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CONSTRUCTION OF HADAMARD STATES BY

PSEUDO-DIFFERENTIAL CALCULUS

C. GÉRARD AND M. WROCHNA

Abstract. We give a new construction based on pseudo-differential calcu-
lus of quasi-free Hadamard states for Klein-Gordon equations on a class of
space-times whose metric is well-behaved at spatial infinity. In particular we
construct all pure Hadamard states and study their covariance under symplec-
tic transformations. Using our results we give a new construction of Hadamard
states on arbitrary globally hyperbolic space-times.

1. Introduction

1.1. Hadamard states. Hadamard states are nowadays widely accepted as possi-
ble physical states of the non-interacting quantum field theory on a curved space-
time. One of the main reason is their applicability to renormalization of the stress-
energy tensor, a necessary step in the formulation of semi-classical Einstein equa-
tions. Moreover, the Hadamard condition plays an essential role in the perturbative
construction of interacting quantum field theory [BF]. Other related concepts mak-
ing use of Hadamard states include local thermal equilibrium [SV] and quantum
energy inequalities [FV].

Since the work of Radzikowski [R], the Hadamard condition (renamed microlocal
spectrum condition), is formulated as a requirement for the wave front set of the
associated two-point function Λ, which is necessarily a bi-solution of the free equa-
tions of motion. It is therefore natural to try to construct such states using the
standard apparatus of microlocal analysis, based on pseudo-differential calculus.
Although a construction is already known for space-times with compact Cauchy
surface [J1], it does certainly not cover many cases of physical interest and lacks
the capability to produce many states on a fixed space-time with distinct properties.

In this paper we address these questions in all generality and construct on an
arbitrary globally hyperbolic space-time large classes of Hadamard states for the
Klein-Gordon equation, allowing also for external potentials. We obtain complete
and transparent results for space-times whose metric components are suitably well-
behaved at spatial infinity. Namely, we construct in this case all pure quasi-free
Hadamard states, whose ‘symplectically smeared’ two-point function λ is the inte-
gral kernel of pseudo-differential operators.

1.2. Methods. Our analysis is set on three levels:

(1) Our starting point are normally hyperbolic operators on R×Rd of the form

(1.1) ∂2t + a(t, x, Dx) = ∂2t − ∂xjajk∂xk + bj∂xj − ∂xjb
j
+m,

where

(1.2)
ajk, bj,m ∈ C∞(R, C∞

bd(R
d)), m(x) ∈ R,

[ajk](x) ≥ c(t)1l uniformly on R1+d, c(t) > 0.
.
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We refer to this case as the model Klein–Gordon equation and give a con-
struction of the associated parametrix for the Cauchy problem, in such way
that the propagation of positive-frequency and negative-frequency singular-
ities is under control. This allows us to reformulate the microlocal spectrum
condition in terms of Cauchy data. We show how to construct many non-
necessarily pure Hadamard states and then characterize pure ones. We also
describe classes of symplectic transformations which preserve the microlocal
spectrum condition.

(2) The above results are easily extended to operators of the form f(∂2t +a(t))g,
where f and g are smooth densities. This way, we show that the problem
of constructing Hadamard states is reduced to the model case above if
M = R× R

d, the metric is given by

(1.3) g = −c(x)dt2 + hjk(x)dx
jdxk,

and the Klein-Gordon operator is of the form

P (x,Dx) = c−
1
2 |h|− 1

2 (∂t + iV )c−
1
2 |h| 12 (∂t + iV )

−c− 1
2 |h|− 1

2 (∂j + iAj)c
1
2 |h| 12hjk(∂k + iAk) + ρ,

where Aµ(x) = (V (x),Aj(x)), |h| = det[hjk], [h
jk] = [hjk]

−1 and the fol-
lowing hypotheses are assumed:

(1.4)

∀ I ⊂ R compact interval ∃ C > 0 such that

C ≤ c(x), C1l ≤ [hjk(x)], uniformly for x ∈ I × Rd,

hjk(x), c(x), ρ(x), Aµ(x) ∈ C∞(R, C∞
bd(R

d)).

(3) For arbitrary space-times (and external potentials), using a suitable par-
tition of unity, we explain how to glue together two-point functions of
Hadamard states on smaller regions of the space-time into a globally-defined
one. Using the results obtained for the special case above, this yields a con-
struction of Hadamard states on arbitrary globally-hyperbolic space-times.

Let us mention that beside the construction for space-times with compact Cauchy
surface due to Junker, a general existence result for Hadamard states is known
[FNW], as well as a collection of various examples on specific classes of space-
times. However, the existence argument of Fulling, Narcowich and Wald has the
disadvantage of being highly non-explicit and requires non-local information on
the space-time as an input. Those drawbacks are to a large extent avoided in our
approach, as explained in Section 8. As for the known examples of Hadamard states
for the Klein-Gordon equation, these include:
(i) passive states for stationary space-times (this includes ground- and KMS

states) [SV1],
(ii) states constructed in [DMP3] for a subclass of asymptotically flat vacuum

space-times at null infinity (see [Mo] for the proof),
(iii) states constructed in [DMP2] for a class of cosmological space-times (this in-

cludes the Bunch-Davies state on de-Sitter space-time),
(iv) so-called states of low energy for FLRW space-times [O],
(v) the so-called Unruh state [DMP1],
(vi) ground states and over-critical states for static potentials on Minkowski space-

time considered in [W].
A short inquiry shows that the sets of assumptions (1.2) and (1.4) studied by us in
greater detail are only partially covered by the examples above.
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1.3. Plan of the paper. The paper is organized as follows.
In Section 2 we recall basic facts on bosonic quasi-free states. A special emphasis

is put on explaining the relation between the neutral and the (less often discussed)
charged case. In our problem, the use of microlocal analysis makes much more
natural to work with complex quantities. In order to cover both cases it is sufficient
to consider gauge-invariant charged quasi-free states.

Section 3 contains basic definitions and facts on the Klein-Gordon equation, wave
front sets and Hadamard states.

In Section 4 we recall mostly well-known results on pseudo-differential calculus
needed later on. This includes theorems on the pseudo-differential property of
functions of pseudo-differential operators and several results related to Egorov’s
theorem. In Section 5 we specify our assumptions for the space-times (1.3) and
explain the reduction to the model Klein-Gordon equation (1.1).

Section 6 sums up the construction of the parametrix for the model Klein-Gordon
equation and contains a discussion of the necessarily arising ambiguities. We rely
on Hilbert space methods rather than on Fourier integral operators. We introduce
in Subsect. 6.4 the spaces of positive/negative wavefront set solutions and study
their symplectic properties.

Section 7 contains the key results of the paper. Theorem 7.1 characterizes
Hadamard states for the model Klein–Gordon equation in terms of their symplec-
tically smeared two-point function λ. This allows us to construct a large class of
Hadamard states in Subsect. 7.5. In Subsect. 7.3 we describe classes of symplectic
transformations which preserve the microlocal spectrum condition. Stronger results
are derived for pure quasi-free states in Subsect. 7.4. We introduce a ‘canonical’
Hadamard state, which is distinguished modulo the choice of a pseudo-differential
operator r appearing in the construction of approximate solutions. In Subsect. 7.5
we briefly discuss the static case and show how the ground state and KMS states
fit in our construction.

In Section 8 our construction of Hadamard states on an arbitrary globally hyper-
bolic space-time is presented. We include some remarks on the case of a compact
Cauchy surface and compare our results with the construction from [J1] in Subsect.
8.1. Various proofs are collected in Appendix A.

2. Bosonic quasi-free states

2.1. Notation. If X is a real vector space we denote by X# its dual. Bilinear forms
on X are identified with elements of L(X ,X#), which leads to the notation x1bx2
for b ∈ L(X ,X#), x1, x2 ∈ X . The space of symmetric (resp. anti-symmetric)
bilinear forms on X is denoted by Ls(X ,X#) (resp. La(X ,X#)).

If σ ∈ Ls(X ,X ∗), we denote by O(X , σ) the linear (pseudo-)orthogonal group on
X . Similarly if σ ∈ La(X ,X#) is non-degenerate, i.e. (X , σ) is a symplectic space,
we denote by Sp(X , σ) the linear symplectic group on X .

If X is a complex vector space, we denote by X ∗ its anti-dual, i.e. the space
of anti-linear forms on X . Sesquilinear forms on X are identified with elements of
L(X ,X ∗), and we use the notation (x1|bx2) or sometimes x1bx2 for b ∈ L(X ,X ∗),
x1, x2 ∈ X .

The space of hermitian (resp. anti-hermitian) bilinear forms on X is denoted by
Ls(X ,X ∗) (resp. La(X ,X ∗)).

If q ∈ Ls(X ,X ∗) is non-degenerate, i.e. (X , q) is a pseudo-unitary space, we
denote by U(X , q) the linear pseudo-unitary group on X .

If b is a bilinear form on the real vector space X , its canonical sesquilinear
extension to CX is by definition the sesquilinear form bC on CX given by

(w1|bCw2) := x1bx2 + y1by2 + ix1by2 − iy1bx2, wi = xi + iyi
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for xi, yi ∈ X , i = 1, 2. This extension maps (anti-)symmetric forms on X onto
(anti-)hermitian forms on CX .

Conversely if X is a complex vector space and XR is its real form, i.e. X con-
sidered as a real vector space, then for b ∈ Ls/a(X ,X ∗) the form Reb belongs to
Ls/a(XR,X#

R
).

2.2. Bosonic quasi-free states, neutral case. Let (X , σ) be a real symplectic
space, i.e. a pair consisting of a real vector space X and a non-degenerate anti-
symmetric form σ ∈ La(X ,X#).

We denote A(X , σ) the Weyl CCR C∗-algebra of (X , σ), formally generated by
elements of the form W (y) for y ∈ X , with:

W (y)∗ =W (−y), W (x)W (y) = e−i(xσy)/2W (x + y), x, y ∈ X .
Definition 2.1. A state ω on A(X , σ) is called a (bosonic, neutral) quasi-free state
if there is a symmetric form η (called the covariance of ω) on X such that

ω(W (x)) = e−
1
2
xηx, x ∈ X .

A quasi-free state ω on A(X , σ) is regular, i.e. the field operators φ(x) are
well-defined as selfadjoint operators in the GNS representation of ω with:

[φ(x1), φ(x2)] = i(x1σx2)1l, as quadratic forms on Domφ(x1) ∩Domφ(x2),

and:

(2.1) ω(φ(x1)φ(x2)) = x1ηx2 +
i

2
x1σx2, x1, x2 ∈ X .

It is convenient to introduce the sesquilinear hermitian form

q := iσC,

usually called the charge and

λ := ηC +
1

2
q ∈ Ls(CX ,CX ∗).

The following results are well-known (see e.g. [DG, Chaps. 17,11]).

Proposition 2.2. Let η ∈ Ls(X ,X#). Then the following are equivalent:
(1) η is the covariance of a quasi-free state on A(X , σ),
(2) xηx ≥ 0, |x1σx2| ≤ 2(x1ηx1)

1
2 (x2ηx2)

1
2 , x1, x2 ∈ X ,

(3) λ ≥ 0 on CX ,
(4) λ ≥ 0, λ ≥ q on CX .

Proposition 2.3. Let η ∈ Ls(X ,X#). Then the following are equivalent:
(1) η is the covariance of a pure quasi-free state on A(X , σ),
(2) (2η, σ) is Kähler, i.e. there exists an anti-involution j1 ∈ Sp(X , σ) such that

2η = σj1.

Proposition 2.4. Let η1, η2 be covariances of two pure quasi-free states on A(X , σ).
Then there exists r ∈ Sp(X , σ) such that η2 = r#η1r.

2.3. Gauge-invariant bosonic quasi-free states. Let us now consider the case
of a complex symplectic space (Y, σ), i.e. a pair consisting of a complex vector
space Y and a non-degenerate anti-hermitian form σ ∈ La(Y,Y∗). The complex
structure on Y will be denoted by j, to distinguish it from the complex number
i ∈ C.

As before we introduce the charge q := iσ which is hermitian.
Note that (YR,Reσ) is a real symplectic space with j ∈ Sp(YR,Reσ). Conversely

if (X , σ) is a real symplectic space equipped with an anti-involution j ∈ Sp(X , σ),
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then denoting by Y the space X equipped with the complex structure j and setting
(x1|σ̂x2) := x1σx2 − ix1σjx2, the space (Y, σ̂) is a complex symplectic space.

For coherence of notation we will denote the Weyl CCR algebra A(YR,Reσ) by
A(Y, σ).

Let us now consider a quasi-free state ω on A(Y, q), as in Subsect. 2.2. The
state ω is called gauge-invariant if

ω(W (y)) = ω(W (ejθy)), 0 ≤ θ < 2π, y ∈ Y.
If η is the covariance of ω then ω is gauge-invariant iff j ∈ U(YR, η). If the state ω
is not gauge-invariant, the complex structure j plays no role and one can forget it.
One is then reduced to the situation of Subsect. 2.2.

Let now φ(y) for y ∈ Y be the selfadjoint fields in the GNS representation of ω.
One can introduce the charged fields:

ψ(y) :=
1√
2
(φ(y) + iφ(jy)), ψ∗(y) :=

1√
2
(φ(y)− iφ(jy)), y ∈ Y.

The map Y ∋ y 7→ ψ∗(y) (resp. Y ∋ y 7→ ψ(y)) is C−linear (resp. C−anti-linear).
The commutation relations take the form:

[ψ(y1), ψ(y2)] = [ψ∗(y1), ψ
∗(y2)] = 0, [ψ(y1), ψ

∗(y2)] = (y1|qy2)1l, y1, y2 ∈ Y.
If ω is a gauge-invariant quasi-free state on A(Y, q), then:

(2.2)
ω(ψ(y1)ψ(y2)) = ω(ψ∗(y1)ψ

∗(y2)) = 0,

ω(ψ(y1)ψ
∗(y2)) =: (y1|λy2), y1, y2 ∈ Y.

We will call λ ∈ Ls(Y,Y∗) the (complex) two-point function of the gauge invariant
quasi-free state ω.

Sometimes one considers instead of λ the density or complex covariance c defined
by

(y1|cy2) := ω(ψ∗(y2)ψ(y1)).

Clearly λ = c+ q.
The following propositions are the analogues of Props. 2.2, 2.3, 2.4. We sketch

their proofs for the reader’s convenience.

Proposition 2.5. Let λ ∈ Ls(Y,Y∗). Then the following are equivalent:
(1) λ is the two-point function of a gauge-invariant quasi-free state on A(Y, q),
(2) λ ≥ 0, λ ≥ q.

Proof. Introducing the selfadjoint fields φ(y) we obtain that

ω(φ(y1)φ(y2)) = Re(y1|(λ− 1

2
q)y2) +

i

2
Re(y1|σy2).

Therefore we have η = Re(λ− 1
2q). Since ω is gauge-invariant we have

j ∈ O(YR, η) ∩ Sp(YR,Reσ) = O(YR, η) ∩O(YR,Req).

From this fact we deduce that η ≥ 0 ⇔ λ ≥ 1
2q, and that the second condition in

Prop. 2.2 (with σ replaced by Reσ) is equivalent to

±q ≤ 2λ− q.

These three conditions are equivalent to λ ≥ 0, λ ≥ q. 2

Proposition 2.6. Let λ ∈ Ls(Y,Y∗). Then the following are equivalent:
(1) λ is the two-point function of a pure gauge-invariant quasi-free state on A(Y, q),
(2) there exists an involution κ ∈ U(Y, q) such that qκ ≥ 0 and λ = 1

2q(1l + κ).

(3) λ ≥ 1
2q, λq

−1λ = λ.
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Proof. By Prop. 2.3 the state ω is pure iff there exists an anti-involution j1 ∈
Sp(YR,Reσ) such that

(2.3) 2η = (Reσ)j1.

Since j ∈ O(YR, η)∩Sp(YR,Reσ) we obtain that j1 ∈ U(Y, q), i.e. j1 is C−linear and
pseudo-unitary for q. From (2.3) we then get that 2λ − q = σj1. Setting κ = −jj1
we see that κ ∈ U(Y, q) and λ = 1

2q(1l + κ). Therefore (1) is equivalent to

(4) λ ≥ 0, λ ≥ q, λ =
1

2
q(1l + κ), κ2 = 1l, κ ∈ U(Y, q).

(4) clearly implies (2). Let us prove the converse implication. Set P± := 1
2 (1l± κ).

Clearly P± are projections with P ∗
±q = qP±, κP± = ±P±, and

λ ≥ 0, λ ≥ q ⇔ ±qP± ≥ 0.

Now we have
qP± = qP 2

± = P ∗
±qP± = ±P ∗

±qκP±,

which completes the proof since qκ ≥ 0. The fact that (2) and (3) are equivalent is
an easy computation. 2

Proposition 2.7. Let λ1, λ2 be two-point functions of two pure, gauge-invariant
quasi-free states on A(Y, q). Then there exists r ∈ U(Y, q) such that λ2 = r∗λ1r.

Proof. We introduce the real covariances η1, η2. By Prop. 2.4 there exists r ∈
Sp(YR,Reσ) with η2 = r#η1r. Using the gauge-invariance of the two states we
obtain that rj = jr, hence r ∈ U(Y, q). 2

2.4. Complexification of bosonic quasi-free states. Let now (X , σ) be a real
symplectic space. We set Y := CX , denoting by j the canonical complex structure
on CX , and equip Y with σC, obtaining a complex symplectic space. We set as in
Subsect. 2.3 q = iσC.

Clearly (YR,ReσC) is isomorphic to (X ⊕X , σ⊕σ) as real symplectic spaces. If ω
is a quasi-free state on (X , σ) with covariance η, then we can consider the quasi-free
state ω̃ on (YR,ReσC) with covariance ReηC.

It is easy to see that ω̃ is gauge-invariant, and its (complex) two-point function
λ is equal to

λ = ηC +
1

2
q.

Therefore by complexifying a quasi-free state ω on a real symplectic space (X , σ),
we obtain a gauge-invariant quasi-free state ω̃ on (ReCX ,ReσC). It follows that,
possibly after complexifying the real symplectic space (X , σ), one can always restrict
the discussion to gauge-invariant quasi-free states.

In the sequel we will henceforth only consider gauge-invariant quasi-free states,
and often call them simply quasi-free states.

3. Hadamard states

3.1. Klein-Gordon equations on a globally hyperbolic space time. Con-
sider a globally hyperbolic space-time (M, gµνdx

µdxν). We use the convention
(−,+, · · · ,+) for the signature.

We use the notations

|g| := det[gµν ], [gµν ] := [gµν ]
−1, dv := |g| 12 dx.

If S is a Cauchy hypersurface, we denote by nν the unit future directed normal
vector field to S (after choosing a time orientation), and by ds the surface measure
on S obtained from dv.
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We fix a smooth vector potential Aµ(x)dx
µ and a smooth function ρ : M → R.

The associated Klein-Gordon operator is:

(3.4) P (x,Dx) = |g|− 1
2 (∂µ + iAµ)|g|

1
2 gµν(∂ν + iAν) + ρ.

We equip D(M) with the scalar product

(u1|u2) =
ˆ

M

u1u2dv,

so that P (x,Dx) is formally selfadjoint. We denote by E± the retarded/advanced
fundamental solutions of P (x,Dx), and by E = E+ − E− the Pauli-Jordan com-
mutator function Recall that E∗

± = E∓ hence E = −E∗.
A function u on M is called space-compact if the intersection of suppu with

any Cauchy hypersurface of M is compact. The space of smooth space-compact
functions will be denoted by C∞

sc (M).
We denote by SolC∞(P ) ⊂ C∞(M) the space of smooth space-compact solutions

of

(KG) P (x,Dx)φ = 0.

One has (see e.g. [BGP]):

(3.5) SolC∞(P ) = ED(M).

Moreover if we fix a Cauchy hypersurface S and set

ρ : SolC∞(P ) → D(S)⊕D(S)

φ 7→ (φ|S , i
−1nµ(∇µ + iAµ)φ|S) =: (ρ0φ, ρ1φ),

then ρ : SolC∞(P ) → D(S)⊕D(S) is bijective (see e.g. [BGP]).
Using ρ ◦E we can identify sesquilinear forms on D(S)⊕D(S) with sesquilinear

forms on D(M)/KerE: if c is a sesquilinear form on D(S) ⊕D(S), we set:

(3.6) ([u]|C[v]) := ((ρ ◦ E)u|c(ρ ◦ E)v), u, v ∈ D(M).

Let ς be the sesquilinear form on D(M)/KerE defined by

([u]|ς [v]) := 〈u,Ev〉 = 〈E, u⊗ v〉, u, v ∈ D(M).

By construction (D(M)/KerE, ς) is a complex symplectic space. Setting also

(f |σg) := −i

ˆ

S

(f0g1 + f1g0)ds, f, g ∈ D(S)⊕D(S),

we have

(3.7) ([u]|ς [v]) = (ρ ◦Eu|σ(ρ ◦ Ev),
i.e. σ is identified with ς under (3.6).

We consider quasi-free states on A(D(M,R)/KerE, ς) in the neutral case and
gauge-invariant quasi-free states on A(D(M)/KerE, ς) in the charged case.

If λ is the two-point function of a gauge-invariant quasi-free state on A(D(S)⊕
D(S), σ) then the two-point function on A(D(M)/KerE, ς) obtained from (3.6) will
be denoted by Λ.

3.2. The wave front set. Let M be a smooth manifold. As usual E(M) is the
space of smooth functions on M , D(M) the space of smooth compactly supported
functions on M , D′(M) the space of distributions on M and E ′(M) the space of
compactly supported distributions.

We denote by T ∗M be the cotangent bundle of M . The zero section of T ∗M will
be denoted by Z.
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3.2.1. Operations on conic sets. A set Γ ⊂ T ∗M\Z is conic if

(x, ξ) ∈ Γ ⇒ (x, tξ) ∈ Γ, ∀ t > 0.

If Γ ⊂ T ∗M\Z is conic, we set:

−Γ := {(x,−ξ) : (x, ξ) ∈ Γ}.
Let Mi, i = 1, 2 be two manifolds, Zi the zero section of T ∗Mi and Γ ⊂ T ∗(M1 ×
M2)\Z be a conic set. The elements of T ∗(M1 × M2)\Z will be denoted by
(x1, ξ1, x2, ξ2), which allows to consider Γ as a relation between T∗M2 and T ∗M1,
still denoted by Γ. Clearly Γ maps conic sets into conic sets. We set:

Γ′ := {(x1, ξ1, x2,−ξ2) : (x1, ξ1, x2, ξ2) ∈ Γ} ⊂ T ∗(M1 ×M2)\Z,
Exch(Γ) := {(x2, ξ2, x1, ξ1) : (x1, ξ1, x2, ξ2) ∈ Γ} ⊂ T ∗(M2 ×M1)\Z,
M1

Γ := {(x1, ξ1) : ∃ x2 such that (x1, ξ1, x2, 0) ∈ Γ} = Γ(Z2) ⊂ T ∗M1\Z1,

ΓM2
:= {(x2, ξ2) : ∃ x1 such that (x1, 0, x2, ξ2) ∈ Γ} = Γ−1(Z1) ⊂ T ∗M2\Z2.

3.2.2. Properties of the wave front set. Recall that if u ∈ D′(M) then the wave front
set WF(u) is a conic subset of T ∗M\Z. We refer to [H1] for the exact definition
and the proof of the following basic properties:

(1) Complex conjugation: if u ∈ D′(M) then WF(u) = −WF(u).
(2) Restriction to a sub-manifold: let S ⊂M a sub-manifold. The co-normal

bundle to S in M is:

T ∗
SM := {(x, ξ) ∈ T ∗M\Z : x ∈ S, ξ · v = 0 ∀v ∈ TxS}.

If u ∈ D′(M), the restriction u|S of u to S is well defined if WF(u)∩T ∗
SM = ∅.

One has

WF(u|S) ⊂ {(x, ξ|TxS) : x ∈ S, (x, ξ) ∈ WF(u)}.
(3) Kernels: let K : D(M2) → D′(M1) be linear continuous and denote by

K(x1, x2) ∈ D′(M1 ×M2) its distributional kernel. Then Ku is well defined
for u ∈ E ′(M2) if WF(u) ∩WF(K)′M2

= ∅ and in such case

WF(Ku) ⊂ M1
WF(K) ∪WF(K)′ ◦WF(u).

(4) Composition: let K1 ∈ D′(M1 × M2), K2 ∈ D′(M2 × M3), where K2 is
properly supported, i.e. the projection: suppK2 → M2 is proper. Then
K1 ◦K2 is well defined if

WF(K1)
′
M2

∩ M2
WF(K2)

′ = ∅,
and in such case

WF(K1 ◦K2)
′ ⊂ WF(K1)

′ ◦WF(K2)
′ ∪ M1

WF(K1)
′ × Z3 ∪ Z1 ×WF(K2)

′
M3
.

(5) Adjoint: let us denote by K∗ the adjoint of K with respect to any smooth
non-vanishing density dx on M . Then

WF(K∗)′ = Exch(WF(K)′).

3.3. Distinguished parametrices and microlocal spectrum condition. Let
us recall basic elements of the theory of distinguished parametrices of Duistermaat
and Hörmander [DH] for the case of the Klein-Gordon operator P (x,D). The
characteristic manifold of P (x,D) is

N := {(x, ξ) ∈ T ∗M\Z : p(x, ξ) = 0},
where p(x, ξ) = gµν(x)ξµξν is the principal symbol of P (x,D).
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We use the notation X = (x, ξ) for points in T ∗M\Z. We write X1 ∼ X2

if X1 = (x1, ξ1) and X2 = (x2, ξ2) are in N and X1 and X2 are on the same
Hamiltonian curve for p.

Let us denote by Vx± ⊂ TxM for x ∈ M , the open future/past light cones and
V ∗
x± the dual cones

V ∗
x± := {ξ ∈ T ∗

xM : ξ · v > 0, ∀v ∈ Vx±, v 6= 0}.
The set N has two connected components invariant under the Hamiltonian flow of
p, namely:

N± := {X ∈ N : ξ ∈ V ∗
x±}.

Recall that E± denote respectively the retarded and advanced fundamental solu-
tion. We denote respectively EF, EF the Feynman and anti-Feynman parametrix.
The theory of Duistermaat and Hörmander provides among others a description of
the wave front sets of the parametrices E±, EF, EF and establishes their uniqueness
up to smooth functions. The proof of the next lemma can be found for instance in
[J1, Thm. 2.29].

Lemma 3.1. We have:

(1) WF(E)′ = {(X1, X2) ∈ N ×N : X1 ∼ X2},
(2) WF(E+ − EF)

′ = {(X1, X2) ∈ N− ×N− : X1 ∼ X2},
(3) WF(E− − EF)

′ = {(X1, X2) ∈ N+ ×N+ : X1 ∼ X2}.
We are now ready to formulate the microlocal spectrum condition.

Definition 3.2. Let Λ : D(M) → D′(M) be linear continuous. Then Λ satisfies
the microlocal spectrum condition if

(µsc) WF(Λ)′ ⊂ {(X1, X2) ∈ N+ ×N+ : X1 ∼ X2}.
A (neutral or charged, gauge invariant) quasi-free state is a Hadamard state if its
two-point function Λ satisfies the microlocal spectrum condition.

Remark 3.3. If instead of Λ we consider the charge density C = Λ − Q, then it
is easy to deduce using Radzikowski’s theorem [R] and Lemma 3.1 that the corre-
sponding condition for C is

WF(C)′ ⊂ {(X1, X2) ∈ N− ×N− : X1 ∼ X2}.
One can also show that the inclusion in (µsc) and the one above can be replaced by
equalities.

4. Background on pseudo-differential calculus

4.1. Notation. - If f : Rt × Rnx → C is a function, and t ∈ R we denote by f(t)
the function:

f(t) : R
n ∋ x 7→ f(t, x) ∈ C.

- We denote by C∞
bd(R

n) the space of smooth functions on Rn uniformly bounded
with all derivatives. We equip C∞

bd(R
n) with its canonical Fréchet space structure.

We denote by Hm(Rd) the Sobolev space of order m ∈ R.
- We denote by S(Rd), resp. S ′(Rd) the space of Schwartz functions, resp.

distributions on Rd.
- We set

H(Rd) := ∩m∈RH
m(Rd), H′(Rd) := ∪m∈RH

m(Rd),

equipped with their canonical topologies.
- If E,F are two topological vector spaces, we write A : E → F if A is linear

continuous from E to F .
- We set Dx = i−1∂x, 〈x〉 = (1 + x2)

1
2 , x ∈ Rd.
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4.2. Symbol classes. We denote by Sm(R2d), m ∈ R the symbol class

(4.8) a ∈ Sm(R2d) if ∂αx ∂
β
k a(x, k) ∈ O(〈k〉m−|β|), α, β ∈ N

d.

Similarly we will denote by Sm(R) the class

(4.9) f ∈ Sm(R) if ∂αλ f(λ) ∈ O(〈λ〉m−α), α ∈ N.

We denote by Smh (R
2d) the subspace of Sm(R2d) of symbols homogeneous of degree

m in the k variable:

(4.10) a ∈ Smh (R
2d) if a ∈ Sm(R2d) and a(x, λk) = λma(x, k), λ ≥ 1, |k| ≥ 1.

We set

S−∞(R2d) :=
⋂

m∈R

Sm(R2d).

If am−k ∈ Sm−k(R2d) for k ∈ N and a ∈ Sm(R2d) we write

a ∼
∞
∑

k=0

am−k

if

(4.11) a−
n
∑

k=0

am−k ∈ Sm−n−1(R2d), ∀n ∈ N.

Note that if am−k ∈ Sm−k(R2d) for k ∈ N, then it is well-known that there exists
a ∈ Sm(R2d), unique modulo S−∞(R2d), such that a ∼ ∑∞

k=0 am−k.

We say that a symbol a ∈ Sm(R2d) is poly-homogeneous if a ∼ ∑∞
k=0 am−k for

am−k ∈ Sm−k
h (R2d).The symbols am−k are then clearly unique. The subspace of

poly-homogeneous symbols of degree m will be denoted by Smph(R
2d). The space

Smph(R) ⊂ Sm(R) is defined similarly.

We will often write Sm(ph) for Sm(ph)(R
2d). We equip Sm(ph)(R

2d) with the Fréchet

space topology given by the semi-norms:

‖a‖m,N := sup
|α|+|β|≤N

|〈k〉−m+|β|∂αx ∂
β
k a|.

We set

S∞
(ph)(R

2d) :=
⋃

m∈R

Sm(ph)(R
2d).

4.3. Principal symbol and characteristic set. The principal symbol of a ∈ Sm,
denoted by σpr(a) is the equivalence class a+ Sm−1 in Sm/Sm−1. If a ∈ Smph then

a + Sm−1 has a unique representative in Smh , namely the function am in (4.11).
Therefore in this case the principal symbol is a function on R2d, homogeneous of
degree m in k.

The characteristic set of a ∈ Smph is defined as

(4.12) Char(a) := {(x, k) ∈ T ∗
R
d\{0} : am(x, k) = 0},

it is clearly conic in the k variable.
A symbol a ∈ Sm(R2d) is elliptic if there exists C,R > 0 such that

|a(x, k)| ≥ C〈k〉m, |k| ≥ R.

Clearly a ∈ Smph(R
2d) is elliptic iff Char(a) = ∅.
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4.4. Pseudo-differential operators. In this subsection we collect some well-
known results about pseudo-differential calculus.

For a ∈ Sm(R2d), we denote by Opw(a) the Weyl quantization of a defined by:

Opw(a)u(x) = aw(x,D)u(x) := (2π)−d
¨

ei(x−y)ka(
x+ y

2
, k)u(y)dydk.

One has Opw(a) : H(Rd) → H(Rd) and

Opw(a)∗ = Opw(a),

hence Opw(a) : H′(Rd) → H′(Rd).
We denote by Ψm(ph)(R

d) the space Opw(Sm(ph)(R
2d)) and set

Ψ∞
(ph)(R

d) =
⋃

m∈R

Ψm(ph)(R
d), Ψ−∞(Rd) =

⋂

m∈R

Ψm(Rd).

We will often write Ψm(ph) instead of Ψm(ph)(R
d). We will equip Ψm(ph)(R

d) with the

Fréchet space topology obtained from the topology of Sm(R2d).
If a = aw(x,Dx) ∈ Ψmph(R

d) the m−homogeneous function σpr(a) =: am(x, k) is
called the principal symbol of a.

Let s,m ∈ R. Then the map

(4.13) Sm(Rd) ∋ a 7→ Opw(a) ∈ B(Hs(Rd), Hs−m(Rd))

is continuous.
An operator Opw(a) ∈ Ψm(R2d) is elliptic if its symbol a(x, k) is elliptic in

Sm(R2d). If a ∈ Ψm is elliptic then there exists b ∈ Ψ−m, unique modulo Ψ−∞

such that ab = ba = 1l modulo Ψ−∞. Such an operator b is called a pseudo-inverse
or a parametrix of a. We will denote it by b =: a(−1). As a typical example 1l + b
for b ∈ Ψ−m, m > 0 is elliptic in Ψ0.

The following lemma is proven in [S, Prop. A.1.1, A.1.2] .

Lemma 4.1. Let u ∈ D′(Rd), (x, k) ∈ T ∗Rd\{0}. Then (x, k) 6∈ WF(u) iff
there exists χ ∈ C∞

0 (Rd) and a ∈ S0
ph(R

2d) with x ∈ suppχ, (x, k) 6∈ Char(a)

and Opw(a)χu ∈ S(Rd).

4.5. Functional calculus for pseudo-differential operators. We now recall
various well-known results about functional calculus for pseudo-differential opera-
tors.

Proposition 4.2. Let a ∈ Ψm(Rd) for m ≥ 0 be elliptic in Ψm(Rd) and symmetric
on S(Rd). Then:
(1) a is selfadjoint on Hm(Rd),
(2) for z 6∈ σ(a) (z − a)−1 ∈ Ψ−m(Rd),
(3) if f ∈ Sp(R), p ∈ R, then f(a), defined by the functional calculus, belongs to

Ψmp(Rd).
(4) if f is elliptic in Sp(R) then σpr(f(a)) = f(σpr(a)) mod Smp−1(R2d).
(5) if a ∈ Ψmph(R

d) and f ∈ Spph(R), then f(a) ∈ Ψmpph (Rd), and if f ∈ Spph(R) is

elliptic, then σpr(f(a)) = fp(σpr(a)), where fp ∈ Sph(R) is the principal symbol
of f .

Proof. We refer the reader for example to [R, Thm. 5.4], [Bo, Corr. 4.5] for the
proof of similar statements. Statement (1) follows from the fact that a+ iλ1l maps
Hm(Rd) bijectively onto L2(Rd) for |λ| large enough.

To prove statement (2), the most direct way is to use the Beals criterion (see
e.g. [Bo]), which characterizes pseudo-differential operators by properties of the
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multi-commutators with the operators xi, Dj: an operator a belongs to Ψm(Rd)
iff:

a : S(Rd) → S(Rd),
adαxad

β
Da ∈ B(Hm−|α|(Rd), L2(Rd)), ∀ α, β ∈ Nd,

where adxi
b = [xi, b], adDj

b = [Dj , b], and adαx = adα1

x1
· · · adαd

xd
and similarly for

adβD.
From (2) one can deduce (3) by expressing f(a) for f ∈ Sp(R) using the resolvent

(z − a)−1 and an almost analytic extension of f , see e.g. [HS, D]. Statement (4)
follows from the parametrix construction of (z − a)−1, which has (z − σpr(a))

−1 as
principal symbol. Statement (5) can be proved similarly. 2

We conclude this subsection by stating a useful lemma, which follows from sym-
bolic calculus.

Lemma 4.3. Let a ∈ Ψp(Rd), p ∈ R, f, g ∈ C∞(Rd) with ∇f,∇g ∈ C∞
0 (Rd) and

f ≡ 0 near supp g. Then

f(x)ag(x) ∈ Ψ−∞(Rd).

In particular f(x)ag(x) maps H′(Rd) into H(Rd).

4.6. Propagators. Let us fix a map ǫ(t) = ǫ1(t)+ǫ0(t), where ǫi(t) ∈ C∞(R,Ψi(Rd))
for i = 0, 1. Assume moreover that ǫ1(t) is elliptic in Ψ1(Rd) and symmetric on
S(Rd). It follows by Prop. 4.2 that ǫ1(t) is selfadjoint with domain H1(Rd), hence
ǫ(t) with domain H1(Rd) is closed, with non empty resolvent set.

We denote by Texp(
´ t

s
iǫ(σ)dσ) the associated propagator defined by:















∂
∂tTexp(

´ t

s
iǫ(σ)dσ) = iǫ(t)Texp(

´ t

s
iǫ(σ)dσ),

∂
∂sTexp(

´ t

s iǫ(σ)dσ) = −iTexp(
´ t

s iǫ(σ)dσ)ǫ(s),

Texp(
´ s

s
iǫ(σ)dσ) = 1l.

Note that the propagator Texp(
´ t

s
iǫ1(σ)dσ) exists and is unitary by e.g. [RS,

Thm. X.70]. Since ǫ(t) − ǫ1(t) is locally uniformly bounded in B(L2(Rd)), one

easily deduces the existence of Texp(
´ t

s iǫ(σ)dσ), which is strongly continuous in

(t, s) with values in B(L2(Rd)).

Definition 4.4. Assume in addition that ǫ(t) ∈ Ψ1
ph(R

d). Then we denote by

Φǫ(t, s) : T
∗Rd\{0} → T ∗Rd\{0} the symplectic flow associated to the time-dependent

Hamiltonian −σpr(ǫ)(t, x, k).
Equivalently Φǫ(t, s) is the restriction to the variables (x, k) of the symplectic

flow on T ∗R1+d\{0} associated to the Hamiltonian τ − σpr(ǫ)(t, x, k).

Clearly Φǫ(t, s) is an homogeneous map of degree 0.
The following classical result is known as Egorov’s theorem, see for instance [T,

Sec. 0.9] for the proof.

Proposition 4.5. (1) Texp(
´ t

s
iǫ(σ)dσ) is bounded on H(Rd) hence on H′(Rd) by

duality.
(2) Let a ∈ Ψm(Rd). Then

a(t, s) := Texp(
´ t

s
iǫ(σ)dσ)aTexp(

´ s

t
iǫ(σ)dσ)

belongs to C∞(R2,Ψm(Rd)). Moreover if ǫ(t) ∈ C∞(R,Ψ1
ph(R

d)) and a ∈
Ψmph(R

d) then a(t, s) ∈ C∞(R2,Ψmph(R
d)) with

σpr(a)(t, s) = σpr(a) ◦ Φǫ(s, t).
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From Proposition 4.5 and Lemma 4.1 we obtain the following result (the steps
of the proof are explained in [T, Sec. 0.10]).

Proposition 4.6. For u ∈ H′(Rd) one has:

WF(Texp(
´ t

s
iǫ(σ)dσ)u) = Φǫ(t, s)WF(u),

hence

WF(Texp(
´ t

s
iǫ(σ)dσ))′ = {(x, k, x′, k′) : (x, k) = Φǫ(t, s)(x

′, k′)}.
Lemma 4.7. Let ǫ(t) ∈ C∞(R,Ψ1(Rd)) as above, s−∞(t, s) ∈ C∞(R2,Ψ−∞(Rd)).
Then

Texp(
´ t

s
iǫ(σ)dσ)s−∞(t, s) ∈ C∞(R2,Ψ−∞(Rd)).

Proof. The proof will be given in Subsect. A.1. 2

5. Concrete Klein-Gordon equations

5.1. Model Klein-Gordon equation on R1+d. In this subsection we describe
the model Klein-Gordon equation that will be considered in the sequel. We take
M = R1+d, x = (t, x) ∈ R1+d and fix a second order differential operator

(5.1) a(t, x, Dx) = −
d

∑

j,k=1

∂xjajk(x)∂xk +

d
∑

j=1

bj(x)∂xj − ∂xjb
j
(x) +m(x),

where

(5.2)
ajk, bj ,m ∈ C∞(R, C∞

bd(R
d)), m(x) ∈ R,

[ajk](x) ≥ c(t)1l uniformly on R1+d, c(t) > 0.

We introduce the model Klein-Gordon operator

P (x,Dx) = ∂2t + a(t, x, Dx),

which is formally selfadjoint for the scalar product (u1|u2) =
´

R1+d u1u2dx.
We will consider the Cauchy problem:

(5.3)















∂2t φ(t) + a(t, x, Dx)φ(t) = 0,

φ(s) = f0,

i−1∂tφ(s) = f1,

for f = (f0, f1) ∈ H(Rd)⊗C
2. By the well-known method of energy estimates, one

obtains the existence and uniqueness of a solution φ ∈ C∞(R,H(Rd)). Similarly if
f ∈ H′(Rd)⊗ C2, there exists a unique solution φ ∈ C∞(R,H′(Rd)).

5.2. Reduction to the model case. Consider a globally hyperbolic space-time
(M, g) with a Cauchy hypersurface diffeomorphic to Rd. This implies that we can
assume that M = Rt × Rd and

(5.4) g = −c(x)dt2 + hjk(x)dx
jdxk,

where x = (t, x), c(x) > 0 is a smooth function and hjk(x)dx
jdxk is a smooth

Riemannian metric on Rd.
In this subsection we explain how to reduce the Klein-Gordon operator (3.4) to

the model case considered in Subsect. 5.1.
Writing Aµ(x) = (V (x),Aj(x)), we have:

P (x,Dx)

= c−
1
2 |h|− 1

2 (∂t + iV )c−
1
2 |h| 12 (∂t + iV )

−c− 1
2 |h|− 1

2 (∂j + iAj)c
1
2 |h| 12hjk(∂k + iAk) + ρ,
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where |h| = det[hjk], [h
jk] = [hjk]

−1.
We choose the Cauchy hypersurface S = {0} × Rd so that

(5.5) φ1σφ2 =

ˆ

S

(

(∂t + iV )φ1φ2 − φ1(∂t + iV )φ2

)

c−
1
2 |h| 12 dx.

Set:

F (t, x) =
´ t

0
V (s, x)ds, Ã = A +∇F, ρ̃ = cρ− c

1
4 |h|− 1

4 ∂2t (c
− 1

4 |h| 14 ),
a(t, x, Dx) = c

1
4 |h|− 1

4 (∂j + iÃj)c
1
2 |h| 12 hjk(∂k + iÃk)c

1
4 |h|− 1

4 + ρ̃.

Lemma 5.1. (1) Let b = c−
1
4 |h| 14 . Then:

P (x,Dx) = c−
1
2 |h|− 1

2 be−iF
(

∂2t + a(t, x, Dx)
)

beiF ,

hence

E = b−1e−iF Ẽc
1
2 |h| 12 b−1eiF ,

where Ẽ is the Pauli-Jordan function for P̃ (x,Dx) := ∂2t + a(t, x, Dx).
(2) The map:

φ 7→ φ̃ := c−
1
4 |h| 14 e−iFφ,

is symplectic from (SolC∞(P ), σ) to (SolC∞(P̃ ), σ̃) for

φ̃1σ̃φ̃2 =

ˆ

S

∂tφ̃1φ̃2 − φ̃1∂tφ̃2dx.

(3) Assume the following hypotheses:

(H)

∀ I ⊂ R compact interval ∃ C > 0 such that

C ≤ c(x), C1l ≤ [hjk(x)], uniformly for x ∈ I × Rd,

hjk(x), c(x), ρ(x), Aµ(x) ∈ C∞(R, C∞
bd(R

d)).

Then the operator a(t, x, Dx) is of the form (5.1) and the conditions (5.2) are
satisfied.

Proof. Set

b2 = c−
1
2 |h| 12 , a = (∂j + iAj)c

1
2 |h| 12 hjk(∂k + iAk) + c

1
2 |h| 12 ρ.

Then

P (x,Dx) = c−
1
2 |h|− 1

2 ((∂t + iV )b2(∂t + iV ) + a),

= c−
1
2 |h|− 1

2 b((∂t + iV )2 + ã)b,

for ã = b−1ab−1 − b−1(∂2t b). Since ∂t + iV = e−iF∂te
iF we finally get:

P (x,Dx) = c−
1
2 |h|− 1

2 be−iF
(

∂2t + a(t, x, Dx)
)

eiF b,

This proves (1). (2) and (3) are left to the reader. 2

By Lemma 5.1, the task of constructing Hadamard states for P (x,D) can be
reduced to constructing Hadamard states for the model Klein–Gordon equation
P̃ (x,D). Indeed, suppose we have a Hadamard state with two-point function Λ̃

and charge iẼ. Then

Λ := b−1e−iF Λ̃c
1
2 |h| 12 b−1eiF

defines the two-point function of a Hadamard state with charge iE, the wave front
set being preserved by multiplication by smooth densities.
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6. The model Klein-Gordon equation

In this section we consider the model Klein-Gordon operator P (x,Dx) = ∂2t +
a(t, x, Dx) introduced in Subsect. 5.1. The associated symplectic form is:

φ1σφ2 =

ˆ

t×Rd

∂tφ1φ2 − φ1∂tφ2dx.

6.1. Notation. If a ≥ 0 is a selfadjoint operator on a Hilbert space h we write
a > 0 if Ker a = {0}. Then a−1 with domain Ran a is selfadjoint.

If a, b ≥ 0 are two selfadjoint operators on a Hilbert space h then we write a ≤ b

if Domb
1
2 ⊂ Doma

1
2 and (u|au) ≤ (u|bu) for u ∈ Domb

1
2 .

The Kato-Heinz theorem says that if 0 ≤ a ≤ b then 0 ≤ as ≤ bs for all 0 ≤ s ≤ 1
and if 0 < a ≤ b then 0 ≤ b−1 ≤ a−1.

We write a ∼ b if c−1a ≤ b ≤ ca for some c > 0.

6.2. Bicharacteristic curves. We denote a2(t, x, k) = kia
ij(t, x)kj the principal

symbol of a(t, x, Dx) and by p(x, ξ) = −τ2 + a2(t, x, k) the principal symbol of
P (x,Dx) = ∂2t + a(t, x, Dx).

We set:

ǫ1(t, x, k) = (kia
ij(t, x)kj)

1
2 .

As in Def. 4.4 we denote by Φ±(t, s) : T ∗Rd\{0} → T ∗Rd\{0} the restrictions
to the variables (x, k) of the symplectic flows on T ∗R1+d\{0} associated to the
hamiltonians τ ∓ ǫ1(t, x, k).

The following lemma is immediate:

Lemma 6.1. Let Xi ∈ N±, i = 1, 2 with X1 ∼ X2. Then

Xi = (ti, xi,±ǫ1(ti, xi, ki), ki) with (x2, k2) = Φ±(t2, t1)(x1, k1).

6.3. Parametrix for the Cauchy problem. In this subsection we outline the
well-known construction of a parametrix for the Cauchy problem (5.3). The con-
struction is well-known and belongs to the folklore of microlocal analysis. Usually
it is done using Fourier integral operators. Our construction relies more on Hilbert
space methods.

We start by an auxiliary lemma.

Lemma 6.2. Assume (5.2) and let a(t, x, Dx) be given by (5.1). Then there exists
smooth maps

R ∋ t 7→ ǫ(t) = ǫ(t, x, k) ∈ S1
ph(R

2d),

R ∋ t 7→ r−∞(t) = r−∞(t, x, k) ∈ S−∞(R2d),

such that:
(1) ǫ(t, x, k) is real-valued, ǫ(t, x, k) ∈ C∞(R, S1

ph(R
2d)) with principal symbol

ǫ1(t, x, k) = (kia
ij(t, x)kj)

1
2 ,

(2) ǫw(t, x, Dx) ≥ c(t)(D2
x + 1l)

1
2 for c(t) > 0,

(3) a(t, x, Dx) = ǫw(t, x, Dx)
2 − rw−∞(t, x, Dx).

Moreover ǫ(t) and r−∞(t) are unique modulo C∞(R,Ψ−∞(Rd)).

Proof. The proof will be given in Subsect. A.2. 2

The following theorem is the main result of this section. It will be used later on
to characterize and construct examples of quasi-free Hadamard states.
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Theorem 6.3. There exist operators b(t) ∈ C∞(R,Ψ1
ph(R

d)), r(t) ∈ C∞(R,Ψ−1
ph (R

d))
with

(i) b(t) = ǫ(t) + (2ǫ(t))−1i∂tǫ(t) mod C∞(R,Ψ−1(Rd)),

(ii) r(t) = b∗(t)(−1) mod C∞(R,Ψ−∞(Rd)),

(iii) r(t) = ǫ(t)−1 + C∞(R,Ψ−2(Rd)),

(iv) r(t) + r(t)∗ ∼ ǫ(t)−1,

such that if

u+(t, s) := Texp(i
´ t

s
b(σ)dσ), u−(t, s) := Texp(−i

´ t

s
b∗(σ)dσ)

d+(t) := (1l + b∗(t)(−1)b(t))(−1), d−(t) := d+(t)
∗,

r+(t) := r(t), r−(t) := r∗(t),

the following properties hold:
(1) set for f ∈ H′(Rd)⊗ C2:

U(t, s)f = u+(t, s)d+(s) (f0 + r+(s)f1) + u−(t, s)d−(s) (f0 − r−(s)f1) ,

=: U+(t, s)f + U−(t, s)f.

then

(6.1)















(∂2t + a(t, x, Dx))U(t, s)f = s−∞(t, s)f,

U(s, s)f = f0 + r−∞,0(s)f,

i−1∂tU(t, s)f |t=s = f1 + r−∞,1(s)f,

for s−∞(t, s) ∈ C∞(R2,Ψ−∞(Rd))⊗ C
2, r−∞,i(s) ∈ C∞(R,Ψ−∞(Rd))⊗ C

2.
(2) let φ(t) be the unique solution of (5.3) for f ∈ H′(Rd)⊗ C2. Then:

(6.2) φ(t) = U(t, s)f mod C∞(R,H(Rd)).

Proof. the proof will be given in Subsect. A.3. 2

To simplify notation, in the rest of the paper, we will fix s = 0, and set:

b := b(0), u±(t) := u±(t, 0), U(t) := U(t, 0),

d := d(0), r := r(0), ǫ := ǫ(0).

The constructions of Hadamard states in Sect. 7 will a priori depend on the
choice of an operator r. To study this dependence it is convenient to introduce the
following definition.

Definition 6.4. We denote by M the set:

M := {r ∈ Ψ−1
ph (R

d) : r = b∗(−1) +Ψ−∞(Rd), r + r∗ ∼ ǫ−1}.

Remark 6.5. Note that the operator b in Thm. 6.3 is unique modulo Ψ−∞. Thm.
6.3 implies that M is not empty. Since two elements of M are equal modulo Ψ−∞,
the conclusions of Thm. 6.3 are valid for any r ∈ M.

The following corollary is a consequence of (6.2), Prop. 4.6 and Lemma 6.1.

Corollary 6.6. If φ(t) is the unique solution of (5.3) for f ∈ H′(Rd) ⊗ C2, one
has

φ(t) = U+(t)f + U−(t)f mod C∞(R,H(Rd)),

and

WF(U±(t)f)

= {(x2, ξ2) : ∃ (x1, k1) ∈ WF(f0 ± r±f1) with (s, x1,±ǫ(x1, k1), k1) ∼ (x2, ξ2)}.
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In particular

WF(U±(t)f) ⊂ N±.

6.4. Symplectic properties of the spaces of positive/negative wavefront
set solutions. We now investigate the properties, with respect to the symplectic
form σ, of the spaces of solutions of the Klein-Gordon equation having wavefront
set included in the positive/negative energy surfaces N±.

Of course we cannot work with solutions in E(M), since their wavefront set is
empty, nor with solutions in D′(M), since the symplectic form σ is not defined on
arbitrary distributional solutions. A natural space of solutions is the space of finite
energy solutions defined as follows:

SolE(P ) := {φ ∈ C0(R, H1(Rd)) ∩C1(R, L2(Rd)) : P (t, x, Dx)φ = 0}.
It is well-known that φ ∈ SolE(P ) iff f = (φ(0), i−1∂tφ(0)) ∈ H1(Rd) ⊕ L2(Rd).
Moreover the symplectic form σ is well defined in SolE(P ).

Recall that for r ∈ M one sets r+ = r, r− = r∗. We define now

C±(r) := {f ∈ H1(Rd)⊕ L2(Rd) : f0 ∓ r∓f1 = 0},
and

Sol±E(P, r) := {φ ∈ SolE(P ) : (φ(0); i−1∂tφ(0)) ∈ C±(r)}.
We call Sol±E(P, r) the space of positive/negative wavefront set solutions.

Theorem 6.7. Let r ∈ M. Then the following properties hold:
(1) SolE(P ) = Sol+E(P, r) ⊕ Sol−E(P, r),

(2) φ ∈ Sol±E(P, r) ⇒ WF(φ) ⊂ N±,

(3) ±iσ = ±q > 0 on Sol±E(P, r),

(4) the spaces Sol±E(P, r) are symplectically orthogonal.

Remark 6.8. We can interpret Thm. 6.7 as follows: the space of finite energy
solutions decomposes as the direct sum of the spaces of positive resp. negative
wavefront set solutions. The charge q is positive, resp. negative on these spaces.
Moreover these two spaces are symplectically orthogonal. This is the exact analogue
of the well-known situation in the static case, where a(t, x, Dx) does not depend on
t (cf. Subsect. 7.5).

For the proof of Thm. 6.7, we will use the following lemma.

Lemma 6.9. Let r ∈ M. Then:
(1) r + r∗ : H1(Rd) → L2(Rd) is invertible and

(r + r∗)−
1
2 =

1√
2
ǫ

1
2 + Ψ0

ph(R
d).

(2) The operator

T (r) := (r + r∗)−
1
2

(

1l r
1l −r∗

)

: H(Rd)⊗ C
2 → H(Rd)⊗ C

2,

is bounded with bounded inverse:

T (r)−1 =

(

r∗ r
1l −1l

)

(r + r∗)−
1
2 .

(3) T (r) : H1(Rd)⊕ L2(Rd) → H
1
2 (Rd)⊗ C2 is bounded with inverse T (r)−1.

(4) one has:

q̃ := (T (r)−1)∗ ◦ q ◦ T (r)−1 =

(

1l 0
0 −1l

)

.
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Proof. From Thm. 6.3 we obtain that r + r∗ ∼ ǫ−1, which implies that r + r∗ is
bijective from H1(Rd) to L2(Rd). Moreover (r+r∗)−1 = 1

2ǫ+Ψ0 and (r+r∗)−1 ∼ ǫ.
By Prop. 4.2 we obtain (1). Statements (2), (3), (4) follow from (1). 2

Proof of Thm. 6.7. For f̃ ∈ H
1
2 (Rd)⊗C2 we set f̃ = (f̃+, f̃−). Since r+ = r,

r− = r∗ we obtain that by Lemma 6.9 f ∈ C± iff (Tf)∓ = 0. The theorem follows
then from Lemma 6.9 (4). 2

7. Construction of Hadamard states

7.1. Microlocal spectrum condition. In this subsection we discuss conditions
under which a covariance c on D(Rd)⊗C2 leads by(3.6) to a covariance C on D(M)
satisfying the microlocal spectrum condition in Def. 3.2.

Recall that c : E1 → E2 means that c is linear continuous between the two
topological vector spaces E1 and E2.

We consider the model Klein-Gordon equation:

∂2t φ+ a(t, x, Dx)φ = 0,

introduced in Subsect. 5.1.
Let c be a bounded hermitian form on D(Rd) ⊗ C2. We identify it with the

operator:

(7.1) c =

(

c00 c01
c10 c11

)

: D(Rd)⊗ C
2 → D′(Rd)⊗ C

2,

and associate to it the bounded hermitian form C on D(R1+d) given by:

(7.2) (u|Cv) = (ρ ◦ Eu|cρ ◦ Ev), C : D(R1+d) → D′(R1+d).

We still denote by C ∈ D′(R1+d × R1+d) the distribution kernel of C given by:

(u|Cv) =
ˆ

C(x, y)u(x)v(y)dxdy.

We fix now an operator r ∈ M (see Def. 6.4). The map T (r) in Lemma 6.9 will
be denoted by T for simplicity.

We would like to define:

(7.3) c̃ := (T−1)∗ ◦ c ◦ T−1 =:

(

c̃++ c̃+−

c̃−+ c̃−−

)

.

Since T , T−1 : H(Rd)⊗ C2 → H′(Rd)⊗ C2, a natural requirement is that

c : H(Rd)⊗ C
2 → H′(Rd)⊗ C

2,

which implies that c : D(Rd) ⊗ C2 → D′(Rd) ⊗ C2. In the next theorem we will
need to impose stronger conditions on c.

We can now state the main result of this subsection. Recall that the notations

MΓ and ΓM for a conic set Γ are defined in Subsect. 3.2.

Theorem 7.1. Assume that

(1a) c : H(Rd)⊗ C2 → H(Rd)⊗ C2,

(1b) RdWF(c)′ = WF(c)′
Rd = ∅.

Then C defined by (7.2) satisfies the microlocal spectrum condition iff:

(2) WF(c̃−−)
′ = WF(c̃+−)

′ = WF(c̃−+)
′ = ∅, WF(c̃++)

′ ⊂ ∆,

where ∆ is the diagonal in T ∗Rd\{0} × T ∗Rd\{0}.



CONSTRUCTION OF HADAMARD STATES 19

Remark 7.2. Note that condition (2) implies that condition (1b) is satisfied by c̃.
Using that T , T−1 are pseudo-differential operators, it is easy to see that condition
(1b) is then also satisfied by c. Therefore if conditions (1a), (2) are satisfied, C
satisfies (µsc).

Remark 7.3. Note that we strengthen the assumption on the sesquilinear form
c, since we require in (1a) that c : H(Rd) ⊗ C2 → H(Rd) ⊗ C2 instead of c :
H(Rd) ⊗ C2 → H′(Rd) ⊗ C2 as before. In fact since the Cauchy surface is not
compact, some care is needed with the composition of operators.

Condition (1b) is satisfied for example if WF(c)′ ⊂ Γ, where Γ is the graph of
a conic, bijective map on T ∗Rd. This is the case if the entries of c are pseudo-
differential or even Fourier integral operators.

Proof.
We set

ρ̃ = T ◦ ρ =: ρ̃+ ⊕ ρ̃−,

so that:

(7.4) C = (ρ̃ ◦ E)∗ ◦ c̃ ◦ (ρ̃ ◦ E) =
∑

α,β∈{+,−}

Cαβ ,

for

(7.5) Cαβ := (ρ̃α ◦ E)∗ ◦ c̃αβ ◦ (ρ̃β ◦ E).

Let us first check that we can perform the various compositions in (7.4).
Because of the well-known support properties of E± we have:

(7.6)

ρ ◦ E :
D(M) → D(Rd)⊗ C2,

E ′(M) → E ′(Rd)⊗ C2,

(ρ ◦ E)∗ :
D′(Rd)⊗ C2 → D′(M),

E(Rd)⊗ C2 → E(M).

Note also that T : D(Rd)⊗C2 → H(Rd)⊗C2 and T : E ′(Rd)⊗C2 → H′(Rd)⊗C2.
We obtain that

(7.7)

ρ̃ ◦ E :
D(M) → H(Rd)⊗ C2,

E ′(M) → H′(Rd)⊗ C2,

(ρ̃ ◦ E)∗ :
H′(Rd)⊗ C2 → D′(M),

H(Rd)⊗ C
2 → E(M).

Since we assumed that c : H(Rd)⊗C2 → H′(Rd)⊗C2, we have c̃ : H(Rd)⊗C2 →
H′(Rd)⊗C2, using that T , T−1 preserve H(Rd)⊗C2 and H′(Rd)⊗C2. Therefore
we can perform the compositions in (7.4).

By Lemma 3.1, we have

WF(E)′ = {(X1, X2) : X1 ∼ X2, X1, X2 ∈ N},
and using that the Cauchy surface {t = 0} is non-characteristic for the Klein-
Gordon equation, we have for i = 0, 1:

WF(ρi ◦ E)′

= {((x1, k1), (x2, ξ2)) ∈ T ∗(Rd ×M)\Z : (0, x1,−ǫ1(0, x1, k1), k1) ∼ (x2, ξ2)}
∪ {((x1, k1), (x2, ξ2)) ∈ T ∗(Rd ×M)\Z : (0, x1,+ǫ1(0, x1, k1), k1) ∼ (x2, ξ2)}.

Then from Corollary 6.6, we obtain that:

(7.8) WF(ρ̃± ◦ E)′ = Γ±,
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for

Γ± = {((x1, k1), (x2, ξ2)) ∈ T ∗(Rd ×M)\Z : (0, x1,±ǫ(0, x1, k1), k1) ∼ (x2, ξ2)}.
We also have

(7.9) WF((ρ̃± ◦ E)∗)′ = Exch(Γ±).

We now want to apply the composition rule for the wave front set recalled in
Subsect. 3.2 to the identity (7.5), in order to bound WF(Cαβ)

′. It clearly suffices
to bound WF(χCαβχ)

′ for χ ∈ C∞
0 (M).

Step 1. The first step is to reduce oneself to the composition of properly sup-
ported kernels, modulo smoothing operators.

Because of the support properties of the kernel of E, there exists ψ ∈ C∞
0 (Rd)

such that (denoting again

(

ψ 0
0 ψ

)

by ψ):

ρ ◦ Eχ = ψρ ◦ Eχ.
Let us also fix ψ1 ∈ C∞

0 (Rd) with ψ1 ≡ 1 near suppψ. By Lemma 4.3 we know
that (1− ψ1)Tψ ∈ Ψ−∞(Rd), hence

ρ̃ ◦ Eχ = ψ1ρ̃ ◦ Eχ+R1ρ ◦ Eχ,
for

(7.10) R1 := (1 − ψ1)Tψ : D′(Rd)⊗ C
2 → H(Rd)⊗ C

2.

Taking adjoints we have:

χ(ρ̃ ◦ E)∗ = (ρ̃ ◦ Eχ)∗ = χ(ρ̃ ◦ E)∗ψ1 + χ(ρ ◦ E)∗R∗
1,

R∗
1 : H′(Rd)⊗ C

2 → D(Rd)⊗ C
2.

It follows that

χ(ρ̃ ◦ E)∗c̃(ρ̃ ◦ E)χ

= χ(ρ̃ ◦ E)∗ψ1c̃ψ1(ρ̃ ◦E)χ+ χ(ρ̃ ◦ E)∗c̃R1(ρ ◦ E)χ+ χ(ρ̃ ◦ E)∗R∗
1 c̃ψ1(ρ̃ ◦ E)χ

=: χ(ρ̃ ◦ E)∗ψ1c̃ψ1(ρ̃ ◦E)χ+ I1 + I2.

We claim that

(7.11) I1, I2 : D′(M) → D(M).

Note that from hypothesis (1a) and the fact that T , T−1 are (matrices of) pseudo-
differential operators, we know that c̃ : H(Rd)⊗ C

2 → H(Rd)⊗ C
2.

Using then (7.6), (7.7), (7.10) we have:

I1 : D′(M) :
(ρ◦E)χ→ E ′(Rd)⊗ C2 ⊂ H′(Rd)⊗ C2 R1→H(Rd)⊗ C2

c̃→H(Rd)⊗ C2 ⊂ E(Rd)⊗ C2 χ(ρ̃◦E)∗→ D(M),

and:

I2 : D′(M) :
(ρ̃◦E)χ→ H′(Rd)⊗ C2 c̃ψ1→ H′(Rd)⊗ C2

R∗

1→D(Rd)⊗ C2 ⊂ E(Rd)⊗ C2 χ(ρ◦E)∗→ D(M),

which proves (7.11). It follows that if ψ2 ∈ C∞
0 (Rd) with ψ2 ≡ 1 near suppψ1 we

have:

χCαβχ = χ(ρ̃α ◦ E)∗ψ1 ◦ ψ2c̃ψ2 ◦ ψ1(ρ̃β ◦ E)χ mod C∞(M ×M),

the three operators in the composition above having compactly (hence properly)
supported kernels.
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Step 2. We check that we can apply the composition rule for wave front sets.
Note first that since T , T−1 are (matrices of) pseudo-differential operators, we
obtain using hypothesis (1b) that:

(7.12) RdWF(c̃)′ = WF(c̃)′
Rd = ∅.

Let us fix α, β ∈ {+,−} and set:

Kα = χ(ρ̃α ◦ E)∗ψ1, Kαβ = ψ2c̃αβψ2, Kβ = ψ1(ρ̃β ◦ E)χ.

Using (7.8), (7.9) we have:

WF(Kα)
′ ⊂ Exch(Γα), WF(Kαβ)

′ ⊂ WF(c̃αβ)
′, WF(Kβ)

′ ⊂ Γβ .

It follows also from (7.12) that:

MWF(Kα)
′ = WF(Kα)

′
Rd =Rd WF(Kαβ)

′

= WF(Kαβ)
′
Rd =Rd WF(Kαβ)

′ = WF(Kβ)
′
M = ∅.

It follows that we can compose Kαβ and Kβ and

WF(Kαβ ◦Kβ)
′ ⊂ WF(c̃αβ) ◦ Γβ.

We can also compose Kα and Kαβ ◦Kβ and

WF(Kα ◦Kαβ ◦Kβ) ⊂ Exch(Γα) ◦WF(c̃αβ) ◦ Γβ .

Step 3. Recalling the definition of Γα, Γβ, we obtain from Step 2 that:
(7.13)

WF(Cαβ)
′

⊂ {(x1, ξ1, x2, ξ2) : (x1, ξ1) ∈ Nα, (x2, ξ2) ∈ Nβ , ∃ (x1, k1, x2, k2) ∈ WF(c̃αβ)
′

such that (x1, ξ1) ∼ (0, x1, αǫ(0, x1, k1), k1), (x2, ξ2) ∼ (0, x2, βǫ(0, x2, k2))}.

Let Sαβ be the set in the r.h.s. of (7.13). Using (7.4) and the fact that the Sαβ are
pairwise disjoint, we obtain that:

WF(C)′ ⊂
⋃

α,β∈{+,−}

Sαβ .

Therefore C satisfies the microlocal spectrum condition iff

Sαβ = ∅, for (α, β) 6= (+,+),

S++ ⊂ {(x1, ξ1, x2, ξ2) : (xi, ξi) ∈ N+, (x1, ξ1) ∼ (x2, ξ2)}.

This condition is satisfied iff

WF(c̃αβ)
′ = ∅ for (α, β) 6= (+,+), WF(c̃++)

′ ⊂ ∆.

This completes the proof of the theorem. 2

7.2. Construction of Hadamard states. In this subsection we construct a large
class of two-point functions λ with pseudo-differential entries, such that Λ is the
two-point function of a (gauge-invariant) quasi-free Hadamard state. Beside the
microlocal condition in Thm. 7.1, λ should also satisfy the positivity conditions
recalled in Subsect. 2.2, i.e. λ ≥ 0, λ ≥ q, where q = iσ =

(

0 1l
1l 0

)

.
As before we fix r ∈ M.



22 C. GÉRARD AND M. WROCHNA

Proposition 7.4. Let λ be a two-point function with pseudo-differential entries.
Let λ̃αβ for α, β ∈ {+,−} be defined as in (7.3). Then λ is a Hadamard charge
density iff

(µsc′) λ̃−−, λ̃+−, λ̃−+ ∈ Ψ−∞(Rd),

(1) λ̃++ ≥ 1l, on H(Rd), λ̃−− ≥ 0 on H(Rd),

(2) |(u|λ̃+−v)| ≤ (u|λ̃++u)
1
2 (v|λ̃−−v)

1
2 , u, v ∈ H(Rd),

(3) |(u|λ̃+−v)| ≤ (u|(λ̃++ − 1l)u)
1
2 (v|(λ̃−− + 1l)v)

1
2 , u, v ∈ H(Rd).

Proof. Since the entries of λ, λ̃ are pseudo-differential operators, condition (1a) of
Thm. 7.1 is satisfied and condition (1b) as well by Remark 7.2. Moreover, condition
(µsc′) is equivalent to (2) of Thm. 7.1, hence (µsc′) is equivalent to the microlocal
spectrum condition.

From Sect. 2 we know that λ is the two-point function of a gauge-invariant
quasi-free state iff

(7.14) λ ≥ 0, λ ≥ q on D(Rd)⊗ C
2 ⇔ λ ≥ 0, λ ≥ q on H(Rd)⊗ C

2,

using that the entries of λ are pseudo-differential operators.
We recall that λ̃ = (T−1)∗ ◦ λ ◦ T−1 and q̃ = (T−1)∗ ◦ q ◦ T−1. By Lemma 6.9

we have

q̃ =

(

1l 0
0 −1l

)

: H(Rd)⊗ C
2 → H′(Rd)⊗ C

2.

Since T maps H(Rd)⊗ C2 into itself bijectively, (7.14) is equivalent to:

(7.15) λ̃ ≥ 0, λ̃ ≥ q̃ on H(Rd)⊗ C
2.

Clearly if a, b, c are linear operators with domain H(Rd) one has:

2Re(u|bv) + (u|au) + (v|cv) ≥ 0, u, v ∈ H(Rd)

⇔ |(u|bv)| ≤ (u|au) 1
2 (v|cv) 1

2 , u, v ∈ H(Rd) and a, c ≥ 0 on H(Rd).

Applying this observation and noting that r + r∗ ≥ 0, we obtain that condition
(7.15) is equivalent to conditions (1), (2), (3). 2

We now proceed to construct a large class of pseudo-differential operators λ̃αβ
satisfying the conditions in Prop. 7.4.

Theorem 7.5. Let us fix pseudo-differential operators:

a−∞ ∈ Ψ−∞(Rd), a0 ∈ Ψ0(Rd) with ‖a0‖ ≤ 1, b ∈ Ψ∞(Rd),

and set:
λ̃++ = 1l + b∗b,

λ̃−− = a∗−∞a−∞,

λ̃+− = λ̃∗−+ = b∗a0a−∞.

Then the two-point function λ given by (7.3) is the two-point function of a Hadamard
state.

Proof. We check the conditions in Prop. 7.4. Conditions (µsc) and (1) are clearly

satisfied. From the form of λ̃+− we have

|(u|λ̃+−v)| ≤ (u|b∗bu) 1
2 (v|a∗−∞a−∞v)

1
2 , u, v ∈ H(Rd),

which implies (2) and (3), using the form of λ̃++ and λ̃−−. 2
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7.3. Symplectic transformations. Recall from Sect. 2 that if (Y, σ) is a complex
symplectic space and q = iσ, then the set of two-point functions of gauge-invariant
quasi-free states is invariant under conjugation by elements of U(Y, q). The same
is true for the set of two-point functions of pure quasi-free states.

In this subsection we describe a class of symplectic transformations u ∈ U(D(Rd)⊗
C2, q) which preserve the microlocal spectrum condition (µsc). We start with a gen-
eral result.

Proposition 7.6. Let u such that u, u∗ : H(Rd)⊗ C2 → H(Rd)⊗ C2. Set

ũ := TuT−1 =

(

ũ++ ũ+−

ũ−+ ũ−−

)

,

and assume that

WF(ũ∗++λ̃++ũ++)
′ ⊂ ∆, ũ+− : H′(Rd) → H(Rd).

Then if λ is a two-point function with pseudo-differential entries satisfying (µsc),
the two-point function u∗λu satisfies also (µsc).

Proof. We set c := u∗λu and as in Subsect. 7.1:

λ̃ := (T−1)∗λT−1, c̃ := (T−1)∗cT−1 = ũ∗λ̃ũ.

Since λ has pseudo-differential entries and satisfies (µsc) we have:

(7.16) λ̃αβ ∈ Ψ∞(Rd), λ̃αβ ∈ Ψ−∞(Rd) for (α, β) 6= (+,+).

We will check that c satisfies the hypotheses of Thm. 7.1. Since u, u∗, λ preserve
H(Rd)⊗C2 condition (1a) is satisfied. By Remark 7.2, it remains to check condition
(2). We compute c̃ and obtain using (7.16) that

c̃ =

(

ũ∗++λ̃++ũ++ ũ∗++λ̃++ũ+−

ũ∗+−λ̃++ũ++ ũ∗+−λ̃++ũ+−

)

+ s,

where s : H′(Rd) ⊗ C2 → H(Rd) ⊗ C2 is a smoothing operator. Since ũ+−, ũ+− :
H′(Rd) → H(Rd) we have

c̃ =

(

ũ∗++λ̃++ũ++ 0
0 0

)

+ s1,

for s1 as s. Therefore condition (2) is satisfied. 2

Definition 7.7. We denote by U−∞(H(Rd) ⊗ C2, q) the subgroup of U(H(Rd) ⊗
C

2, q) defined by:

U−∞(H(Rd)⊗ C
2, q) := {u ∈ U(H(Rd)⊗ C

2, q) : u− 1l ∈ Ψ−∞(Rd)⊗M2(C)}.
Corollary 7.8. The conjugations by elements of U−∞(H(Rd)⊗C2, q) preserve the
set of (pure) quasi-free Hadamard states.

Remark 7.9. It is easy to see that if

(

a b
c d

)

∈ U(H(Rd) ⊗ C2, q) and a is

invertible, then

(7.17)

(

a b
c d

)

=

(

1l 0
e 1l

)(

g∗ 0
0 g−1

)(

1l f
0 1l

)

for some g invertible and e∗ = −e, f∗ = −f . Moreover the matrices

(1)

(

1l 0
e 1l

)

, (2)

(

1l f
0 1l

)

or (3)

(

g∗ 0
0 g−1

)

,

where e, f ∈ Ψ−∞(Rd) with e∗ = −e, f∗ = −f , and g − 1l ∈ Ψ−∞(Rd) with g, g∗

invertible, belong to U−∞(H(Rd)⊗ C2, q).
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7.4. Pure Hadamard states. We now characterize pure Hadamard states with
pseudo-differential entries and discuss some examples.

Theorem 7.10. Let λ ∈ Ψ∞(Rd) ⊗M2(C). Then λ is the two-point function of
a pure Hadamard state iff

(7.18)

λ̃++ = 1l + a−∞a
∗
−∞,

λ̃−− = a∗−∞a−∞,

λ̃+− = λ̃∗−+ = a−∞(1l + a∗−∞a−∞)
1
2

for some a−∞ ∈ Ψ−∞(Rd).

Proof. Set η̃ = 2λ̃− q̃. From Prop. 2.6 we see that λ is the two-point function of
a pure state iff

(7.19) i) η̃ ≥ 0, ii) η̃q̃−1η̃ = q̃.

Writing η̃ as

(

a b
b∗ c

)

we obtain that (7.19) is equivalent to:

(7.20)
i′) a ≥ 0, c ≥ 0, |(u|bv)| ≤ (u|au) 1

2 (v|cv) 1
2 , u, v ∈ H(Rd),

ii′) a2 = 1l + bb∗, c2 = 1l + b∗b, ab− bc = 0.

Note that if b is a bounded operator on L2(Rd) then:

(7.21) bf(b∗b) = f(bb∗)b, for any Borel function f.

In fact (7.21) is immediate for f(λ) = (λ− z)−1, z ∈ C\R and extends to all Borel
functions by a standard argument.

Since a, c ≥ 0 by i’), the first two equations of ii’) yield

a = (1l + bb∗)
1
2 , c = (1l + b∗b)

1
2 .

The third equation of ii’) then holds using (7.21). The second condition in i’) is

equivalent to ‖(1l + bb∗)
1
2 b(1l + b∗b)

1
2 ‖ ≤ 1, which holds using again (7.21).

Going back to λ̃ we obtain

(7.22) λ̃ =
1

2

(

(1l + bb∗)
1
2 + 1l b

b∗ (1l + b∗b)
1
2 − 1l

)

.

Let now

a :=
b√
2
((1l + b∗b)

1
2 + 1l)

1
2 .

Using (7.21) we obtain by an easy computation that

1l + a∗a =
1

2
((1l + b∗b)

1
2 + 1l), 1l + aa∗ =

1

2
((1l + bb∗)

1
2 + 1l), b = 2a(1l + a∗a)

1
2 .

Hence λ̃ in (7.22) can be rewritten as:

(7.23) λ̃ =

(

1l + aa∗ a(1l + a∗a)
1
2

(1l + a∗a)
1
2 a∗ a∗a

)

.

By Prop. 7.4 λ satisfies (µsc) iff a∗a, a(1l + a∗a)
1
2 ∈ Ψ−∞, which is equivalent to

a ∈ Ψ−∞. 2

Proposition 7.11. Let λi ∈ Ψ∞(Rd) ⊗M2(C), i = 1, 2, be two-point functions
of pure Hadamard states (for the model Klein-Gordon equation). Then there exists
u ∈ U−∞(H(Rd)⊗ C2, q) s.t.

λ2 = u∗λ1u.



CONSTRUCTION OF HADAMARD STATES 25

Proof. Without loss of generality we can assume that λ̃1 =

(

1l 0
0 0

)

and λ̃2 is

given by (7.23) for a ∈ Ψ−∞. Then

ũ =

(

(1l + aa∗)
1
2 a

a∗ (1l + a∗a)
1
2

)

belongs to U∞(H(Rd)⊗ C
2, q̃) and satisfies ũ∗λ̃1ũ = λ̃1. 2

7.4.1. Canonical Hadamard state. Once having fixed r ∈ M, let us consider the
two-point function

λ(r) :=

(

(r + r∗)−1 (r + r∗)−1r
r∗(r + r∗)−1 r∗(r + r∗)−1r

)

.

An easy computation shows that

λ̃(r) = (T (r)−1)∗λ(r)T (r)−1 =

(

1l 0
0 0

)

.

This is a particular case of Theorem 7.10 with a−∞ = 0 and it follows that λ(r)
is the two-point function of a pure Hadamard state. One can show that it is
distinguished among all two-point functions λ : H(Rd)⊗C2 → H(Rd)⊗C2 of pure
quasi-free states by the property

RanP± ⊂ C±(r),

where P± is defined on H1(Rd)⊕ L2(Rd) by

P± := 1
21l± qη, η = λ− 1

2
q.

We now study the dependence of λ(r) on r ∈ M.

Proposition 7.12. Let:

G := {(g, f) : g−1l, f ∈ Ψ−∞(Rd), g, g∗ : L2(Rd) → L2(Rd) invertible, f = −f∗}.
We equip G with the group structure given by:

Id := (1l, 0),

G2G1 := (g2g1, (g
∗
2)

−1f1g
−1
2 + f2), for Gi = (gi, fi).

Then the following holds:
(1) the map

G ∋ G = (g, f) 7→ uG :=

(

g∗ 0
0 g−1

)(

1l f
0 1l

)

∈ U−∞(H(Rd)⊗ C
2, q)

is a group homomorphism.
(2) G acts transitively on M by

αG(r) := (g∗)−1rg−1 + f, r ∈ M, G = (g, f) ∈ G.
Proof. Statement (1) is an easy computation. Let us prove (2).

We first check that αG preserves M. Let r ∈ M and r̃ = αG(r) for G ∈ G.
Clearly r̃ − r ∈ Ψ−∞ so r̃ − (b∗)(−1) = r − (b∗)(−1) + Ψ−∞ ∈ Ψ−∞. It remains to
check that

(7.24) r̃ + r̃∗ ∼ ǫ−1.

This is obvious if G = (1l, f), since then r̃ = r + f and f∗ = −f .
Assume now that G = (g, 0), so that r̃+r̃∗ = (g∗)−1(r+r∗)g−1, and g−1l ∈ Ψ−∞,

g, g∗ : L2 → L2 invertible. It follows that

(7.25) (r̃ + r̃∗)−1 = g(r + r∗)−1g∗ =
1

2
ǫ+Ψ0.
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Since r ∈ M we have r + r∗ ∼ ǫ−1, hence (r + r∗)−1 ∼ ǫ, by the Kato Heinz
inequality. In particular we have (r + r∗)−1 ≥ c0 > 0. Using then (7.25) we obtain
that:

(r̃ + r̃∗)−1 ≥ c3 > 0,

(r̃ + r̃∗)−1 ≥ 1
2ǫ− c4.

This implies that (r̃+ r̃∗)−1 ≥ cǫ for some c > 0. On the other hand (7.25) directly
implies that (r̃ + r̃∗)−1 ≤ cǫ for some c > 0. Therefore we have (r̃ + r̃∗)−1 ∼ ǫ,
which implies (7.24) by applying Kato-Heinz theorem once again. This completes
the proof that αG preserves M.

It remains to prove that the action is transitive.
let ri ∈ M, i = 1, 2 As we saw above (ri + r∗i )

−1 ∈ Ψ1 and (ri + r∗i )
−1 ∼ ǫ. By

Prop. 4.2 we obtain that (ri + r∗i )
− 1

2 ∈ Ψ
1
2 and by Kato-Heinz theorem we have

(ri + r∗i )
− 1

2 ∼ ǫ
1
2 . In particular (ri + r∗i )

− 1
2 is bijective from H

1
2 (Rd) to L2(Rd). It

follows that

(7.26) (r2 + r∗2)
− 1

2 = g(r1 + r∗1)
− 1

2 = (r1 + r∗1)
− 1

2 g∗,

where g, g∗ are invertible on L2(Rd). Using also that r1 − r2 ∈ Ψ−∞, we obtain
that g − 1l ∈ Ψ−∞. From (7.26) we get:

(7.27) r2 + r∗2 = (g∗)−1(r1 + r∗1)g
−1.

We set now

(7.28) r2 − r∗2 =: (g∗)−1(r1 − r∗1)g
−1 + 2f.

Clearly f∗ = −f , and since g−1l and r1−r2 belong to Ψ−∞, we see that f ∈ Ψ−∞.
From (7.27), (7.28) we obtain that r2 = (g∗)−1r1g

−1 + f = αG(r1), for G = (g, f).
This completes the proof of the proposition. 2

The following theorem explains the dependence of the pure quasi-free state with
two-point function λ(r) on the choice of r ∈ M.

Theorem 7.13. We have

λ(αG(r)) = u∗Gλ(r)uG, ∀ r ∈ M, G ∈ G.

Proof. writing λ(r) as:

λ(r) =

(

1l 0
r∗ 1l

)(

(r + r∗)−1 0
0 0

)(

1l r
0 1l

)

,

we easily obtain that if u =

(

1l f
0 1l

)

, then

u∗λ(r)u = λ(r + f),

and if u =

(

g∗ 0
0 g−1

)

, then

u∗λ(r)u = λ((g∗)−1rg−1).

This completes the proof of the theorem. 2
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7.5. The static case. Let us illustrate our results in the static case, when a(t, x, Dx)
is independent on t. We assume for simplicity that a(x, Dx) ≥ m2 > 0, in order to
avoid infrared problems. We can work in an abstract setting and denote by a > 0

a selfadjoint operator on a (complex) Hilbert space h. We set ǫ := a
1
2 .

The solution of the Cauchy problem:

(7.29)















∂2t φ(t) + aφ(t) = 0,

φ(0) = f0,

i−1∂tφ(0) = f1,

is:

φ(t) = 1
2e

itǫ(f0 + ǫ−1f1) +
1
2e

−itǫ(f0 − ǫ−1f1) =: U(t, 0)f.

Therefore, when h = L2(Rd) and ǫ ∈ Ψ1(Rd) we can choose

b(t) = ǫ, u±(t, s) = e±i(t−s)ǫ, d±(s) =
1

2
1l, r±(s) = ǫ−1.

Remark 7.14. Using the reduction to the model case described in Subsect. 5.2,
one obtains a(t, x, Dx) independent on t if the metric is static and the electric field
vanishes, i.e. ∂iV + ∂tAi ≡ 0, i = 1, . . . , d.

For sake of completeness we list below the essential examples of Hadamard states
in the static case.

• The two-point function of the vacuum state is:

(f |λvacf) =
1

2
(f0 + ǫ−1f1|ǫ(f0 + ǫ−1f1))h.

The matrix elements of λ̃vac are:

λ̃++ = 1l, λ̃−− = λ̃+− = λ̃−+ = 0.

It follows that λvac equals to λ(ǫ−1) with the notation in Subsect. 7.4.1.
Setting

φ+(t) := U(t, 0)P+f = U(t, 0)(qλ)f

we have

φ+(t) =
1
2e

itǫ(f0 + ǫ−1f1).

• Let us consider a special case of Theorem 7.5, namely let λ be such that
the entries of λ̃ are given by

λ̃++ = 1l + a, λ̃+− = λ̃∗−+ = 0, λ̃−− = b,

where a ∈ Ψ∞(Rd) and b ∈ Ψ−∞(Rd) are both assumed to be positive.
The corresponding state is not pure unless a = b = 0. More explicitly, λ is
given by

λ =
1

2

(

ǫ+ ǫ
1
2 (a+ b)ǫ

1
2 1l + ǫ

1
2 (a− b)ǫ−

1
2

1l + ǫ−
1
2 (a− b)ǫ

1
2 ǫ−1 + ǫ−

1
2 (a+ b)ǫ−

1
2

)

Defining φ+(t) as before we get

φ+(t) =
1
2e

itǫ
(

(1l + ǫ−
1
2 aǫ

1
2 )f0 + ǫ−1(1l + ǫ−

1
2 aǫ

1
2 )f1

)

+ 1
2e

−itǫ
(

ǫ−
1
2 bǫ

1
2 f0 − ǫ−

1
2 bǫ−

1
2 f1

)

.

One can show that the thermal state at inverse temperature β is obtained
by taking

a = b =
e−βǫ

1l− e−βǫ
.



28 C. GÉRARD AND M. WROCHNA

8. Hadamard states on general space-times

8.1. Space-times with compact Cauchy surfaces. The results in Sects. 4, 5,
6 and 7 extend verbatim to the case where Rd is replaced by a compact manifold S.
It suffices to replace everywhere E(Rd), H(Rd) and D(Rd) by D(S) and similarly
for their dual spaces. The Weyl pseudo-differential calculus has to be replaced by
the standard calculus on compact manifolds. This case is related to the results in
[J1, JS]

Remark 8.1. In [J1, JS], a different convention is employed for the symplectic
form acting on Cauchy data. This amounts to considering (φ(s), ∂tφ(s)) as Cauchy
data instead of (φ(s), i−1∂tφ(s)). A two-point function λJu in the convention used
in [J1, JS] corresponds in our notation to the two point function λ = vλJuv

∗, where
v is diagonal with entries v++ = 1l and v−− = i1l.

In [JS, Thm. 5.10] it is shown how to construct families of operators J(t) ∈
C∞(R,Ψ1(S)), R(t) ∈ C∞(R,Ψ0(S)), such that

λ =
1

2

(

RJ−1R+ J 1l− iRJ−1

1l + iJ−1R J−1

)

is the two-point function of a pure Hadamard state on R×S. In our approach, this
corresponds to setting

R(t) =
i

2
(b(t)− b∗(t)) , J(t) =

1

2
(b(t) + b∗(t)) ,

where b(t) is as in Theorem 6.3. Using r(t) = b∗(t)(−1) mod C∞(R,Ψ−∞), it is
not difficult to check the microlocal spectrum condition by means of Theorem 7.1.
It is worth pointing out that one of the advantages of basing the construction on
r(t) (as we do) rather than on b(t) is that the former is more closely related to the
operator ǫ(t), cf. Theorem 6.3.

Remark 8.2. Since S is compact we know that Op(a) : Hm(S) → Hp(S) is Hilbert-
Schmidt for any m, p ∈ R and a ∈ Ψ−∞(Rd). By Shale’s theorem it follows that
the CCR representations obtained from two pure Hadamard states as in Thm. 7.10
are unitarily equivalent, since two such states are obtained from one another by a
symplectic transformation in U∞(D(S)⊗ C2, q).

8.2. General space-times. In this section we give a new construction of quasi-free
Hadamard states on an arbitrary globally hyperbolic space-time M .

Before doing so, let us mention that existence of Hadamard states on an arbitrary
globally hyperbolic space-time M has already been proved by Fulling, Narcowich
and Wald using a deformation argument [FNW]. Roughly speaking, one fixes a
Cauchy surface S and defines a deformed space-timeM ′ which overlaps with M on
a suitable neighborhood of S, but possesses an ultra-static region in the causal past
of S. It is not difficult to construct a Hadamard state in that region, for instance
by taking the associated ground state. By the propagation argument of [FSW],
this gives a Hadamard state on M ′, hence in a neighborhood of S, and using the
same propagation argument again one obtains a Hadamard state onM . An obvious
drawback of this construction is that it is not very explicit and the various distinct
states which one can obtain this way are difficult to compare in practice.

In our approach, we reduce the general problem to the special case of space-
times considered by us in Sections 5-6 (or simply to the case of a compact Cauchy
surface). Namely, using a suitable partition of unity, we glue together Hadamard
states on smaller regions of the space-time. Although the procedure does in general
not preserve pureness, local properties of the state are under control.

The steps of the construction are the following:
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We fix a Cauchy surface S, so that we can assume that M = R × S and the
metric g is of the form (5.4).

We choose for an open set Ω in M , and forn ∈ N open, pre-compact sets Un,
Ũn in S, constants 0 < δn such that:

(8.1)

(i) Un ⋐ Ũn,
⋃

n Un = S,

(ii) Ũn are coordinate charts for S,

(iii) y ∈ Ω, J(y) ∩ Un 6= ∅ ⇒ y ∈]− δn, δn[×Ũn =: Ω̃n,

(iv) Ω is a neighborhood of S in M.

In (iii) J(y) denotes the causal shadow of y ∈M . This is clearly possible.
We fix a partition of unity 1 =

∑

n χ
2
n of S, with χn ∈ C∞

0 (Un) for n ∈ N.
Denoting still by χn the map χn ⊗ 1l on C∞

0 (S)⊗ C2, we note that

(8.2) q =
∑

n

χ∗
nqχn.

Fix for each n ∈ N a coordinate map ϕn : Ũn :→ Vn, where Vn is a neighborhood
of 0 in R

d. The symplectic form σ on C∞
0 (Ũn) ⊗ C

2 transported to C∞
0 (Vn)⊗ C

2

will be given by (5.5).

We also transport with ϕn the Klein-Gordon operator P on Ω̃n to an operator
on ] − δn, δn[×Vn ⊂ R × Rd. We can extend this operator to R × Rd so that it
satisfies the conditions in Sect. 5. Let us denote by Pn the Klein-Gordon operator
on R×R

d obtained in this way. We choose for each n ∈ N a two-point function cn
(acting on the space of Cauchy data) of a quasi-free state, which is Hadamard for
Pn. We will have in particular

(8.3) cn ≥ 0, cn ≥ q.

We restrict cn to C∞
0 (Ṽn) ⊗ C

2 and transport it back to C∞
0 (Ũn) ⊗ C

2 by ϕ−1
n ,

denoting it by λn. Finally we set:

λ :=
∑

n∈N

χ∗
nλnχn,

which is well defined as a two-point function on C∞
0 (S)⊗C

2, since the sum is locally
finite.

Since q =
∑

χ∗
nqχn, and cn was the two-point function of a gauge-invariant

quasi-free state, we deduce from (8.3) that λ ≥ 0, λ ≥ q, i.e. λ is the two-point
function of a gauge-invariant quasi-free state.

It remains to check that λ satisfies the Hadamard condition, i.e. that

Λ = (ρ ◦ E)∗λ(ρ ◦ E)

satisfies (µsc). By the well-known propagation of [FSW](see also [SV2]) that is
suffices to check (µsc) in T ∗Ω× T ∗Ω\{0}, since Ω is a neighborhood of S in M by
(8.1). Set:

Λn := (ρ ◦ E)∗χ∗
nλnχn(ρ ◦ E),

so that Λ =
∑

n Λn. It suffices to check that Λn satisfies (µsc) in T ∗Ω× T ∗Ω\{0}.
Using the support properties of E and condition (8.1) (iii), we obtain that the

restriction to Ω × Ω of the distribution kernel of Λn is supported in Ω̃n × Ω̃n.
Therefore, up to diffeomorphisms, Λn is equal to

Cn := (ρ ◦ En)∗χ∗
nλnχn(ρ ◦ En)

on Ω̃n × Ω̃n, where En is the propagator associated to Pn. Using the invariance of
the wavefront set under diffeomorphisms, it follows that Λn satisfies the microlocal
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spectrum condition. Therefore Λ is the two-point function of a gauge-invariant
quasi-free Hadamard state.

Appendix A. Various proofs

A.1. Proof of Lemma 4.7. Set u(t, s) := Texp(
´ t

s iǫ(σ)dσ). We claim that it
suffices to prove that

(A.4) u(t, s)s−∞(t, s) ∈ Ψ−∞(Rd), ∀ (t, s) ∈ R
2.

In fact we have

∂su(t, s)s−∞(t, s) = u(t, s) (−iǫ(s)s−∞(t, s) + ∂ss−∞(t, s)) ,

∂tu(t, s)s−∞(t, s) = u(t, s) (iu(s, t)ǫ(t)u(t, s)s−∞(t, s) + ∂ts−∞(t, s)) .

We note that −iǫ(s)s−∞(t, s) + ∂ss−∞(t, s) ∈ Ψ−∞(Rd), and by Prop. 4.5 (2)
iu(s, t)ǫ(t)u(t, s)s−∞(t, s) + ∂ts−∞(t, s) ∈ Ψ−∞(Rd). We can argue similarly to
control higher derivatives in (t, s).

We first claim that

(A.5) 〈Dx〉mu(t, s)〈Dx〉−m ∈ B(L2(Rd)), m ∈ R.

In fact by Prop. 4.5 we know that u(s, t)〈Dx〉mu(t, s) ∈ Ψm(Rd) and is moreover
elliptic in this class, which proves (A.5).

To prove (A.4) we will use the Beals criterion recalled in the proof of Prop. 4.2,
and show that

(A.6) 〈Dx〉madαxad
β
Dx

(u(t, s)s−∞(t, s)) ∈ B(L2(Rd)), ∀ α, β ∈ N
d, m ∈ N.

We note that for i = 1, . . . , d:

[Di, u(t, s)s−∞] = u(t, s)(u(s, t)Diu(t, s)−Di)s−∞ + u(t, s)[Di, s−∞],

[xi, u(t, s)s−∞] = u(t, s)(u(s, t)xiu(t, s)− xi)s−∞ + u(t, s)[xi, s−∞].

By Prop. 4.5 we know that u(s, t)Diu(t, s)−Di ∈ Ψ1(Rd). On the other hand we
have:

u(s, t)xiu(t, s)− xi = i
´ t

s
u(s, σ)[ǫ(σ), xi]u(σ, s)dσ

=
´ t

s u(s, σ)ai(σ)u(σ, s)dσ,

where ai(σ) ∈ C∞(R,Ψ0(Rd)). Therefore we obtain that

adDi
u(t, s)s−∞ = u(t, s)s−∞,i,

adxi
u(t, s)s−∞ = u(t, s)r−∞,i,

s−∞,i, r−∞,i ∈ Ψ−∞(Rd).

Using also (A.5), this implies (A.6) by induction. 2

A.2. Proof of Lemma 6.2. Set a(t) = a(t, x, Dx). Since a(t) is a second order
differential operator,we have

(A.7) a(t) = a2(t) + a1(t), ai(t) ∈ C∞(R,Ψiph), ai(t) = ai(t)
∗, i = 1, 2

and a2(t) =
∑

ij Dia
ij(t, x)Dj . From (5.2) we obtain that a2(t) ≥ c(t)D2. There-

fore we can find r−∞,1(t) = r−∞,1(t,Dx) ∈ C∞(R,Ψ−∞) such that

(A.8) a2(t)− r−∞,1(t) ≥ c(t)(D2 + 1l).

The operator a2(t) − r−∞,1(t) is elliptic in C∞(R,Ψ2
ph) and strictly positive. By

Prop. 4.2, ǫ1(t) := (a2(t) − r−∞,1(t))
1
2 ∈ C∞(R,Ψ1

ph), and ǫ1(t) is elliptic in Ψ1
ph

with principal symbol (kia
ij(t, x)kj)

1
2 . From (A.7) we get

(A.9) a(t)− r−∞,1(t) = ǫ21(t) + a1(t) = ǫ1(t)(1l + s−1(t))ǫ1(t),
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for s−1(t) = ǫ1(t)
−1a1(t)ǫ−1(t) ∈ C∞(R,Ψ1

ph). We fix a cutoff function χ ∈ C∞(R)

with χ(s) ≡ 1 for |s| ≥ 2, χ(s) ≡ 0 for |s| ≤ 1. Then

χ(R−1|Dx|)s−1(t)χ(R
−1|Dx|) ∈ C∞(R,Ψ1

ph),

s−1(t)− χ(R−1|Dx|)s−1(t)χ(R
−1|Dx|) ∈ C∞(R,Ψ−∞),

limR→∞ χ(R−1|Dx|)s−1(t)χ(R
−1|Dx|) = 0 in B(L2(Rd)),

where we used (4.13) in the last statement. This implies that we can find R =
R(t) ≫ 1 such that:

χ(R|Dx|)s−1(t)χ(R|Dx|) =: s̃−1(t) ∈ C∞(R,Ψ−1
ph ),

s−1(t)− s̃−1(t) =: s̃−∞(t) ∈ C∞(R,Ψ−∞),

1l + s̃−1(t) ≥ (1− δ)1l, 0 < δ < 1.

It follows that

a(t)− r−∞,1(t)− ǫ1(t)s̃−∞(t)ǫ1(t) = ǫ1(t)(1l + s̃−1(t))ǫ1(t) =: ã(t),

where ã(t) ∈ C∞(R,Ψ2
ph), ã(t) is elliptic in Ψ2 with principal symbol kia

ij(t, x)kj
and strictly positive. We set

rw−∞(t, x, Dx) := r−∞,1(t)− ǫ1(t)s̃−∞(t)ǫ1(t) ∈ C∞(R,Ψ−∞),

ǫw(t, x, Dx) := (ã(t))
1
2 ∈ C∞(R,Ψ1

ph)

Again by Prop. 4.2 ǫw(t, x, Dx) has principal symbol (kia
ij(t, x)kj)

1
2 . This com-

pletes the construction of ǫ(t) and r−∞(t). The uniqueness modulo Ψ−∞ follows

from the fact that ǫw(t, x, Dx) = a(t, x, Dx)
1
2 , hence the asymptotic expansion of

its symbol is unique. 2

A.3. Proof of Thm. 6.3. We start by proving an auxiliary lemma.

Lemma A.1. Let F : C∞(R,Ψ∞(Rd)) → C∞(R,Ψ∞(Rd)) a map such that:

(A.10) F : C∞(R,Ψ0
(ph)(R

d)) → C∞(R,Ψ−1
(ph)(R

d)),

(A.11)

b1 − b2 ∈ C∞(R,Ψ−j
(ph)(R

d)) ⇒ F (b1)− F (b2) ∈ C∞(R,Ψ−j−1
(ph) (Rd)), ∀ j ∈ N.

Let also a ∈ C∞(R,Ψ0
(ph)(R

d)). Then there exists a solution b ∈ C∞(R,Ψ0
(ph)(R

d)),

unique modulo C∞(R,Ψ−∞(Rd)) of the equation:

(A.12) b = a+ F (b) mod C∞(R,Ψ−∞(Rd)).

Proof. We first prove existence. Set b0 = a, bn = a + F (bn−1), n ≥ 1. Using
(A.11) we easily obtain by induction on n that:

(A.13) bn − bn−1 ∈ C∞(R,Ψ−n), n ≥ 1.

It follows that we can find b ∈ C∞(R,Ψ0) such that b − bn ∈ C∞(R,Ψ−n),
∀ n ∈ N. In fact it suffices to choose

b ∼
∞
∑

n=0

(bn − bn−1).

Then
b− a− F (b) = b− bn + F (bn−1)− F (b) ∈ C∞(R,Ψ−n),

using (A.11) and the fact that b− bn ∈ C∞(R,Ψ−n), b− bn−1 ∈ C∞(R,Ψ−n+1).

Let us now prove uniqueness. If b, b̃ solve (A.12), then

b− b̃ = F (b)− F (b̃) mod C∞(R,Ψ−∞),
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hence b − b̃ ∈ C∞(R,Ψ−1). By induction using (A.11), we obtain that b − b̃ ∈
C∞(R,Ψ−n), ∀ n ∈ N. The poly-homogeneous case is treated similarly. 2

We now prove Thm. 6.3. The proof is divided in several steps.
Step 1: we first determine the operator b(t), modulo C∞(R,Ψ−∞). Set u(t, s) =

Texp(i
´ t

s
b(σ)dσ), for b(t) ∈ C∞(R,Ψ1), b(t) elliptic in Ψ1 and b(t) − b∗(t) ∈ Ψ0.

We have:

∂tu(t, s) = ib(t)u(t, s), ∂2t u(t, s) = −b2(t)u(t, s) + i∂tb(t)u(t, s).

By Lemma 6.2 we have

(∂2t + a(t))u(t, s) = (ǫ2(t)− b2(t) + i∂tb(t) + r−∞(t))u(t, s),

with r−∞(t) ∈ C∞(R,Ψ−∞).
Let us try to solve the equation

(A.14) b2 − ǫ2 = i∂tb mod C∞(R,Ψ−∞).

We look for a solution of (A.14) of the form:

b = ǫ+ b0, b0 ∈ C∞(R,Ψ0).

Since
b2 − ǫ2 = (ǫb0 + b0ǫ) + b20 = (2ǫb0 + [b0, ǫ]) + b20,

we obtain that (A.14) is equivalent to

(A.15)
b0 = (2ǫ)−1i∂tǫ+ (2ǫ)−1

(

[ǫ, b0] + i∂tb0 − b20
)

mod C∞(R,Ψ−∞)

=: (2ǫ)−1i∂tǫ+ F (b0) mod C∞(R,Ψ−∞).

To solve (A.15) we apply Lemma A.1. Clearly (2ǫ)−1i∂tǫ ∈ C∞(R,Ψ0) and F maps
C∞(R,Ψ0) into C∞(R,Ψ−1). Since

F (b1)− F (b2)

= (2ǫ)−1
(

[ǫ, b1 − b2] + i∂t(b1 − b2)− (b21 − b22)
)

= (2ǫ)−1 ([ǫ, b1 − b2] + i∂t(b1 − b2)− (b1 − b2)b1 − b2(b1 − b2)) ,

we see that hypothesis (A.11) also holds. Therefore we can find a solution to (A.14)
with:

(A.16) b(t) = ǫ(t) + (2ǫ)−1i∂tǫ mod C∞(R,Ψ−1).

This proves condition (i) of the theorem.
Note also that if b a solution of (A.14), then −b∗ also solves (A.14), since ǫ = ǫ∗.

Therefore if

b+(t) = b(t), b−(t) = −b∗(t), and u±(t, s) = Texp(i

ˆ t

s

b±(σ)dσ),

we have

(∂2t + a(t, x, Dx))u±(t, s) = r−∞,±(t)u±(t, s), r−∞,±(t) ∈ C∞(R,Ψ−∞).

Step 2:
we now solve, modulo smoothing errors, the Cauchy problem (5.3). For f ∈

H′(Rd)⊗ C2, we look for approximate solutions of (5.3) of the form:

(A.17) u+(t, s) (d+(s)f0 + n+(s)f1) + u−(t, s) (d−(s)f0 + n−(s)f1) .

We obtain the conditions:

(A.18)















d+(s) + d−(s) = 1l,
b+(s)d+(s) + b−(s)d−(s) = 0,
n+(s) + n−(s) = 0,
b+(s)n+(s) + b−(s)n−(s) = 1l.
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We deduce from (A.16) that b± are elliptic in Ψ1, b± = ±ǫ + Ψ0 and b
(−1)
± b∓ =

−1l + Ψ−1. Therefore the solutions of (A.18) mod Ψ−∞ are given by:

(A.19)



























d+(s) = (1l− b−(s)
(−1)b+(s))

(−1),

d−(s) = (1l− b+(s)
(−1)b−(s))

(−1),

n+(s) = (b+(s)− b−(s))
(−1),

n−(s) = −n+(s).

Note that it follows from (A.19) that:

(A.20) d+(s)
(−1)n+(s) = b−(s)

(−1), −d−(s)(−1)n−(s) = b+(s)
(−1) mod Ψ−∞.

Therefore we can rewrite (A.17) as

(A.21) U(t, s)f := u+(t, s)d+(s) (f0 + r+(s)f1) + u−(t, s)d−(s) (f0 − r−(s)f1) ,

for

(A.22) r+(s) = −b−(s)(−1), r−(s) = b+(s)
(−1) mod Ψ−∞.

Since b+(s) = b(s), b−(s) = −b∗(s) if we choose:

(A.23) r(s) = b∗(s)(−1) mod Ψ−∞,

and fix
r+(s) := r(s), r−(t) := r∗(s),

then (A.22) is satisfied. We now check that we can find r(s) satisfying (A.23) such
that conditions (iii) and (iv) in the theorem are satisfied.

Let us denote b(s), r(s), ǫ(s) simply by b, r, ǫ. Since b = ǫ + Ψ0 we have

r = ǫ−1+Ψ−2, hence (iii) is satisfied. Moreover since ǫ−
1
2 ∈ Ψ− 1

2 by Prop. 4.2, we
have

r + r∗ = 2ǫ−1 +Ψ−2 = ǫ−
1
2 (21l + sw−1(x, Dx))ǫ

− 1
2 ,

where s−1(x, k) ∈ S−1
ph (R

2d). We write

s−1(x, k) = s−1(x, k)χ(R
−1|k| ≥ 1) + s−1(x, k)χ(R

−1|k| ≤ 1)

=: s−1,R(x, k) + s−∞,R(x, k).

Note that s−∞,R ∈ S−∞(R2d) and s−1,R tends to 0 in S0(R2d) when R → +∞. By
(4.13) it follows that 21l+sw−1,R(x, Dx) ∼ 1l for R large enough. Therefore replacing
r by

r̃ = r − 1

2
ǫ−

1
2 sw−∞,R(x, Dx)ǫ

− 1
2 = r +Ψ−∞,

we can ensure (iv), keeping (A.23) satisfied.
Collecting what we have done so far we have:


























(∂2t + a(t, x, Dx))U(t, s)f = r−∞,+(t)u+(t, s)d+(s)(f0 + r+(s)f1)

+ r−∞,−(t)u−(t, s)d−(s)(f0 − r−(s)f1),

U(s, s)f = f0 + t−∞,0(s)f,

i−1∂tU(s, s)f = f1 + t−∞,1(s)f,

where r−∞,± and t−∞,i belong to C∞(R,Ψ−∞). Applying also Lemma 4.7 to the
operators r−∞,±(t)u±(t, s), we obtain statement (1) of the theorem.

Finally φ̃(t) = U(t, s)f solves














∂2t φ̃(t) + a(t, x, Dx)φ̃(t) ∈ C∞(R,H(Rd)),

φ(s) − f0 ∈ H(Rd),

i−1∂tφ(s)− f1 ∈ H(Rd).
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By the uniqueness of the Cauchy problem (5.3) we obtain that φ(t) − φ̃(t) ∈
C∞(R,H(Rd)), which proves (2).

This completes the proof of the theorem. 2
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Département de Mathématiques, Université de Paris XI, 91405 Orsay Cedex France
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