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Interpolated bounce-back boundary conditions for the lattice Boltzmann method (LBM) make the accurate representation of complex geometries possible. In the present work, we describe an implementation of a linearly interpolated bounce-back (LIBB) boundary condition for graphics processing units (GPUs). To validate our code, we simulated the flow past a sphere in a square channel. At low Reynolds numbers, results are in good agreement with experimental data. Moreover, we give an estimate of the critical Reynolds number for transition from steady to periodic flow. Performance recorded on a single node server with eight GPU based computing devices ranged up to 2.63 × 10 9 node updates per second. Comparison with a simple bounce-back version of the solver shows that the impact of LIBB on performance is fairly low.

Introduction

From a computational p ersp ective, the lattice Boltzmann metho d (LBM) can be seen as a data parallel algorithm with local synchronisation constraints. It is therefore well-adapted to massively parallel architectures such as graphics processing units (GPUs). Since the advent of the CUDA technology in 2007 [START_REF]Compute Unified Device Architecture Programming Guide version 4.0. nVidia[END_REF], several efficient implementations of the LBM for the GPU were reported [START_REF] Kuznik | LBM Based Flow Simulation Using GPU Computing Processor[END_REF][START_REF] Tölke | TeraFLOP computing on a desktop PC with GPUs for 3D CFD[END_REF]. Recent multi-GPU implementations [START_REF] Obrecht | The TheLMA project: Multi-GPU Implementation of the Lattice Boltzmann Method[END_REF]m a k et h eu s eo fl a r g ec o m p u t a t i o n domains possible, which otherwise would be bound by the limited amount of onboard emory. Nevertheless, several other issues, such as accurate representation of complex geometries, remain to be addressed in order to improve the practical interest of GPU LBM solvers. Implementing LBM boundary conditions for the GPU is quite challenging since it often leads to branch divergences and therefore may have dramatic impact on performance.

In this contribution, we shall describe the multi-GPU implementation of an extension to the simple bounce-back boundary condition. This approach introduced in 2001 by Bouzidi [START_REF] Bouzidi | Momentum transfer of a boltzmann-lattice fluid with boundaries[END_REF], uses interpolations to take the exact location of the solid boundaries into account. For validation purpose, we simulated the flow past a sphere in a square channel and compared our results with experimental data. The paper is organised as follows. First, we briefly introduce the LBM and present the boundary condition we implemented. Then, we outline the TheLMA framework, on which our solver is based, and describe the proposed implementation. Next, we report and discuss our simulation results and last, we present some performance measurements.

Lattice Boltzmann method

With the continuous Boltzmann equation, fluid dynamics is represented through the evolution in time of a single-particle distribution function f in phase space. As shown by He and Luo [START_REF] He | Theory of the lattice boltzmann method: From the boltzmann equation to the lattice boltzmann equation[END_REF], lattice Boltzmann models are based on discretised versions of the Boltzmann equation in both time and phase space. In general, the LBM uses a regular orthogonal lattice of mesh size δx and constant time steps δt. The velocity space is replaced by a finite set of N +1 particle velocities {ξ α | α =0 ,...,N}. The lattice Boltzmann analogue of the distribution function f is a set of functions {f α | α =0,...,N} associated to the particle velocities. Using the former notations, the lattice Boltzmann equation (LBE), i.e. the governing equation of the LBM, is written:

f α (x + c α ,t+ δt) - f α (x,t) = Ω f α (x,t) . ( 1 
)
where Ω is the collision operator. The mass density ρ and the momentum j of the fluid are given by:

ρ = α f α , j = α f α ξ α . (2) 
From an algorithmic p ersp ective, Eq. 1 naturally breaks in two elementary step:

f α (x,t) = f α (x,t) + Ω f α (x,t) (3) f α (x + c α ,t+ δt) = f α (x,t) (4) 
where c α = δt ξ α .E q u a t i o n3 describes the collision step in which an updated particle distribution is computed. Equation 4 describes the propagation step in which the updated particle populations are transferred to the neighbouring nodes. The particle velocity set is usually chosen such as to link the nodes to some of their nearest neighbours, as the three-dimensional D3Q19 stencil illustrated by Fig. 1. For the present work, we used the D3Q19 multiple-relaxation-time (MRT) lattice Boltzmann model described in [START_REF] Humières | Multiple-relaxation-time lattice Boltzmann models in three dimensions[END_REF]. In the MRT approach, collision is performed in moment space. The particle distribution is mapped to a set of moments {m α | α =0,...,N} by an orthogonal matrix M:

m α (x,t) = M f α (x,t) (5) 
where m α (x,t) is the moment vector. The LBE becomes:

f α (x + c α ,t+ δt) - f α (x,t) = -M -1 Λ m α (x,t) - m (eq) α (x,t) (6) 
where Λ is a diagonal collision matrix and the m (eq) α

are the equilibrium values of the moments.

Bounce-back boundary conditions

Lattice Boltzmann boundary conditions for solid walls basically divide up into wet node conditions and bounce-back conditions. In the former category, the boundary nodes, i.e. the nodes on which the condition is applied, are supposed to be both located on the solid boundary and part of the fluid [START_REF] Inamuro | A non-slip boundary condition for lattice Boltzmann simulations[END_REF]. In the later category, the boundary nodes are in general the fluid nodes next to the solid nodes and the solid boundary is located somewhere in between.

An elementary version of bounce-back is the so-called simple bounce-back (SBB). With SBB, an unknown particle population f α at a boundary node obeys the following equation:

f α (x,t)= f ᾱ(x,t-δt) ( 7 
)
where ᾱ is the direction opposite to α.A l g o r i t h m i cs i m p l i c i t yo fS S Bi so b v i o u s when considering Eq. 7. The only information required for a given node is the list of unknown particle populations. Moreover, it is known that (asymptotically) the solid boundary is located half-way between the solid and the fluid nodes [START_REF] Ginzbourg | Boundary flow condition analysis for the three-dimensional lattice boltzmann model[END_REF]. Simple bounce-back is therefore convenient in many situations. However, to handle complex geometries, a more elaborate approach is needed. In 2001, Bouzidi et al. [START_REF] Bouzidi | Momentum transfer of a boltzmann-lattice fluid with boundaries[END_REF]i n t r o d u c e da ne x t e n s i o nt oS B Bb a s e do ne i t h e r linear interpolation (LIBB) or quadratic interpolation, which allows the solid boundary to take any desired position. In the present work, we implemented the LIBB as formulated by Pan et al. [START_REF] Pan | An evaluation of lattice boltzmann schemes for porous medium flow simulation[END_REF]. Let x denote a boundary node such that x + c α is a solid node, and q be the number such that x + qc α is on the solid boundary. For q<1/2,

f α (x,t)=(1-2q)f ᾱ(x,t)+2 q f ᾱ(x,t-δt) (8) 
and for q ≥ 1/2,

f α (x,t)= 1 - 1 2q f α (x,t-δt)+ 1 2q f ᾱ(x,t-δt) (9) 
It should be noted that both equations only require informations local to the boundary node. Moreover, it is worth mentioning that for q =1 /2, LIBB reduces to SBB.

The TheLMA framework

The proposed implementation of the LIBB boundary condition was carried out within the TheLMA framework [1]. The design of graphics processing units is guided by their primary use which is rather different from general purpose computations. As a matter of fact, several limitations of the CUDA technology, like the inlining of device functions1 ,a r ei n d u c e db yh a r d w a r ec h a r a c t e r i s t i c so f the Nvidia GPUs. The former limitation, which forbids the linking of CUDA object files, makes library oriented development not relevant in many situations, and more specifically for LBM solvers. We therefore decided to create a framework, in order to improve code reusability.

TheLMA stands for Thermal LBM on Many-core Architectures,thermalsimulations being our main topic of interest. The framework consists in a set of modules which are designed such as to minimise code modifications when setting up a new simulations or implementing a new model. It provides native single-node multi-GPU support based on POSIX threads. The core collision and propagation kernel is derived from the single-GPU code described in [START_REF] Obrecht | A New Approach to the Lattice Boltzmann Method for Graphics Processing Units[END_REF]. The execution grid of the core kernel is two-dimensional with one-dimensional blocks, each node of the lattice being associated to a thread. In order to ensure global synchronisation, two instances of the particle distribution are kept in global memory, corresponding to even and odd time steps.

For each computation sub-domain, the particle distribution is stored in a four-dimensional array. The fastest varying dimension corresponds to the direction of the blocks which allows memory transactions to be coalesced. The second fasted varying dimension corresponds to the velocity set index. When using the D3Q19 stencil, the size of the second dimension is therefore 19 which is prime. The number of device memory banks being a power of two, this layout has a positive impact on partition camping effects. Instead of using the usual out-ofplace propagation, our core kernel performs in-place propagation which consists in carrying out propagation before collision instead of after. This propagation scheme is illustrated by Fig. 2. The represented case is only two-dimensional for the sake of clarity. It was shown in [START_REF] Obrecht | Global Memory Access Modelling for Efficient Implementation of the Lattice Boltzmann Method on Graphics Processing Units[END_REF]t h a tt h i ss i m p l eo p t i m i s a t i o nm i n i m i s e s the cost of misaligned memory transactions, which may have dramatic effects on performance with pre-Fermi hardware. When running several GPUs in parallel, inter-GPU communication is performed by zero-copy transactions on pinned buffers in CPU memory. This approach leads to excellent overlapping of communication and computations [START_REF] Obrecht | Multi-GPU Implementation of the Lattice Boltzmann Method[END_REF]. Figure 3 outlines the communication scheme. For the sake of clarity, only one GPU with a single sub-domain interface is displayed. In the figure, G denotes the GPU, L0 and L1 denote the particle distribution arrays for even and odd time steps, R0 and R1 in-coming data, S0 and S1 out-going data.

To achieve satisfactory performance, data exchanges at the interfaces must be coalescent [START_REF] Obrecht | The TheLMA project: Multi-GPU Implementation of the Lattice Boltzmann Method[END_REF]. The computation domain is therefore split in balanced subdomains along the direction corresponding to the slowest varying dimension of the particle distribution array.

Proposed implementation

In the TheLMA framework, geometry is represented using bit-fields. To process a node, the corresponding thread first loads a 32-bit integer. The first N bits of the integer are used to indicate whether the node in the corresponding direction is solid. This technique makes the implementation of SBB rather straightforward. Since we use in-place propagation, some of the particle populations loaded for a boundary node are invalid, but these values are discarded when applying the boundary condition. Our tests have shown that it is of little interest to avoid loading these invalid populations. As a matter of fact, it may have a positive impact to cancel invalid loads when a whole half-warp is involved, e.g. for cavity walls parallel to the blocks or within very large obstacles. Yet, the overhead of branching decisions together with surface to volume effects make the benefits negligible in practice.

Our implementation of the LIBB takes advantage of these unnecessary memory accesses. At initialisation, the distance information for the solid boundaries are computed and stored in the unused particle population array cells of the relevant solid nodes. At each time step, the distance information are retrieved by the threads processing boundary nodes during propagation. To perform interpolation, the threads need in addition to fetch some of the local updated particle populations of the former time step. The data access scheme is outlined by Fig. 4.B l u ei su s e df o rt h ep a r t i c l ep o p u l a t i o n si n v o l v e di nc o l l i s i o n , red for the distance information, and black for the particle populations involved in interpolation. Again, the displayed case is two-dimensional for the sake of clarity.

It is worth stressing that, in practice, the proposed implementation of LIBB only slightly increases the overall number of memory accesses compared to our implementation of SBB. The implemented initialisation and simulation kernel are summarised in Pseudo-Codes 1 and 2.

Flow past a sphere

For validation purp oses, we p erformed single precision simulations of a uniform flow past a sphere in a square channel. Figure 5 outlines the computation if node x is solid then for each direction α do 4.

if node x + c α is fluid then 5.

compute q for x and x + c α 6.

store q in f ᾱ(x + c α , 0) if node x is fluid then 3.

for each direction α do

4. read f α (x -c α ,t-δt) 5.
end for 6.

for each direction α do 7.

if flag α is set then

8.
set q to f ᾱ(x,t)

9.
read f α (x,tδt) and f ᾱ(x,t-δt) In order to study the vortex shedding frequency, we recorded the flow velocity components at points A, B,a n dC such that OA = 171 and AB = BC = r. We p erformed frequency analysis using fast Fourier transform on a 2 19 sample, the overall number of time steps being at least 10 6 . The size of the sample is greater than one hundred shedding periods considering the typical values of the Strouhal number (St) reported for the Reynolds numbers (Re) we investigated.

Simulation results

Comparison with experimental data

In order to compare our results with experimental data provided by Sakamoto and Haniu [START_REF] Sakamoto | The formation mechanism and shedding frequency of vortices from a sphere in uniform shear flow[END_REF], and by Ormières and Provansal [START_REF] Ormières | Transition to turbulence in the wake of a sphere[END_REF], we computed the Roshko number Ro = St×Re for Reynolds numbers ranging from Re = 280 to Re = 360. In both cases, the measurements were carried out in wide wind tunnels, whereas for our simulations the blockage ratio is not negligible. We therefore applied a correction to the computed Strouhal number St in order to obtain the corresponding Strouhal number St * in an unbounded flow. Following Ota et al. [START_REF] Ota | A correction formula for wall effects on unsteady forces of two-dimensional bluff bodies[END_REF], St * obeys: 

St * =(1-βξ St )St (10) 
In the considered interval of Reynolds numbers, the obtained power spectra are dominantly unimodal and independent from the chosen tracking point (either A, B, or C). Figure 6 gives a sample for Re = 300 of the power spectral density of the cross-stream component v of the velocity in the y direction.

As shown, by Fig. 7, agreement of the corrected values with experimental data is satisfactory, the deviation from the fit being within 5%.

Transition to periodic flow

In their aforementioned work [START_REF] Ormières | Transition to turbulence in the wake of a sphere[END_REF], Ormières and Provansal investigate the transition from steadiness to periodicity for the flow past a sphere. The reported value for the critical Reynolds number is Re c = 280 ± 5.O u rs i m u l a t i o n sl e a d us to lower this estimate to Re c = 265 ± 5.T od e t e r m i n et h i sc r i t i c a lv a l u e ,w e computed σ v ,t h es t a n d a r dd e v i a t i o no fv for the last 5 × 10 5 time steps. For Re = 270,w eo b t a i nσ v /U 0 ≈ 3 × 10 -6 at points A and B, where U 0 denotes the bulk velocity at the inflow. At point C, σ v =0to the extent of machine precision. The corresponding Strouhal number is St =0.1122.F o rR e= 260, σ v equals to zero at each tracking point (again, to the extent of machine precision). :;9;5/</3;.13=;.>43?'%%)@ A75>B7,23;.13C7/D;.2;03?'%%%@ C7,2,.< 

Simulations at higher Reynolds numbers

In further investigations, we performed simulations for Reynolds numbers ranging from 400 to 1,000 with a stride of 100. With 10 6 time steps, we could not determine coherent frequencies from our samples. The obtained values generally depend from the chosen tracking point. Moreover, the frequencies appear to be unstable when sliding the sampling window. Figure 8 illustrates the former observation for Re =1 ,000. The diagram displays the estimated Strouhal number with respect to the lower bound of the window. One possible reason for this situation could be an insufficient duration of the initial run. Yet, considering the required computational effort, we decided to focus on the upper part of the regular mode region of the flow pattern [START_REF] Sakamoto | A study on vortex shedding from spheres in a uniform flow[END_REF] 

Performance results

We carried out our computations on a Tyan B7015 server with eight Tesla C1060 computing devices. For the purpose of evaluating the efficiency of our LIBB implementation, we ran single precision simulations of the flow past a sphere with both a SBB version and a LIBB version of our multi-GPU solver on ac o m p u t a t i o nd o m a i no fs i z e1,024 × × with increasing . The diameter of the sphere was set to 30. Figure 9 displays the obtained performance in million lattice node updates per second (MLUPS), which is the usual metrics for LBM. As shown by the diagram, the impact of LIBB is in general negligible, with at most 11% performance loss. The maximum recorded performance for LIBB is 2,630 MLUPS. With the Tesla C1060, the maximum sustained throughput for communication between GPU and device memory is 73.3 GB/s. Except for = 128 and = 256, the data throughput with both versions is thus above 61% of the maximum. For LIBB, we computed the number of additional memory transactions required using a simple program derived from the solver code. A sphere of diameter 30 yields 3,960 boundary nodes and 32,736 additional memory accesses. Taking the inter-GPU communication overhead into account, the achieved performance is therefore rather satisfactory. The quite low performance obtained with = 128 and = 256 is most likely due to partition camping effects, considering the dimensions of both computation domains.

Conclusion

In the present work, we describe an implementation of the LIBB boundary condition within a multi-GPU LBM solver based on the TheLMA framework. The proposed approach proves to be efficient, with little impact on performance compared to a SBB version of the code. When simulating the flow past a sphere in a channel, our solver allowed to successfully compute the vortex shedding frequency for Reynolds numbers belonging to the regular mode flow pattern region. Moreover, we obtained a plausible value of the critical Reynolds number for transition from steady to periodic flow.

The instabilities observed at higher Reynolds numbers may be caused by either an insufficient simulation duration or by inaccuracies due to the boundary condition. The second hypothesis, which may lead to the conclusion that LIBB is not appropriate for curved solid boundaries past a certain Reynolds number, will be tested by performing simulations at higher spatial resolution. In both cases, higher computational efforts are required. In order to investigate further, we are at present working on an extension of the TheLMA framework to multinode multi-GPU hardware.
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  l o c a t e db e t w e e n Re = 360 and Re = 420.F o r e a c h c h o s e n R e y n o l d s n u m b e r , w e c o m p u t e d 2 × 10 6 time steps and checked for invariance of the obtained frequencies.
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With the latest CUDA enabled GPU generation, i.e. the Fermi generation, inlining is the default behaviour but is not mandatory any more. However, the CUDA 4.0 compilation tool-chain is still unable to link several CUDA object files.