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Abstract

The purpose of this paper is to assess the relevance of rational expec-
tations solutions to the class of linear univariate models where both the
number of leads in expectations and the number of lags in predetermined
variables are arbitrary. It recommends to rule out all the solutions that
would fail to be locally unique, or equivalently, locally determinate. So
far this determinacy criterion has been applied to particular solutions, in
general some steady state or periodic cycle. However solutions to linear
models with rational expectations typically do not conform to such simple
dynamic patterns but express instead the current state of the economic
system as a linear difference equation of lagged states. The innovation of
this paper is to apply the determinacy criterion to the sets of coefficients
of these linear difference equations. Its main result shows that only one
set of such coefficients, or the corresponding solution, is locally determi-
nate. This solution is commonly referred to as the fundamental one in
the literature. In particular, in the saddle point configuration, it coincides
with the saddle stable (pure forward) equilibrium trajectory.

Keywords: rational expectations, selection, determinacy, saddle point
property.

JEL Classification Number: C32, E32.

I wish to thank Roger Guesnerie, my thesis advisor, and Jean-Michel Grandmont for the
kind interest they paid to my work. Special thanks go to two diligent referees for their careful
readings of previous drafts of this paper. I have also benefited from helpful discussions with
Gabriel Desgranges, Martin Devaud, Stéphane Grégoir, Guy Laroque and Bennett McCallum.
The usual disclaimers apply.

t CREST, laboratoire de macroéconomie (timbre J-360), 15 bd Gabriel Péri, 92245
Malakoff cedex, France; Phone number: 33 1 41 17 37 38; Fax number: 33 1 41 17 76
34; E-mail address: gauthier@ensae.fr.



1 Introduction

The rational expectations hypothesis is commonly justified by the fact that
individual forecasts are based on the relevant theory of the economic system.
According to this viewpoint, the actual evolution of the economy coincides with
the expected one provided that agents refer precisely to this actual law when
they form their forecasts. Such an argument is appealing as long as there exists a
well defined reference; namely, a unique rational expectations outcome. Indeed,
in this case, if one a priori accepts the rational expectations hypothesis, then
one may argue that this unique outcome is the only possible focal point for the
process through which agents try to coordinate their beliefs. On the contrary,
in the remaining case where there are several competing rational expectations
solutions, it is more likely that agents do not succeed to refer to the same theory
of the functioning of the economy, at least in the absence of any other selection
device.

Unfortunately, it is by now well known that intertemporal models with ra-
tional expectations typically admit infinitely many equilibrium trajectories (see,
e.g., Blanchard, 1979 for an early reference). This should accordingly prevent
agents to make determinate predictions, and as underlined by Kehoe and Levine
(1985) for instance, this should even call into question the very concept of ratio-
nal expectations. However, following Guesnerie (1993), one may wonder whether
some solutions to these models can be still locally unique, or locally determi-
nate in the terminology advocated by Woodford (1984). Such solutions would
then provide a locally undisputable theory to economic agents. Indeed a locally
unique solution is an obvious anchor for any expectations coordination process
that a priori accepts, as before, the rational expectations hypothesis, and under
the additional requirement that agents a priori restrict their attention to some
arbitrary immediate neighborhood of this solution.

So far, the determinacy property has been successfully applied to very spe-
cial equilibrium trajectories, such as steady states or periodic cycles (for a re-
cent survey on this topic, see, e.g., Benhabib and Farmer, 1999). Nevertheless,
equilibrium laws of motion do not conform in general to so simple dynamic
patterns. In linear models, for instance, these laws fit instead autoregressive
processes which express the current state of the economic system as a linear
difference equation in past states. The purpose of this paper is to describe how
one can apply the determinacy criterion to such trajectories.

Our general methodology bears on characterizing any of these solutions by
the vector of the coefficients of the difference equation associated with it, and
not, as is usually the case in the main strand of the literature, by the infinite
sequence of successive states that is generated by it. In other words, any possible
relevant economic theory will be defined by these vectors of coeflicients, to be
called steady extended growth rates, thus implying that if agents succeed to refer
to one of these steady extended growth rates when they form their forecasts,



then the corresponding solution will govern the actual evolution the economic
system. With this interpretation, it seems rather natural to study whether some
these vectors of coefficients can be locally determinate. It may be important
to emphasize here that the determinacy criterion will be, therefore, no longer
applied to the levels of the state variable itself, in sharp contrast with what is
usually done in the literature. That is, we shall say that a given steady extended
growth rate, or the corresponding solution, is locally determinate if and only if
there is no other solution associated with a sequence of extended growth rates
remaining arbitrarily close to it in each period. Otherwise this solution is locally
indeterminate.

In the sequel, we shall be concerned with the general class of linear univariate
models where both the number of leads in expectations and the number of
predetermined variables are arbitrary. In these models, one can distinguish
the set of bubble solutions, making the actual equilibrium trajectory driven in
part by arbitrary forecasts of agents, from the set of minimal order solutions,
along which forecasts are only determined from economic fundamentals (see,
e.g., McCallum, 1999, Section 4 for this terminology). The main result of this
paper is to show that, independently of the stability properties of equilibrium
trajectories, only one solution of minimal order, or the corresponding vector of
coefficients, is locally determinate, which extents previous results obtained by
Gauthier (2002) in the special case of one-step forward looking models. This
solution is identified as the fundamental solution in the literature (see, again,
McCallum, 1999). In particular, in the saddle point configuration for the usual
dynamics with perfect foresight on the level of the state variable, it coincides
with the stable saddle path trajectory, the so-called pure forward solution that
supports policy neutrality results highlighted in the early rational expectations
literature, e.g., in Sargent and Wallace (1973) or Blanchard (1979).

The paper will be organized as follows. Section 2 presents the class of models
under consideration and its rational expectations solutions. Section 3 describes
how to apply determinacy to solutions of minimal order and shows that a unique
equilibrium trajectory fits this requirement. Finally Section 4 concludes.

2 General Framework

We shall consider the class of linear univariate models with H > 1 leads in
expectations and L > 1 predetermined lagged variables in each period. By
definition the current state of the economic system expresses as a polynomial of
the L previous states along any minimal order solution (hereafter MO-solution)
to such models. The purpose of this section is to characterize the vector of
the L coefficients of these polynomials by appealing to the standard method
of undetermined coefficients, which involves deriving the expression of a finite
number of parameters in an interactive setting where there is a feedback from
some a priori guess on the general form of the solution onto the actual law of the



system. In a rational expectations solution, the a priori guess must coincide
with the actual law of the system. Therefore, according to this method, an
MO-solution can be thought of as a situation where agents would succeed to
guess the vector of coefficients corresponding to it (see, e.g., Grandmont and
Laroque, 1991 for such an interpretation). Whether they are likely to discover
such coefficients is postponed to the next section.

Let the period ¢ (t > 0) state of the economic system be a real number z;
determined through the following expectational recursive equation

H L
S izt Y dwe =0, (1)
h=1 =1

where 7, (h=1,..., H) stands for the forecast about the period (t+h) state,
and x:—; (I =1,...,L)is given at date ¢. Under the perfect foresight hypothesis,
the forecast zf,;, is equal to the actual realization x;,; whatever t and h are,
so that (1) rewrites

h=1

H L
Z YhTpan + Ty + Z 0xi—y =0, (2)
=1

for ¢ > 0. A perfect foresight solution to (2) is a sequence (x¢) associated
with a given initial condition (x_1,...,2_1) and satisfying (2) in any period.
Its intertemporal behavior is consequently governed by the (H + L) perfect
foresight roots A\; (i = 1,..., H+ L) of the characteristic polynomial associated
with (2). In the sequel, we shall assume that these roots have distinct moduli,
except in the case where they are complex conjugate. We shall rank them in the
order of increasing modulus, i.e., |A;| < |A;| wheneveri < j (4,5 =1,...,H+L),
with strict inequality if A; or ); is real valued.

Let finally vz # 0 in (1), so that the model (1) admits multiple perfect
foresight solutions (Gouriéroux, Laffont and Monfort, 1982). In this paper we
shall focus attention on the class of MO-solutions to (2), along which the current
state x; is by definition related to the L x 1 vector x;_1 of the L previous states
(v¢_1,...,2¢_r) through the relation

Ty = B/Xt—lv (3)

where the coefficients of the I x 1 vector 3 = (3, ..., 3r) will be determined by
using the method of the undetermined coefficients (Muth, 1961).* This method

1 The remaining perfect foresight solutions to (2) make the current state linked with

M > L (and M < H) lagged state variables, i.e., 3 is a M-dimensional vector in (3). Since
the economic system has only L initial conditions (given by the L values of the predetermined
variables in the initial period), the initial state of the system zo is determined by these L
initial conditions and also by some arbitrary initial forecasts of agents (x1,...,zp—1). As a
result, in general, there is no reason to focus attention on one among these bubble solutions
(see for instance McCallum, 1999 for further developments).



amounts to assume that agents expect the law of motion of the state variable to
be consistent with equilibrium, i.e., with (3), and then to derive the conditions
under which this belief is actually self-fulfilling. Let agents accordingly believe
that x; = f'x4—1 for some guess 8 = (B1,...,8.) on the L x 1 vector of
coeflicients, or, equivalently, that

/
7 =€ Bx;_;, withB= B , (4)
In1 or—1

whatever t and x;_; are, where e; is the first L x 1 vector of the canonical
basis, B is the L x L companion matrix associated with (3) for the guess f,
and or_1 is the L x 1 null vector. Given this belief, agents form their forecasts
xf., = e;B""x, ;| by leading (4) forward. Reintroducing these forecasts into
(1) generates an actual law of motion for the state variable, which corresponds

to the belief (4),
H

ve=—()_ e B + )%, (5)
h=1
where § represents the L x 1 vector (d1,...,d1)". The belief (4) is then self-
fulfilling whenever it coincides with (5) whatever ¢ and x;_1 are, i.e.,

H

e/B=- Z:%ellBhJr1 -4 (6)
h=1

Each matrix B solution to (6) is characterized by a vector 3 through (4). All
the components of 3 must be real for the Mo-solution (3) to exist. In this
case 3 will be called steady extended growth rate of order L (hereafter steady
EGR(L)). It is clear that, given the vector x_; of the L initial conditions of
the system, the knowledge of a steady EGR(L) is sufficient to characterize an
MO-solution through (3). The purpose of this part is to relate such a vector
of steady EGR(L) to economic fundamentals, summarized here by the (H + L)
perfect foresight roots A; (¢ = 1,..., H + L). An intuition for this connection
proceeds as follows. Observe that the law (3) restricts the dynamics with perfect
foresight (2) to one of its L-dimensional eigensubspaces. Each of these subspaces
is spanned by L eigenvectors associated with L different perfect foresight roots
among (H + L). Therefore, in a given L-dimensional eigensubspace of (2), or
along the corresponding MO-solution (3), the evolution of the state variable only
depends on the L perfect foresight roots that solve the characteristic equation
associated with (3),

L
P = A= > Bt =0 (7)
m=1
This observation enables us to link the mth (m = 1,..., L) component 3, of 3 to

the L perfect foresight roots solving (7). Consider for instance the MO-solution



associated with the L perfect foresight roots of lowest modulus (A1,...,AL),
that is, the MO-solution defined by (3) for a vector 3 such that the roots of P(-)
in (7) are (A1,...,Ar). In this case P(A) = 0 in (7) is equivalent to

L L L
[TO=2) =0 = XN+ =D J]r) =0 ©®
i=1 i=1 i=1

If one denotes o, (A1, ..., Ar) the mth symmetric polynomial, i.e., the sum over

all the different products of m distinct elements in the set (A1,...,Ar), then it
follows from (7) and (8) that 3, is equal to (—1)™'a,,(\1,...,Ar). Of course
the same argument would apply as well to any other MO-solution. One can
therefore state the following result.

Lemma 1. Let both future forecasts and past history matter, i.e., yg # 0 and
o0r, # 0 for HIL > 1 in (1). Let also om(£) represent the mth elementary
symmetric polynomial of any given set £ of L different perfect foresight roots
among (H + L). Then the law of motion of the state variable along an MO-
solution to (2) is described by the L-dimensional linear difference equation (3)
if and only if the mth (m = 1,...,L) component B, of (B in (3) is equal to
(=)™ o, (£), for any given subset £.
Proof. See in Section 5.1. m

One must also impose the additional condition that §; # 0 for some [ >
1 in (1) in order to ensure existence of multiple MO-solutions. Indeed, if no
predetermined variable enters the model (§; = 0 for any [ > 1), then by definition
the level of the state variable must remain constant through time along an MO-
solution. This determines, under a simple regularity assumption (yg+---+v1 #
—1), the steady state sequence (z; = Z = 0) as the unique MO-solution to (2).

3 Determinacy of Minimal Order Solutions

Even in the case where agents expect the state variable to evolve according to
(4), their belief is self-fulfilling if only if they use in (4) one of the steady EGR(L)
defined in Lemma 1. In general, unfortunately, there is no central mechanism
imposing the use of a particular vector of such coefficients. One may conse-
quently wonder whether some of these vectors could be more likely outcomes of
decentralized processes through which agents would try to coordinate their be-
liefs on MO-solutions to (2). According to the local determinacy viewpoint, the
fact that a steady EGR(L) fails to be locally unique, or locally determinate, is the
main obstacle for agents to discover it. In order to assert the local determinacy
properties of a steady EGR(L), it must noticed that the usual dynamics with
perfect foresight on the levels of the state variable (2) triggers a new dynamics
with perfect foresight on the vectors of coefficients 5; = (81 (t), ..., 8. (t)) whose
fixed points are the steady EGR(L). In this new dynamics, a steady EGR(L) is



locally determinate when there are no vector (3, remaining arbitrarily close to
it in any period ¢, and is locally indeterminate otherwise.

This new dynamics with perfect foresight on L x 1 vectors 3; is derived from
(2) by imposing that the relation z; = 8jx:—1, or equivalently,

/
Ty = e'ltht_l, with Bt = IBt ) (9)
I,-1 or_:

be satisfied in (2) whatever ¢ and x;—1 are. Iterating (9) forward makes x4,
equal to €] (Bitp - - - B)xt—1 in (2), so that the current state x; in (2) actually
writes

H
o= =D et (Bepn--Be) +8)xe1. (10)
h=1
For z; to verify both (9) and (10) whatever ¢ and x;_; are, it must be the case
that

H
e B;=— Z e (Biyn - B) =0 (11)
h=1
whatever ¢t > 0 is. We shall define the extended growth rate perfect foresight
dynamics as a sequence of L x 1 vectors (3;) associated, through (9), with a
sequence of L x L matrices (B;) such that (11) holds true in any period ¢ (¢ > 0).
It is clear that the fixed points of this dynamics are the vectors of steady EGR(L)
defined in Lemma 1, or the corresponding matrices B solutions to (6).

Our aim is to study the properties of (11) arbitrarily close to its fixed points,
namely such that the mm/th (m,m’ = 1,...,L) entry of B; in (11) stands
arbitrarily close to the mm/th entry of B in each period t > 0, or equivalently
such that the mth (m = 1,..., L) component [3,,,(t) of ; stands arbitrarily close
to the mth component §,, of 3 in each period. This dynamics is well defined
around any matrix B solution to (6) if and only if B is regular (see in Section
5.2), which is satisfied whatever B is if and only if all the perfect foresight roots
Ai (i =1,...,H+ L) differ from 0, or equivalently dr # 0 in (2). Under this
requirement, (11) can be approximated around 3 by a linear first order recursive
equation linking the LH x 1 vector 1 = ((Bram — ), ..., (Brs1—B)))' to the
LH x 1 vector 8t = ((Byar-1—5) ..., (8:—B)") through a LH x LH Jacobian
matrix J, ie., 81 = J3'. By definition, a steady EGR(L) is said to be locally
determinate in the dynamics (11) if and only if all the LH eigenvalues of the
Jacobian matrix J have modulus greater than 1 (see, e.g., Chiappori, Geoffard
and Guesnerie, 1992). That is, if at least one eigenvalue of J lies inside the
unit circle, then there are infinitely many solutions to (2) for which §; remains
arbitrarily close to 3 in (11) whatever ¢ is. The following result establishes that
only one steady EGR(L) is locally determinate in (11).

Proposition 1. Let both future forecasts and past history matter, i.e., yg # 0
and 61, # 0 for H/L > 1 in (1). Assume that the MO-solution correspond-
ing to (M,...,Ap) emists, i.e., om(M,..., ) is real valued whatever m is



(m=1,...,L). Then this MO-solution, which governs the dynamics with per-
fect foresight on the level of state variable (2) restricted to the L-dimensional
eigensubspace corresponding to the L perfect foresight roots of lowest modulus
(A1,...,AL), is the only one to be locally determinate in the perfect foresight dy-
namics (11). If this MO-solution does not exist, i.e., o (A1,...,AL) is complex
valued for some m is (m = 1,..., L), then no MO-solution is locally determinate
in the perfect foresight dynamics (11).

Proof. See in Section 5.2. =

In the saddle point configuration for the dynamics (2), where [Ap] < 1 <
|[AL+1], the only solution to be locally determinate in (11) is also the only one
along which the level of the state variable does not explode toward infinity,
the so-called saddle path trajectory (Blanchard and Kahn, 1980). However, it
worth emphasizing that Proposition 1 is independent of the stability properties
induced by the (H + L) perfect foresight roots, and thus it applies as well in
the case where there are multiple stable equilibrium trajectories (|[Ap41| < 1) to
(2). In other words, the MO-solution corresponding to (g, ..., Ar) is still locally
determinate in the dynamics (11) when the steady state sequence (z; =z =0)
is locally indeterminate in the dynamics (2).

An intuitive explanation for this lack of links between the familiar concept
of determinacy of the steady state and the novel concept of determinacy of
MO-solutions rests on the observation that the level of the state variable is not
relevant in (11), which obviously reduces the likelihood that stability properties
of (2) and (11) be related to each other. It follows that, in order to reconcile
both concepts, one should derive a dynamics with perfect foresight taking into
account the determinacy of both EGR(L) and the level of the state variable. This
can be done by restricting the level of the state variable to satisfy not only (2)
in each period, but also the new relation

Ty = Bixe 1+ (12)

which then replaces (9). In (12), the parameter oy is a real number that stands
for the level of the state variable at date ¢, and unlike (9), it may not equal
@ = 0 in each period. The restriction (12) induces a new dynamics with perfect
foresight on (L 4 1) x 1 vectors (8;, a;)" that replaces (11), the fixed points of
which are of the form (3',@)’, where 3 is a steady EGR(L) and @ = 7 = 0. As
Lemma 2 highlights, the stability properties of (2) play then a crucial role in
this new dynamics.

Lemma 2. Let both future forecasts and past history matter, i.e., vy # 0
and 0, # 0 for H/L > 1 in (1). Let the set of the (H + L) perfect foresight
roots be split into any given subset £ of L different perfect foresight roots and
a complement subset L. of the H remaining roots. Assume additionally that
all the perfect foresight roots differ from 1. Consider some MO-solution ([3,@)
associated with £; that is, the solution which governs the dynamics with per-
fect foresight on the level of state variable (2) restricted to the L-dimensional



eigensubspace corresponding to the L perfect foresight roots in £. This solution
is locally determinate if and only if [3 is locally determinate in (11) and the H
roots in the subset £, have modulus greater than 1.

Proof. See in Section 5.3. =

An immediate corollary to Proposition 1 and Lemma 2 is that the MO-
solution corresponding to (A1, ..., Ar) is locally determinate in the new dynam-
ics induced by (12) if and only if |Ar41] > 1, or equivalently, if and only if the
steady state of (2) is locally determinate; otherwise, there is no locally determi-
nate MO-solution. A possible interpretation of these results goes as follows. If,
on the one hand, all the agents a priori refer to the steady state (z; = z = 0)
when they form their forecasts, and accordingly regard the level of the state
variable in (2) as an actual deviation from its steady state value, then choosing
a solution is equivalent to choosing the steady EGR(L) corresponding to it. In
this case, the determinacy of this steady EGR(L) is the only relevant property,
and Proposition 1 applies. If, on the other hand, there is no a priori agreement
among agents to view the steady state as a benchmark, as in (12), then choosing
a solution involves focusing on both the corresponding steady EGR(L) and the
steady state level of the state variable. In this case, Lemma 2 should be applied.

4 Concluding Comments

It has been shown that only one solution is locally unique in the set of minimal
order solutions to the general class of linear univariate rational expectations
models. One may argue that if agents have only to delineate a rational expecta-
tions solution, then they should focus on this particular solution, which coincides
with the saddle path trajectory in the saddle point configuration. In addition
to extensions to more general economic frameworks, e.g., nonlinear multidimen-
sional stochastic models (see Evans and Guesnerie, 2000 for recent insights on
this topic), one can suggest two different directions for future research.

() First, it would be interesting to study whether some bubble solutions can
be locally determinate. As stressed in footnote 1, these solutions are not only
characterized by a vector of steady extended growth rates, but also by initial
agents’ forecasts. This implies that determinacy in terms of extended growth
rates give an account for the determinacy of a class of solutions, and not of a
single solution, as is the case for minimal order solutions. Thus the method
developed in this paper can not be directly applied to such a type of solutions.

(#) Second, Proposition 1 and Lemma 2 may justify to focus on one solution
provided that agents are already aware of the full set of possible solutions. This
requirement could be relaxed for analyzing whether agents may eventually learn
some solutions. It is known that there are connections between determinacy and
stability under learning, but these concepts are not equivalent in general (see
Chapters 8 and 9 in Evans and Honkapohja, 2001 for a recent synthesis); hence



the MO-solution corresponding to (A1, ..., Ar) should not necessarily be stable
under learning. On the other hand, the close link between the lack of local
stationary sunspot equilibria and the property of local determinacy (Chiappori,
Geoffard and Guesnerie, 1992) suggests that the MO-solution corresponding to
(A1,-..,AL) may be also locally immune to sunspots (see Desgranges and Gau-
thier, 2002 or Gauthier, 2003 for preliminary analysis).

5 Proofs of the results

5.1 Proof of Lemma 1

Consider a L x L matrix B solution to (6). Let the L x 1 vector (3 corresponding
to B through (4) be defined as in Lemma 1, i.c., the mth component 3, of 3
is equal to (—1)™1o,,(£), so that the L eigenvalues of B are the L perfect
foresight roots of the set £. Let us first prove that if the mth component 3, of 3
is equal to (—1)™*+1a,,(£), then 3 solves (6). Consider the set £ of the L perfect
foresight roots of lowest modulus (A1, ..., Ar); the proof would apply as well to
any other set of L distinct perfect foresight roots. Observe that, since the perfect
foresight roots are assumed to be distinct, B is diagonalizable as B = PAP_l7
where the L x L matrix A is diagonal (with diag(A) =(A1,..., L)), and where
the L x L matrix P is the (non-singular) Vandermonde matrix of eigenvectors
of B. With the convention that 7o = 1, one can now rewrite (6) as

H

Z e, PAM — 5'P = o). (13)

h=0
The ijth entry (i,j = 1,..., L) of P is equal to (1/X;)7~* so that €| P in (13) is
the 1 x L unit vector. Hence the mth component of the 1 x L vector ¢, PA"*?
is equal to (\,,)"*!. Since the mth component of the 1 x L vector §'P is
(61 4+ (1/Am)b2 + -+ + (1/An)E715L), the left hand side of (13) is the 1 x L
vector whose mth component is

H L
Do) D (1 A (14)
h=0 1=0

By multiplying (14) by (A\,,)!~% (which differs from zero when &1, # 0 since the
product of all the perfect foresight roots is equal to (—1)2FL (51 /v)), one gets
the expression of the characteristic polynomial associated with (2) calculated at
point A,,. By definition A, is a root of this polynomial. Hence the expression
in (14) is equal to zero whatever m is. This completes the first part of the proof.

In order to prove that components of 3 are necessarily of the form given in
Lemma 1, note that the general solution to (2) writes

H+L

Ty = Z ai(\) (15)

i=1

10



for some weights o; (¢ = 1,..., H+L). Since (3) is a solution to (2), the current
state z; in (3) satisfies (15). But (3) is a linear difference equation of order L
only, so that its solutions are necessarily of the form

r= Y o), (16)

N EL

where £ is any given subset of L perfect foresight roots among (H + L). Hence
the roots of the characteristic polynomial associated with (3) are necessarily the
L roots in £, which concludes the proof.

5.2 Proof of Proposition 1

We proceed in three steps. First we derive the dynamics with perfect foresight
(11) close to its fixed points B. The resulting dynamics is given in Lemma 3.
It depends on v, (h=1,...,H), & (I =1,...,L), and on the L x L matrix B
around which (11) has been linearized. Lemma 4 relates this dynamics to the
(H+ L) perfect foresight roots \; (i = 1,..., H+L). Finally Lemma 5 expresses
the HL eigenvalues that govern this dynamics in terms of the (H + L) perfect
foresight roots only. Determinacy properties of a steady EGR(L) is obtained
whenever these H L eigenvalues have moduli greater than 1.

Lemma 3. The dynamics with perfect foresight of extended growth rates (11)
in the immediate vicinity of a steady EGR(L), i.e., when the L X L matriz By
stands in the immediate vicinity of some L x L matriz B defined in Lemma 1,
expresses as

H
DD L el (B ] (B) M (@Bn) = ou,
h=0j=h

where the mth component of the L x 1 vector 904, represents an arbitrarily
small difference (8, (t) — Bm)-

Proof. Let the differential 0By (h = 1,..., H) represent an arbitrarily
small difference (B;,, — B), i.e.,

aBt+h=( OBrsn ) (17)

0,1 or

where 07,_7 is the (L —1) x (L — 1) zero matrix, and oy,_; is the (L —1) x 1 zero
vector. It follows from Magnus and Neudecker (1988), §9.13, that the differential
of (11) with respect to Byyp, (h=1,...,H) is

H h
DD (B OB 4 (B) Fer= o (18)
h=0 z=0

11



The left hand side of (18) is a L x 1 vector, so that it is identically equal to

H h
vee( 323 v o (B OBY ) (B ey, (19)

h=0 z=0

where the vec operator transforms a matrix into a vector by stacking the columns
of the matrix one underneath the other. Using elementary properties of the vec
operator (Magnus and Neudecker, 1988, Ch.2), one can rewrite (18) as

H h
YD (B e)) ® (B)' ") vec(0B) ) = 0,  (20)
h=0 2=0

where the symbol ® stands for the Kronecker product. Remark now that

Iz
, 3
vece(0By L py_p) = : (OBtsr—h), (21)
0y,
so that (20) becomes
H h ~ ~
SO (@B e ) BN O ) —on. (22)

h=02z=0

Lemma 3 comes by premultiplying (22) by (1/vx)(B’)~" (which is allowed
when &, # 0, which makes B non singular, and vz # 0) and by relabelling
indices (j = H — 2, Y = H — h and then h = /') in (22). =

The next result relates the dynamics described in Lemma 3 to the perfect
foresight roots A\; (i = 1,...,H + L). Recall that £ is the set of the L perfect
foresight roots that are also the eigenvalues of the L x L matrix B. Let £, be

the set of the H remaining perfect foresight roots.

Lemma 4. Let £. be the complement set of £ relative to the set A of the
(H + L) perfect foresight roots. Let

H
v L
p(h) = L [e1(B)/"ei]
— YH
j=h
Then p(h) = (—1)" "oy _n(£.), where og_n(£.) is the (H — h)th (h =
0,...,H) elementary symmetric polynomial of the set £..

Proof. Using the fact that €/B’ = (G1€] + e}), e, B’ = (B2} + €}), and so
on, leads to the relation

M
ph) = T+ S Biplh o+ ), (23)

i=1

12



where M = min(L, H — h). For h = H in (23), p(H) = 1. Lemma 4 holds true
for h = H with the convention that o¢(-) = 1. Let h = H — 1, so that M =1
(since L > 1). Then p(H—1) = (yg—1/vm)+Fip(H). The relations between the
coefficients of the characteristic polynomial associated with (2) and its roots A;
(t=1,...,H+L) (as, e.g., in (7)-(8)) imply that (yg_1/vy) = —o(A). But it
follows from Lemma 1 that 3; = o(£). Thus p(H —1) = —o(A)+0(£), which is
equal to o(£.), thus proving Lemma 4 for h = H — 1. Assume now that Lemma
4 holds true for some 0 < h+1 < H. As stated in Queysanne (1964), in Ch.11,
8199.c, op (A) = Niop—1 (A= N)) + o (A= X;) for B = 1,...,H. Lemma 4
follows by proceeding inductively, i.e., by taking into account that op—1(A—\;)
is equal is turn to Ajop—o(A — X — Aj) +on—1(A — Xy — ;) while o/ (A — ;)
is equal to A\jop —1(A— Xy — Aj) + on (A — A; — Aj), until all the elements of the
set £ are sent out of the set A. Indeed this procedure leads to the relation

M
o () = o (£e) + > oi(£)ow_i(£e), (24)
=1

for M = min(L,h'), M = 1,...,H (and k' = H — h), so that Lemma 4 holds
true for h < H, which concludes the proof. m

Lemma 3 and 4 imply that (11) in the immediate vicinity of a given steady
EGR(L) can be rewritten

H

Z(_l)HihUH—h(ogc)(B/)hiH(aﬂt—o—h) =or. (25)
h=0

Let Ay, stand the L x L matrix (—1)7 "o _;,(£.)(BT)" # and transform (25)
into the first order vector recursive equation

OBevm —Ag_q - - —Ag OBt+H-1 OBy -1
: I 0, --- 0 . _, .
0Bt 0L oo 0p 0By 0By

The dynamics (11) in the immediate vicinity of a given steady EGR(L) is gov-
erned by the HL eigenvalues of the HL x HL matrix J. The purpose of the
next result is to relate these eigenvalues to the (H + L) perfect foresight roots
of the set A.

Lemma 5. The HL eigenvalues of the HL x HL matrix J are of the form
(Aj/ i) where X; is any element of £ and \; is any element of £, (i=1,...,L
and j =1,...,H), where £ is the set of the eigenvalues of B, £, is the com-
plement set of £ in A.

13



Proof. Let a be the HL x 1 eigenvector associated with some eigenvalue a
of the HL x HL matrix J. Then a is of the form

a'=(a,(1/a)a,...,(1/a)" " a), (26)

where a is a L x 1 vector. Let now b; (i = 1,...,L) be the L x 1 eigenvector
of B’ associated with a given perfect foresight root \; in the set £. The proof
proceeds from the fact that a = b;. Observe indeed that Ja =aa. Developing
the L first rows of this system (the H (L —1) remaining rows are identities), with
a = b;, and using the expression of the L x L matrix Ay (h =0,...,H — 1)
leads to

—(—Dor(£)(B) by — - — (1/a) " (=)o (£.)(B) b = ab,. (27)

By definition B’b; = \;b; so that (B')~"b; = (1/X\;)"b,. Since o (£.)(1/\;)"
is equal to oy, (£%) where £ is the set of all the H perfect foresight roots in the
set £, divided by a given, but arbitrary, perfect foresight root A; in the set £,
(27) becomes

ab; + (— 1)1 (£0)bs + -+ (1/a)" (“1) T (£)bi o, (28)
and, for a # 0 (which implies that aff=! 2 0), (28) is equivalent to
[@ + (=)o (L) + -+ (1) oy (£)] b; = of. (29)

All the L components of b; are different from 0 (see Lemma 1). Therefore (28)
is satisfied if and only if

H

S (=) oy n(£L)a" = 0. (30)
h=0

By analogy with (7)-(8) one can directly conclude that the H roots of (30) are
the H elements of £, i.e., the H ratios (\j/);) for any element \; of £. and a
given, but arbitrary, element \; of £. It follows that the HL eigenvalues of J
are the HL ratios (A;/);) for any element A; of £, and any element A; of £. By
hypothesis such roots are well defined and different from 0 (since the assumption
that dy # 0 implies that no perfect foresight root is equal to 0). The HL x 1
eigenvector a of J that is associated with the eigenvalue o = (\;/A;) is defined
by (26) with a = b; and b; is the cigenvector of B’ associated with the perfect
foresight root A; in the set £. =

The dynamics (11) in the immediate vicinity of a steady EGR(L) correspond-
ing to a set £ of perfect foresight roots is well defined if and only if all the H L
eigenvalues of J are different from 0. This is the case for any steady EGR(L) if
and only if no perfect foresight root is equal to 0, i.e., 4 # 0. Now, given the
lack of predetermined variable (11), a steady EGR(L) is locally determinate in

14



this dynamics if and only if all the H L eigenvalues of J have a modulus greater
than 1. It follows from Lemma 5 that the modulus of the eigenvalues of J is
greater than 1 if and only if the modulus of any perfect foresight root A; in the
set £, is greater than the modulus of any perfect foresight root \; in the set
£. This is the case if and only if £ is the set of the L perfect foresight roots of
lowest modulus (A1,...,Ar). This completes the proof of Proposition 1.

5.3 Proof of Lemma 2

Observe that (12) can be alternatively rewritten x; = Byx;—1 + aze; whatever
t > 0 and x;_1 are. Leading this law forward implies that, for h =1,..., H,

h—1
Tion = € Xe1n = € (Bign -+ By)xi_1+€) Z(Bt+h o Bigjr1)atjer + arpner
=0
(31)
The expression of the actual current state x; in (2) is then obtained by reintro-
ducing (31) into (2), for h=1,..., H, i.e.,

H
reo= | el (Biar By + | (32)
h=1
H h—1
=Y meh | D Birn--Brajr)arer + arinen
h=1 =0

For z; to verify both (12) and (32) whatever ¢ and x;_1 are, it must be the case
that

H
ellBtZ - Z'yhell(BH_h T Bt) - 5’» (33)
h=1
H h—1
and Qp = — Z ’)/hell Z(Bt+h s Bt+j+1)el(¥t+j + Oiyper | . (34)
h=1 7=0

It is clear that (33) coincides with (11). Hence the fixed points of the system
formed by (33) and (34) are of the form (3,a), where 3'= e} B is a steady EGR(L)
and @ is a scalar to be determined. To this aim, set By = B in (34), and let £
be the set of the L eigenvalues of B. Then (34) becomes

H H
> (B er)arn =0, (35)
h=0 j=h TH

with the convention that 7o = 1 (and since vz # 0 by assumption). By using
first the fact that €| B7~"e, is identically equal to €} (B’)’"e; and then Lemma
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4, one can rewrite (35) as

H
Z(_l)H_hUH—I1(£c)at+lL = 07 (36)
h=0

where £, = A — £ is the set of the H perfect foresight roots that are not in £.
This defines a linear difference equation of order H whose only fixed point is
a; = a = 0if and only if the H roots of the characteristic polynomial associated
with (36), i.e., the H perfect foresight roots of £., do differ from 1; otherwise
the steady states of (33) and (34) would be not locally well-defined.

In the immediate neighborhood of some fixed point (3,0), the dynamics
driven by (33) and (34) can be approximated by a linear first order recursive
equation linking the (H L+H) x 1 vector (871, a/*1) = (Beyu—PB) - - ., (Brg1—
B, (aesm,- - oerm—1)) tothe (HL 4 H) x 1 vector (¢, at) through a (HL +
H) x (HL+ H) Jacobian matrix J, i.c., (81, a!*t1) = J(8'. a!). By definition,
(3,0) is locally determinate if and only if the (HL + H) eigenvalues of J have
moduli greater than 1. Since (33) does not depend on ayyp (h > 0), the (HL +
H) eigenvalues of J are in fact the LH eigenvalues of J and the H roots of (34),
with B, = B, that is, the roots of the characteristic polynomial associated with
(36). Hence the MO-solution (/3,0) corresponding to £ is locally determinate if
and only 3 = €, B is locally determinate in (11) and all the H elements of £,
have a modulus greater than 1. Lemma 2 follows.
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