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Abstract

In this contribution, a single-node multi-GPU thermal lattice Boltzmann
solver is presented. The program is based on the TheLMA framework which
was developed for the purpose. The chosen implementation and optimisation
strategies are described, both for inter-GPU communication and for coupling
with the thermal component of the model. Validation and performance results
are provided as well.
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1. Introduction

Since its introduction in the late eighties, the lattice Boltzmann method
(LBM) has proven to be an effective approach in computational fluid dynam-
ics (CFD). It has been successfully applied to a wide range of engineering is-
sues such as multiphase flows, porous media, or free surface flows. Despite
of these achievements, the use of the LBM for thermal flow simulation is not
very widespread yet. A possible reason for this situation is the relatively high
computational cost of most thermal LBM models.

The use of emerging many-core architectures such as graphics processing
units (GPUs) in CFD is fairly promising [2]. Being a regular data-parallel al-
gorithm, the LBM is especially well adapted to such hardware. Nevertheless,
implementing the lattice Boltzmann method for the GPU is still a pioneering
task. Several important issues, such as multi-physics applications and efficient
multi-GPU implementations, remain to be addressed. The present work, pre-
senting a multi-GPU thermal LBM solver, faces both challenges.

The remaining of the paper is organised as follows. In the first section, we
briefly present the thermal lattice Boltzmann model we chose to implement.
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Next, we give an overview of the TheLMA framework on which our program is
based. In the third section, we describe our implementation and our optimisa-
tion strategies. Last, we provide some simulation results for validation purpose
and discuss performance issues.

2. Hybrid thermal lattice Boltzmann model

The lattice Boltzmann equation (LBE), i.e. the governing equation of the
LBM is interpreted as a discrete version of the Boltzmann equation [6]. In
the LBM, as for the Boltzmann equation, a fluid is represented through the
distribution of a single particle in phase space (i.e. position x and particle
velocity ξ). Space is commonly discretised using a uniform orthogonal lattice
and time using constant time steps. A finite set of particle velocities ξα is
substituted to velocity space. The LBM counterpart of the distribution function
f(x, ξ, t) is a finite set fα(x, t) of particle distribution functions associated to
the particle velocities ξα. The LBE writes:

∣

∣fα(x + δtξα, t + δt)
〉

−
∣

∣fα(x, t)
〉

= Ω

[

∣

∣fα(x, t)
〉

]

. (1)

where Ω is the collision operator. The mass density ρ and the momentum j of
the fluid are given by:

ρ =
∑

α

fα , j =
∑

α

fαξα . (2)

The particle velocity set is usually chosen such as to link the nodes to some
of their nearest neighbours, as the three-dimensional D3Q19 stencil illustrated
by Fig. 1. It is well-known that such basic models are not energy conserving.
To address this issue, several approaches such as multi-speed models [15] or
double-population models [3] have been developed. In the former category, a
larger set of particle velocities is defined allowing multiple particle speeds along
some directions. In the later category, an additional set of energy distribution
functions is used. Both approaches suffer from inherent numerical instabili-
ties [4]. Moreover, from a computational standpoint, both methods lead to a
markedly higher memory consumption.

Hybrid thermal lattice Boltzmann models constitute an alternative approach
in which the flow simulation is decoupled from the solution of the heat equation.
These models are free from the aforementioned drawbacks. In the present work,
we implemented a simplified version of the hybrid thermal lattice Boltzmann
model developed in [4]. Flow simulation is performed by multiple-relaxation-
time LBM [1], using the D3Q19 stencil. In the multiple-relaxation-time ap-
proach, collision is performed in moment space and the LBE writes:

∣

∣fα(x + δtξα, t + δt)
〉

−
∣

∣fα(x, t)
〉

= −M
−1

S

[

∣

∣mα(x, t)
〉

−
∣

∣m(eq)
α

(x, t)
〉

]

(3)

where M is an orthogonal matrix mapping the set of particle distributions to a
set of moments mα, and S is a diagonal matrix containing the relaxation rates.

2



1
2

3

4

5

6

15

18

16

17

14

1112

13

8

9
10

7

Figure 1: The D3Q19 stencil

Matrices M and S as well as the equilibria of the moments for the D3Q19 stencil
can be found in appendix A of [1].

In our simulations, we set the ratio of specific heats γ = CP /CV to γ = 1.
Temperature T is obtained by solving the following finite-difference equation:

T (x, t + δt) − T (x, t) = κ∆∗T − j · ∇∗T (4)

where κ denotes the thermal diffusivity and the finite-difference operators are
defined as:

∂∗

x
f(i, j, k) = f(i + 1, j, k) − f(i − 1, j, k)

−
1

8

(

f(i + 1, j + 1, k) − f(i − 1, j + 1, k) + f(i + 1, j − 1, k) − f(i − 1, j − 1, k)

+f(i + 1, j, k + 1) − f(i − 1, j, k + 1) + f(i + 1, j, k − 1) − f(i − 1, j, k − 1)
)

∆∗ f(i, j, k) = 2
(

f(i + 1, j, k) + f(i − 1, j, k) + f(i, j + 1, k)

+ f(i, j − 1, k) + f(i, j, k + 1) + f(i, j, k − 1)
)

−
1

4

(

f(i + 1, j + 1, k) + f(i − 1, j + 1, k) + f(i + 1, j − 1, k)

+ f(i − 1, j − 1, k) + f(i, j + 1, k + 1) + f(i, j − 1, k + 1)

+ f(i, j + 1, k − 1) + f(i, j − 1, k − 1) + f(i + 1, j, k + 1)

+ f(i − 1, j, k + 1) + f(i + 1, j, k − 1) + f(i − 1, j, k − 1)
)

− 9f(i, j, k)

It should be mentioned that these operators share the same symmetries as
the D3Q19 stencil. The coupling of the temperature to the momentum is explicit
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in Eq. 4. The coupling of the momentum to the temperature is carried out in
the equilibrium of the second order moment m2 related to internal energy:

m
(eq)
2 = −11ρ + 19j2 + T (5)

3. The TheLMA framework

Since the introduction of the CUDA technology [9] by the Nvidia company
in 2007, several successful attempts to implement the LBM on the GPU were
reported [11, 16]. Yet, constraints induced by low-level hardware specificities
make GPU programming fairly different from usual software development. Be-
side other limitations, it is worth mentioning the inability of the compilation
tool chain to link several GPU binaries and the inlining1 of device functions,
i.e. functions called by GPU kernels. Library oriented development is therefore
not relevant up to now.

To improve code reusability, we designed the TheLMA framework [10], which
is outlined in Fig. 2. TheLMA stands for Thermal LBM on Many-core Architec-

tures, thermal flow simulations being our main topic of interest. The framework
consists in a set of C and CUDA source files. The C files provide a set of utility
functions to retrieve simulation parameters, initialise computation devices, ex-
tract statistical informations, and export data in various output formats. The
CUDA files are included at compile time in the thelma.cu file which is mainly a
container, additionally providing some general-purpose macros. Implementing
a new lattice Boltzmann model within the framework mostly requires to alter
the compute.cu file.

param.c init.c stat.c output.c

main.c

thelma.cu

geometry.cu init.cu compute.cu results.cu

Figure 2: Overall structure of the TheLMA framework

1Starting with hardware of compute capability 2.0, i.e. the Fermi generation, it is possible
to perform actual function calls, yet inlining is still the default behaviour.
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Our framework provides native single-node multi-GPU management based
on POSIX threads [13, 14]. Each computing device is managed by a specific
thread which is responsible for creating the appropriate CUDA context. The
computation domain is split along the fastest varying direction. Communication
between sub-domains is performed using zero-copy transactions on pinned ex-
change buffers in CPU memory. The chosen split direction allows the read and
store accesses to CPU memory to be coalesced, which leads to an excellent com-
munication and computations overlapping. Figure 3 describes the inter-GPU
communication scheme. For the sake of simplicity, only one GPU associated to
a single sub-domain interface is presented. Even time step data are displayed in
red and odd time step data are displayed in blue. Line G stands for the GPU,
lines L0 and L1 stand for the sub-domains stored in GPU memory, R0 and R1
for the buffers containing in-coming data, S0 and S1 for the buffers containing
out-going data.

G

L0

L1

R0

R1

S0

S1

Figure 3: Inter-GPU communication scheme

4. Implementation

For the implementation of a hybrid thermal lattice Boltzmann model on the
GPU, there is the alternative of using a single kernel or two distinct kernels for
solving the fluid flow and the thermal part. Since Eq. 3 and Eq. 4 are tightly
coupled, the two kernels option would increase the communication needs, not
mentioning the overhead of kernel switching. We therefore chose to process both
parts in the same kernel.
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The fluid flow component is derived from the one described in [11]. Beside
other optimisations, the kernel uses in-place propagation as illustrated in Fig. 4
instead of the usual out-of-place propagation. This approach allows to minimise
the cost of misaligned memory transactions [12]. Misalignment may have a
dramatic impact on performance with pre-Fermi hardware, since the device’s
main memory is not cached.

Figure 4: Out-of-place propagation

CUDA implementations of the LBM generally assign a thread to each node
in order to take advantage of the massive parallelism of the architecture. This
approach often leads to the use of a two-dimensional grid of one-dimensional
blocks, which allows a straightforward determination of the coordinates. The
grid and block dimensions are therefore identical to the size of the computation
sub-domain. The direction of the blocks corresponds to the slowest varying
dimension in memory in order to enable coalesced memory accesses.

In our case, these common sense optimisation principles had to be altered.
Since the implemented kernel takes care of both the fluid flow part and the
thermal part, the register consumption is fairly higher than for usual isothermal
LBM kernels. For compute capability 1.3, we could not achieve less than 124
registers per thread. In order to avoid potential register shortage, we use small
blocks containing one to four warps, i.e. 32, 64, 96 or 128 threads. Each block
is associated to a one-dimensional zone spanning the cavity width, whose nodes
are processed in several steps. Figure 5 outlines the chosen configuration (in
two dimensions for the sake of simplicity). The blue dots represent the nodes
belonging to the zone; the red frame represents the nodes being processed by the
block of threads; the white background is used for the nodes whose temperature
is required in the finite-difference computations.

The associated grid is two-dimensional, its size corresponding to the remain-
ing dimensions of the sub-domain. It is worth mentioning that we assign the
first rather than the second field of the blockIdx structure to the fastest vary-
ing dimension in memory. This option appears to improve the overlapping of
computation and inter-GPU communication.

When implementing stencil computations on the GPU, reducing read redun-
dancy is a key optimisation target [7]. We therefore chose store the temperature
of the neighbouring nodes in shared memory. In the case of boundary nodes,
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Figure 5: Block configuration

the surplus cells in the temperature array may be used to store shadow values
determined by extrapolation. During the read phase, each thread is responsible
for gathering the temperatures of all the nodes sharing the same abscissa, as
outlined in Fig. 6.

Figure 6: Read access pattern for temperature

Not taking the boundaries into account, the chosen approach reduces the
read redundancy in the D3Q19 case from 19 to at most2 9.3125. Moreover, it
should be noted that this data access pattern induces no misalignement at all.

2Five additional temperatures for both the first and the last node are read, thus the worst
case is for blocks of size 32 and the read redundancy equals (32× 9 + 2× 5)/32.
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5. Results and discussion

5.1. Test case

To test our code, we simulated the well-known differentially heated cubic
cavity illustrated in Fig.7. In this test case, two vertical opposite walls have
imposed temperatures ±T0 whereas the four remaining walls are adiabatic. The
buoyancy force F is computed using the Boussinesq approximation:

F = −ρβTg (6)

where β is the thermal expansion coefficient, and g the gravity vector of mag-
nitude g. The Prandtl number is set to Pr = 0.71. The parameters for the
simulations are the Rayleigh number Ra and the kinematic viscosity ν, which
determine the thermal diffusivity κ and the value of βg.

−T0 +T0

x

z

y

g

Figure 7: Differentially cubic heated cavity

We ran our program on a Tyan B7015 server fitted with eight Tesla C1060
computing devices. We could therefore perform computations on cavities as
large as 5123 in single precision.

5.2. Simulations

For validation purpose, we performed several simulations of the differentially
heated cubic cavity using a 4483 lattice in single precision. The kinematic
viscosity was set to ν = 0.05 and the Rayleigh number ranged from 104 to 107.
The computations were carried out until convergence to steadiness, which is
assumed to be reached when:

max
x

|T (x, tn+1) − T (x, tn)| < 10−5 (7)

where tn = n × 500δt. The obtained Nusselt numbers at the isothermal walls
are in good agreement with previously published results [17] as shown in Tab. 1.
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Rayleigh number 104 105 106 107

Nusselt number 2.050 4.335 8.645 16.432

Time steps 485,000 380,000 266,000 182,000

Computation time (min) 394 309 216 148

Tric et al. [17] 2.054 4.337 8.640 16.342

Relative deviation 0.19% 0.07% 0.06% 0.55%

Table 1: Comparison of Nusselt numbers at the isothermal walls

Using lattices of size 5123 allowed us to run simulation for Rayleigh num-
bers up to 109 without facing numerical instabilities. From a phenomenological
standpoint, although unsteady, the flow rapidly leads to a rather stable vertical
stratification. We furthermore observe quasi-symmetric and quasi-periodic flow
patterns near the bottom edge of the cold wall and the top edge of the hot wall.
Figure 8 shows the temperature field in the symmetry plane after 106 iterations.
Further investigations on this simulation are required and will be published in
a future contribution.

Figure 8: Symmetry plane temperature field at Ra = 109

5.3. Performance

We recorded performance results of our solver for increasing block size and
cavity size (see Fig. 9). The chosen performance metric is the million lattice node
updates per second (MLUPS). The cavity size has to be a multiple of the block
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size, hence several configurations are not available. Performance obtained with
a given block size appears to be correlated to the corresponding occupancy. For
compute capability 1.3, global memory is split in eight 256 bytes wide memory
banks [8]. Hence, the poor performance obtained for cavity size 256 and 512 is
probably caused by partition camping, since the stride between corresponding
nodes in distinct blocks is necessarily a multiple of the cavity size.

192 256 320 384 448 512
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Figure 9: Performance for increasing block size and cavity size

The maximum performance is 1,920 MLUPS, achieved for cavity size 448
and block size 64. The corresponding GPU to device memory data through-
put is 46.1 GB/s per GPU, which is about 62.3% of the maximum sustained
throughput.3 The multiprocessor occupancy, which is only 13%, appears to be
the limiting factor since it is lower than the minimum required to properly hide
the global memory latency, i.e. 18.75% for compute capability 1.3.

To evaluate scalability, we also ran our program on a 1923 lattice using
from one to eight GPUs (see Fig. 10). Parallelisation efficiency is very satis-
factory with no less than 84% for a fairly small computation domain. As for
our isothermal multi-GPU LBM solver [14], our implementation allows excel-
lent overlapping of communication and computations. Moreover, the amount of

3Using the bandwidthTest program of the CUDA SDK, we estimate the GPU to device
memory maximum sustained throughput to 73.3 GB/s for the Tesla C1060.
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data to exchange does not exceed the capacity of the PCI-E links.

0 1 2 3 4 5 6 7 8
Number of GPUs

0

200

400

600

800

1000

1200

1400

1600

Pe
rf

or
m

an
ce

 (M
LU

PS
)

Performance (MLUPS)
100% Efficiency

Figure 10: Parallelisation efficiency on a 1923 cavity

6. Conclusion

In this contribution, we present a multi-GPU implementation of a thermal
LBM solver, which to the best of our knowledge was never reported before.
Using appropriate hardware, our program is able to run up to eight GPUs in
parallel. With the latest generation of Nvidia computing devices, it is therefore
possible to perform simulations on lattices containing as much as 3.2×108 nodes.

Validation studies have been carried out, showing both the accuracy and the
stability of the chosen thermal LBM model and the correctness of our implemen-
tation. Although slightly less efficient than the isothermal version of our solver,
our program provides unrivaled performance compared to CPU implementa-
tions. Recent studies [5] have shown that optimised multi-threaded CPU imple-
mentations of isothermal LBM solver running on up-to-date hardware achieve
at most 85 MLUPS, which is 22× less than our maximum performance.

We furthermore study the performance bottlenecks, showing that the limit-
ing factor is the low occupancy. Since the multiprocessor occupancy is bound
by the amount of available registers there is little room for improvements using
the same hardware. Yet, a more elaborate memory access pattern could avoid
the partition camping effects we could observe in some cases.
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We believe our work is a significant step towards the use of GPU based LBM
solvers in practice. In near future, we intend to add specific optimisations for
compute capability 2.0 and 2.1 hardware, i.e. the latest CUDA capable GPUs.
We also plan to extend the TheLMA framework on which our program is based
to multi-node implementations.
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