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Abstract

Interpolated bounce-back boundary conditions for the lattice Boltzmann
method (LBM) make the accurate representation of complex geometries pos-
sible. In the present work, we describe an implementation of a linearly inter-
polated bounce-back (LIBB) boundary condition for graphics processing units
(GPUs). To validate our code, we simulated the flow past a sphere in a square
channel. At low Reynolds numbers, results are in good agreement with exper-
imental data. Moreover, we give an estimate of the critical Reynolds number
for transition from steady to periodic flow. Performance recorded on a single
node server with eight GPU based computing devices ranged up to 2.63 x 10°
node updates per second. Comparison with a simple bounce-back version of the
solver shows that the impact of LIBB on performance is fairly low.

Key words: Lattice Boltzmann method, GPU programming, CUDA,
Interpolated bounce-back boundary condition, TheLMA project

1. Introduction

From a computational perspective, the lattice Boltzmann method (LBM)
can be seen as a data parallel algorithm with local synchronisation constraints.
It is therefore well-adapted to massively parallel architectures such as graphics
processing units (GPUs). Since the advent of the CUDA technology in 2007 [§],
several efficient implementations of the LBM for the GPU were reported |7, 18].
Recent multi-GPU implementations [11] make the use of large computation
domains possible, which otherwise would be bound by the limited amount of on-
board emory. Nevertheless, several other issues, such as accurate representation
of complex geometries, remain to be addressed in order to improve the practical
interest of GPU LBM solvers. Implementing LBM boundary conditions for the
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GPU is quite challenging since it often leads to branch divergences and therefore
may have dramatic impact on performance.

In this contribution, we shall describe the multi-GPU implementation of an
extension to the simple bounce-back boundary condition. This approach intro-
duced in 2001 by BOW the exact location of
the solid boundaries i —For validation purpose, we simulated the flow
past a sphere in a square channel and compared our results with experimental
data. The paper is organised as follows. First, we briefly introduce the LBM
and present the boundary condition we implemented. Then, we outline the
TheLMA framework, on which our solver is based, and describe the proposed

implementation. Next, we report and discuss our simulation results and last,
we present some performance measurements.

2. Lattice Boltzmann method

With the continuous Boltzmann equation, fluid dynamics is represented
through the evolution in time of a single-particle distribution function f in
phase space. As shown by He and Luo [5], lattice Boltzmann models are based
on discretised versions of the Boltzmann equation in both time and phase space.
In general, the LBM uses a regular orthogonal lattice of mesh size dx and con-
stant time steps 6t. The velocity space is replaced by a finite set of N + 1
particle velocities {£,|a = 0,...,N}. The lattice Boltzmann analogue of the
distribution function f is a set of functions {f, |a = 0,..., N} associated to the
particle velocities. Using the former notations, the lattice Boltzmann equation
(LBE), i.e. the governing equation of the LBM, is written:

[fal@ + Cast 4 61)) = | fal@, 1) = Q| fa(=,1))]. (1)

where (2 is the collision operator. The mass density p and the momentum j of
the fluid are given by:

p:Zfom j:Zfaécw (2)

From an algorithmic perspective, Eq. 1 naturally breaks in two elementary
step:

Fal@.t)) = | fal@,t) + Q| fa(@.1)] (3)

| fal(@ + cast +61)) = | fa(, 1)) (4)

where ¢, = 6t€,. Equation 3 describes the collision step in which an updated
particle distribution is computed. Equation 4 describes the propagation step
in which the updated particle populations are transferred to the neighbouring
nodes. The particle velocity set is usually chosen such as to link the nodes
to some of their nearest neighbours, as the three-dimensional D3Q19 stencil
illustrated by Fig. 1.
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Figure 1: The D3Q19 stencil

For the present work, we used the D3Q19 multiple-relaxation-time (MRT)
lattice Boltzmann model described in [3]. In the MRT approach, collision is
performed in moment space. The particle distribution is mapped to a set of
moments {m, |a=0,..., N} by an orthogonal matrix M:

|ma(x,t)) = M| fa(e, 1)) (5)

where |mq (@, t)) is the moment vector. The LBE becomes:

‘fa(:c + o, t+ 6t)> — |fa(a:,t)> = —M_ll\“ma(w,t» — }mgeq)(%t»} (6)

where A is a diagonal collision matrix and the m&? are the equilibrium values

of the moments.

3. Bounce-back boundary conditions

Lattice Boltzmann boundary conditions for solid walls basically divide up
into wet node conditions and bounce-back conditions. In the former category,
the boundary nodes, i.e. the nodes on which the condition is applied, are sup-
posed to be both located on the solid boundary and part of the fluid [6]. In the
later category, the boundary nodes are in general the fluid nodes next to the
solid nodes and the solid boundary is located somewhere in between.

An elementary version of bounce-back is the so-called simple bounce-back
(SBB). With SBB, an unknown particle population f,, at a boundary node obeys
the following equation:

fal@,t) = falz,t - dt) (7)



where @ is the direction opposite to a. Algorithmic simplicity of SSB is obvious
when considering Eq. 7. The only information required for a given node is the list
of unknown particle populations. Moreover, it is known that (asymptotically)
the solid boundary is located half-way between the solid and the fluid nodes [4].
Simple bounce-back is therefore convenient in many situations. However, to
handle complex geometries, a more elaborate approach is needed.

In 2001, Bouzidi et al. [2] introduced an extension to SBB based on either
linear interpolation (LIBB) or quadratic interpolation, which allows the solid
boundary to take any desired position. In the present work, we implemented
the LIBB as formulated by Pan et al. [15]. Let @ denote a boundary node such
that & + ¢, is a solid node, and ¢ be the number such that « + qc, is on the
solid boundary. For ¢ < 1/2,

Jal,t) = (1 20) fa(@.1) + 2q/a(2,t - 5t) (8)
and for ¢ > 1/2,

Fulm,t) = (121q> ﬁl(m,tfét)+2iqﬁ(w,tf§t) (9)

It should be noted that both equations only require informations local to
the boundary node. Moreover, it is worth mentioning that for ¢ = 1/2, LIBB
reduces to SBB.

4. The TheLMA framework

The proposed implementation of the LIBB boundary condition was carried
out within the TheLMA framework [1]. The design of graphics processing units
is guided by their primary use which is rather different from general purpose
computations. As a matter of fact, several limitations of the CUDA technology,
like the inlining of device functions!, are induced by hardware characteristics of
the Nvidia GPUs. The former limitation, which forbids the linking of CUDA
object files, makes library oriented development not relevant in many situa-
tions, and more specifically for LBM solvers. We therefore decided to create a
framework, in order to improve code reusability.

TheLMA stands for Thermal LBM on Many-core Architectures, thermal sim-
ulations being our main topic of interest. The framework consists in a set of
modules which are designed such as to minimise code modifications when set-
ting up a new simulations or implementing a new model. It provides native
single-node multi-GPU support based on POSIX threads. The core collision
and propagation kernel is derived from the single-GPU code described in [10].
The execution grid of the core kernel is two-dimensional with one-dimensional

IWith the latest CUDA enabled GPU generation, i.e. the Fermi generation, inlining is
the default behaviour but is not mandatory any more. However, the CUDA 4.0 compilation
tool-chain is still unable to link several CUDA object files.



blocks, each node of the lattice being associated to a thread. In order to en-
sure global synchronisation, two instances of the particle distribution are kept
in global memory, corresponding to even and odd time steps.

For each computation sub-domain, the particle distribution is stored in a
four-dimensional array. The fastest varying dimension corresponds to the direc-
tion of the blocks which allows memory transactions to be coalesced. The second
fasted varying dimension corresponds to the velocity set index. When using the
D3Q19 stencil, the size of the second dimension is therefore 19 which is prime.
The number of device memory banks being a power of two, this layout has a
positive impact on partition camping effects. Instead of using the usual out-of-
place propagation, our core kernel performs in-place propagation which consists
in carrying out propagation before collision instead of after. This propagation
scheme is illustrated by Fig. 2. The represented case is only two-dimensional for
the sake of clarity. It was shown in [9] that this simple optimisation minimises
the cost of misaligned memory transactions, which may have dramatic effects
on performance with pre-Fermi hardware.
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Figure 2: Out-of-place propagation

When running several GPUs in parallel, inter-GPU communication is per-
formed by zero-copy transactions on pinned buffers in CPU memory. This ap-
proach leads to excellent overlapping of communication and computations [12].
Figure 3 outlines the communication scheme. For the sake of clarity, only one
GPU with a single sub-domain interface is displayed. In the figure, G denotes
the GPU, LO and L1 denote the particle distribution arrays for even and odd
time steps, RO and R1 in-coming data, SO and S1 out-going data.

To achieve satisfactory performance, data exchanges at the interfaces must
be coalescent [11]. The computation domain is therefore split in balanced sub-
domains along the direction corresponding to the slowest varying dimension of
the particle distribution array.

5. Proposed implementation

In the TheLMA framework, geometry is represented using bit-fields. To
process a node, the corresponding thread first loads a 32-bit integer. The first



Figure 3: Inter-GPU communication scheme

N bits of the integer are used to indicate whether the node in the correspond-
ing direction is solid. This technique makes the implementation of SBB rather
straightforward. Since we use in-place propagation, some of the particle popu-
lations loaded for a boundary node are invalid, but these values are discarded
when applying the boundary condition. Our tests have shown that it is of little
interest to avoid loading these invalid populations. As a matter of fact, it may
have a positive impact to cancel invalid loads when a whole half-warp is in-
volved, e.g. for cavity walls parallel to the blocks or within very large obstacles.
Yet, the overhead of branching decisions together with surface to volume effects
make the benefits negligible in practice.

Our implementation of the LIBB takes advantage of these unnecessary mem-
ory accesses. At initialisation, the distance information for the solid boundaries
are computed and stored in the unused particle population array cells of the
relevant solid nodes. At each time step, the distance information are retrieved
by the threads processing boundary nodes during propagation. To perform in-
terpolation, the threads need in addition to fetch some of the local updated
particle populations of the former time step. The data access scheme is out-
lined by Fig. 4. Blue is used for the particle populations involved in collision,
red for the distance information, and black for the particle populations involved
in interpolation. Again, the displayed case is two-dimensional for the sake of
clarity.

It is worth stressing that, in practice, the proposed implementation of LIBB
only slightly increases the overall number of memory accesses compared to our
implementation of SBB. The implemented initialisation and simulation kernel
are summarised in Pseudo-Codes 1 and 2.

6. Flow past a sphere

For validation purposes, we performed single precision simulations of a uni-
form flow past a sphere in a square channel. Figure 5 outlines the computation
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if node x is solid then
set flag solid for x
for each direction o do
if node x + ¢, is fluid then
compute ¢ for & and x + ¢,
store ¢ in fs(x + ¢4, 0)
end if
end for
else
for each direction o do
if node x + ¢, is solid then
set flag « for «
end if
end for
end if

Pseudo-Code 1: Initialisation kernel

read bit-field for x
if node x is fluid then
for each direction o do
read fo(x — cq,t — 0t)
end for
for each direction o do
if flag o is set then
set q to fa(x,t)
read fo(z,t — 6t) and fa(wm,t — Ot)
interpolate f5(x,t)
end if
end for _
compute distribution f,(x,t)
store distribution fo(, t)
end if

Pseudo-Code 2: Simulation kernel



Figure 4: Implementation of the LIBB

domain. For the sake of simplicity, we set dx = 1 and 6t = 1. The overall di-
mensions we chose for the channel are L x £ x £ = 768 x 352 x 352 and the radius
of the sphere is » = 21. The blockage ratio § = 2r/{ is therefore § ~ 0.112.
The center of the sphere is positioned at a distance d = 224 from the inlet, with
y =171, y’ = 181, 2/ = 2" = 176. The distance from the back of the sphere
to the outlet is therefore greater than twelve times the diameter. The slight
asymmetry in the y direction contributes to stabilise the flow pattern.

In order to study the vortex shedding frequency, we recorded the flow velocity
components at points A, B, and C such that OA = 171 and AB = BC =r.
We performed frequency analysis using fast Fourier transform on a 2'° sample,
the overall number of time steps being at least 10°. The size of the sample is
greater than one hundred shedding periods considering the typical values of the
Strouhal number (St) reported for the Reynolds numbers (Re) we investigated.

7. Simulation results

7.1. Comparison with experimental data

In order to compare our results with experimental data provided by Sakamoto
and Haniu [17], and by Ormiéres and Provansal [13], we computed the Roshko
number Ro = St X Re for Reynolds numbers ranging from Re = 280 to Re = 360.
In both cases, the measurements were carried out in wide wind tunnels, whereas
for our simulations the blockage ratio is not negligible. We therefore applied a
correction to the computed Strouhal number St in order to obtain the corre-
sponding Strouhal number St* in an unbounded flow. Following Ota et al. [14],
St* obeys:

St* = (1 — Bésy)St (10)
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Figure 5: Simulation set-up

where &g¢ is the correction factor depending on the shape of the obstacle. We
used the value &gy = 0.95 obtained thanks to the least square method with the
fit given by Ormiéres and Provansal:

Ro = —48.2 4 0.391 x Re — 3.6 x 107* x Re? (11)

In the considered interval of Reynolds numbers, the obtained power spectra
are dominantly unimodal and independent from the chosen tracking point (ei-
ther A, B, or C). Figure 6 gives a sample for Re = 300 of the power spectral
density of the cross-stream component v of the velocity in the y direction.

As shown, by Fig. 7, agreement of the corrected values with experimental
data is satisfactory, the deviation from the fit being within 5%.

7.2. Transition to periodic flow

In their aforementioned work [13], Ormiéres and Provansal investigate the
transition from steadiness to periodicity for the flow past a sphere. The reported
value for the critical Reynolds number is Re. = 280 + 5. Our simulations lead
us to lower this estimate to Re. = 265 + 5. To determine this critical value, we
computed o,, the standard deviation of v for the last 5 x 10° time steps. For
Re = 270, we obtain o, /Uy ~ 3 x 107% at points A and B, where Uy denotes
the bulk velocity at the inflow. At point C, o, = 0 to the extent of machine
precision. The corresponding Strouhal number is St = 0.1122. For Re = 260, o,
equals to zero at each tracking point (again, to the extent of machine precision).
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7.8. Simulations at higher Reynolds numbers

In further investigations, we performed simulations for Reynolds numbers
ranging from 400 to 1,000 with a stride of 100. With 10° time steps, we could
not determine coherent frequencies from our samples.
generally depend from the chosen tracking point.
appear to be unstable when sliding the sampling window. Figure 8 illustrates
the former observation for Re = 1,000. The diagram displays the estimated
Strouhal number with respect to the lower bound of the window. One possible
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330

360

The obtained values
Moreover, the frequencies



reason for this situation could be an insufficient duration of the initial run.
Yet, considering the required computational effort, we decided to focus on the
upper part of the regular mode region of the flow pattern [16] located between
Re = 360 and Re = 420. For each chosen Reynolds number, we computed
2 x 10% time steps and checked for invariance of the obtained frequencies.

0,22

0,21 +

Strouhal number

0,19 4

018
200000 250000 300000 350000 400000 450000 500000 550000
Lower window bound

Figure 8: Variation of the estimated Strouhal number at Re = 1,000

For Re = 360, we observe a stable value of St = 0.1394 at points A and B,
whereas the Strouhal number obtained at point C oscillates between the former
value and St = 0.1826. For Re = 380, we observe a stable value of St = 0.139
at point A and a stable value of St = 0.1810 at point C. The Strouhal number
obtained at point B oscillates between the two former values. This observation,
which suggests that the flow pattern is split in two independent regions, requires
further investigation. For Re = 400, we obtain the same stable value St = 0.2019
for each tracking point. Last, for Re = 420, we could not observe a stable
shedding frequency, regardless of the tracking point.

8. Performance results

We carried out our computations on a Tyan B7015 server with eight Tesla
C1060 computing devices. For the purpose of evaluating the efficiency of our
LIBB implementation, we ran single precision simulations of the flow past a
sphere with both a SBB version and a LIBB version of our multi-GPU solver on
a computation domain of size 1,024 x £ x £ with increasing ¢. The diameter of
the sphere was set to 30. Figure 9 displays the obtained performance in million
lattice node updates per second (MLUPS), which is the usual metrics for LBM.
As shown by the diagram, the impact of LIBB is in general negligible, with at
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most 11% performance loss. The maximum recorded performance for LIBB is
2,630 MLUPS.

2800 §
2600 4 m
2400 A
2200 A
2000 4
1800
1600 -

1400 .
00 O uBB

1200 | I ses

1000 +
800
600

Million Lattice node Updates Per Second

400+

200

0

128 | 160 | 192 | 224 | 256 | 288 = 320 | 352 | 384 | 416
Cavity width and height

Figure 9: Performance comparison of SBB and LIBB implementations

With the Tesla C1060, the maximum sustained throughput for communica-
tion between GPU and device memory is 73.3 GB/s. Except for ¢ = 128 and
¢ = 256, the data throughput with both versions is thus above 61% of the max-
imum. For LIBB, we computed the number of additional memory transactions
required using a simple program derived from the solver code. A sphere of di-
ameter 30 yields 3,960 boundary nodes and 32,736 additional memory accesses.
Taking the inter-GPU communication overhead into account, the achieved per-
formance is therefore rather satisfactory. The quite low performance obtained
with ¢ = 128 and ¢ = 256 is most likely due to partition camping effects, con-
sidering the dimensions of both computation domains.

9. Conclusion

In the present work, we describe an implementation of the LIBB boundary
condition within a multi-GPU LBM solver based on the TheLMA framework.
The proposed approach proves to be efficient, with little impact on performance
compared to a SBB version of the code. When simulating the flow past a sphere
in a channel, our solver allowed to successfully compute the vortex shedding
frequency for Reynolds numbers belonging to the regular mode flow pattern
region. Moreover, we obtained a plausible value of the critical Reynolds number
for transition from steady to periodic flow.

The instabilities observed at higher Reynolds numbers may be caused by
either an insufficient simulation duration or by inaccuracies due to the boundary
condition. The second hypothesis, which may lead to the conclusion that LIBB
is not appropriate for curved solid boundaries past a certain Reynolds number,

12



will be tested by performing simulations at higher spatial resolution. In both
cases, higher computational efforts are required. In order to investigate further,
we are at present working on an extension of the TheLMA framework to multi-
node multi-GPU hardware.
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