agents will discover the set of coefficients (g7, ..., g} ) associated

with the perfect foresight roots Ay, ..., Ay. For this set of coefficients, Aq,..., A\ are

the L roots of the characteristic polynomial associated with the homogenous part of



(11), with ¢,(t) = g (l=1,...,L). It is then straightforward to show that
gr =M+ + AL (17)

By the same way, given that A\;,..., A1 are the (L + 1) roots of the characteristic
polynomial associated with the perfect foresight dynamics obtained from (10), one
gets

Ly==A+- -+ A1) (18)

Thus condition (16) rewrites

1

‘ 1
(1/7) + gt

AL+1

‘ 7 <1,

1+g7

which shows the result. ®
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