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Abstract

In this paper, we consider the implementation of a thermal flow solver based on the lattice Boltzmann
method (LBM) for graphics processing units (GPU). We first describe the hybrid thermal LBM model
implemented, and give a concise review of the CUDA technology. The specific issues that arise with LBM
on GPUs are outlined. We propose an approach for efficient handling of the thermal part. Performance is
close to optimum and is significantly better than the one of comparable CPU solvers. We validate our code
by simulating the differentially heated cubic cavity (DHC). The computed results for steady flow patterns are
in good agreement with previously published ones. Finally, we use our solver to study the phenomenology
of transitional flows in the DHC.
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1. Introduction

Originating from the lattice gas automata theory [7], the lattice Boltzmann method (LBM) was first
introduced by McNamara and Zanetti in 1988 [14] and developed later on by Qian et al. [20]. It has
since proved to be an interesting alternative to the solving of the Navier-Stokes equations. Besides other
advantages over traditional methods in computational fluid dynamics, the LBM happens to be intrinsically
parallel, thus easing high performance implementations.

Graphics processing units (GPU) have nowadays outrun CPUs in terms of raw computational power.
Their use in general-purpose computations [24], and more specifically in CFD [5], is promising. Successful
attempts were made to implement LBM solvers on the GPU [6]. Nevertheless, the wide range of potential
applications of the LBM on the GPU remains mostly unexplored, especially for problems involving heat and
fluid flows.

The Compute Unified Device Architecture (CUDA), first released by nVidia in 2007, is today’s leading
technology for general-purpose computation on graphics processing units (GPGPU). The CUDA technology
is based on general hardware specifications and a specific programming model, which allows to state generic
optimization principles.

In this contribution, we shall present our CUDA implementation of a thermal flow solver. This program
is an extended and improved version of the isothermal solver decribed in [17]. It is part of the TheLMA
project [19] which aims at providing a comprehensive framework for implementing LBM solvers on GPUs
and other emerging many-core architectures.
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2. Hybrid thermal lattice Boltzmann model

In contrast to isothermal simulations, solving thermal fluid flows using the LBM is still a pioneering field.
Up to now, adding energy-conservation constraint to the isothermal lattice Boltzmann equation seems to be
a more effective method than the double-population approch. We chose to use a hybrid scheme belonging to
this category. More specifically, the flow simulation is accomplished by using a D3Q19 multiple-relaxation-
time (MRT) model [4], while the heat equation is solved by using a finite-difference scheme. This model is
a simplified version of the one described in [11], where the heat capacity ratio γ = CP /CV is set to γ = 1,
since we were not interested in acoustic effects.

The LBM can be seen as a threefold discretization of the Boltzmann equation, involving time, space and
velocities. The discrete velocities {ξi | i = 0, . . .N} where ξ0 = 0, are chosen such as to link each lattice
site to some of its neighbors. Figure 1 shows the D3Q19 stencil, where each node is connected to 18 of its
nearest neighbors.
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Figure 1: D3Q19 stencil

The equivalent of the single-particle distribution function in the Boltzmann equation is a discrete set of
velocity distribution functions {fi | i = 0, . . .N}. Let us denote:

∣

∣fi(x, t)
〉

= (f0(x, t), . . . fN (x, t))
T

for given lattice node x and time t, T being the transpose operator. The lattice Boltzmann equation (LBE),
i.e. the discretized version of the Boltzmann equation, thus writes:

∣

∣fi(x+ δtξi, t+ δt)
〉

−
∣

∣fi(x, t)
〉

= Ω
(∣

∣fi(x, t)
〉)

(1)

where Ω is the collision operator. This equation naturally breaks into the elementary steps of the LBM: the
right-hand side describing collision, the left-hand side describing propagation.

In the MRT approach, the velocity distribution is mapped to a set of moments {mi | i = 0, . . . N} by an
orthogonal matrix M:

∣

∣fi(x, t)
〉

= M
−1
∣

∣mi(x, t)
〉

(2)

where
∣

∣mi(x, t)
〉

is the moment vector. Matrix M for the D3Q19 stencil is given in table 1.
The corresponding moment vector is:

∣

∣mi(x, t)
〉

= (ρ, e, ε, jx, qx, jy, qy, jz, qz, 3pxx, 3πxx, pww, πww, pxy, pyz, pzx,mx,my,mz)
T
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1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
−30 −11 −11 −11 −11 −11 −11 8 8 8 8 8 8 8 8 8 8 8 8
12 −4 −4 −4 −4 −4 −4 1 1 1 1 1 1 1 1 1 1 1 1
0 1 −1 0 0 0 0 1 −1 1 −1 1 −1 1 −1 0 0 0 0
0 −4 4 0 0 0 0 1 −1 1 −1 1 −1 1 −1 0 0 0 0
0 0 0 1 −1 0 0 1 1 −1 −1 0 0 0 0 1 −1 1 −1
0 0 0 −4 4 0 0 1 1 −1 −1 0 0 0 0 1 −1 1 −1
0 0 0 0 0 1 −1 0 0 0 0 1 1 −1 −1 1 1 −1 −1
0 0 0 0 0 −4 4 0 0 0 0 1 1 −1 −1 1 1 −1 −1
0 2 2 −1 −1 −1 −1 1 1 1 1 1 1 1 1 −2 −2 −2 −2
0 −4 −4 2 2 2 2 1 1 1 1 1 1 1 1 −2 −2 −2 −2
0 0 0 1 1 −1 −1 1 1 1 1 −1 −1 −1 −1 0 0 0 0
0 0 0 −2 −2 2 2 1 1 1 1 −1 −1 −1 −1 0 0 0 0
0 0 0 0 0 0 0 1 −1 −1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 −1 1
0 0 0 0 0 0 0 0 0 0 0 1 −1 −1 1 0 0 0 0
0 0 0 0 0 0 0 1 −1 1 −1 −1 1 −1 1 0 0 0 0
0 0 0 0 0 0 0 −1 −1 1 1 0 0 0 0 1 −1 1 −1
0 0 0 0 0 0 0 0 0 0 0 1 1 −1 −1 −1 −1 1 1





































































Table 1: Velocity space to moment space mapping

where ρ is the mass density, e is energy, ε is energy square, j = (jx, jy, jz) is the momentum, q = (qx, qy, qz)
is the heat flux, pxx, pxy, pyz, pzx are components of the stress tensor and pww = pyy − pzz, πxx, πww are
third order moments, mx, my, mz are fourth order moments. The mass density and the momentum are the
conserved moments.

The LBE becomes:

∣

∣fi(x+ δtξi, t+ δt)
〉

−
∣

∣fi(x, t)
〉

= −M
−1

S

[

∣

∣mi(x, t)
〉

−
∣

∣m
(eq)
i (x, t)

〉

]

(3)

where S is a diagonal collision matrix and the m
(eq)
i are the equilibrium values of the moments. For the sake

of isotropy, S is given by:

S = diag(0, s1, s2, 0, s4, 0, s4, 0, s4, s9, s10, s9, s10, s13, s13, s13, s16, s16, s16) (4)

We additionally set s9 = s13 and the lattice speed of sound cs = 1/
√

3. With T denoting the temperature,
the equilibrium quantities of the non-conserved moments are given by:

e(eq) = −11ρ+ 19j2 + T (5)

ε(eq) = 3ρ (6)

q(eq) = − 2
3j (7)

3p(eq)
xx = 3j2x − j2 (8)

p(eq)
ww = j2y − j2z (9)

p(eq)
xy = jxjy (10)

p(eq)
yz = jyjz (11)

p(eq)
zx = jzjx (12)

3π(eq)
xx = π(eq)

ww = 0 (13)

m(eq)
x = m(eq)

y = m(eq)
z = 0 (14)
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Since we have γ = 1, unlike [11], we chose to use T instead of 57T in eq. 5, which improves numerical
stability. The kinematic viscosity ν and the bulk viscosity ζ of the model are:

ν =
1

3

(

1

s9
− 1

2

)

ζ =
2

9

(

1

s1
− 1

2

)

(15)

The temperature T evolves according to the following finite-difference equation:

T (x, t+ δt)− T (x, t) = κ∆∗T − j · ∇∗T (16)

where κ denotes the thermal diffusivity, and the finite-difference operators are given by:

∂∗x f(i, j, k) = f(i+ 1, j, k)− f(i− 1, j, k)

−1

8

(

f(i+ 1, j + 1, k)− f(i− 1, j + 1, k) + f(i+ 1, j − 1, k)− f(i− 1, j − 1, k)

+f(i+ 1, j, k + 1)− f(i− 1, j, k + 1) + f(i+ 1, j, k − 1)− f(i− 1, j, k − 1)
)

(17)

∆∗ f(i, j, k) = 2
(

f(i+ 1, j, k) + f(i− 1, j, k) + f(i, j + 1, k)

+ f(i, j − 1, k) + f(i, j, k + 1) + f(i, j, k − 1)
)

−1

4

(

f(i+ 1, j + 1, k) + f(i− 1, j + 1, k) + f(i+ 1, j − 1, k)

+ f(i− 1, j − 1, k) + f(i, j + 1, k + 1) + f(i, j − 1, k + 1)

+ f(i, j + 1, k − 1) + f(i, j − 1, k − 1) + f(i+ 1, j, k + 1)

+ f(i− 1, j, k + 1) + f(i+ 1, j, k − 1) + f(i− 1, j, k − 1)
)

− 9f(i, j, k)

(18)

It should be noted that these finite difference operators share the same symmetries as the D3Q19 stencil.

3. Review of the CUDA technology

In this section, we shall at first give a brief review of the CUDA programming model [16]. Then, we
shall describe the CUDA hardware in general and the GT200 GPU we used for our computations. Last, we
shall discuss the induced constraints which should be taken into account to achieve optimal efficiency.

3.1. CUDA programming model

The CUDA programming model is implemented in the CUDA C language which is an extension to
C/C++. Functions in a CUDA C program belong to one of the three following categories:

1. Host code, i.e. functions run by the CPU.

2. Kernels, i.e. functions launched by host code and run by the GPU.

3. Device functions, i.e. functions run by the GPU and called by kernels or other device functions.1

A kernel is run in parallel on the GPU. The execution pattern is given at launch time by specifying a grid.
Threads are grouped in identical arrays called blocks, which in turn are assembled to form the execution
grid as shown in fig. 2. Blocks may have up to three dimensions, a grid is one- or two-dimensional. The x,
y, and z fields of the predefined blockIdx and threadIdx structures identify each individual thread within
the execution grid.2

1Due to hardware limitations, device functions are in general inlined at compile time.
2When a dimension is not in use, the corresponding field is always 1.
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Figure 2: CUDA execution model

Variables local to a kernel are specific to each thread unless declared as shared, in which case they are
accessible by all threads within a block. No mutual exclusion mechanism is available for shared variables.
It is up to the programmer to manage this aspect using block-wise synchronization primitives.

Kernels may also access to global memory space, which is visible to each thread of the execution grid.
Again, no protection mechanism is available. Nonetheless, global memory is persistent across kernel execu-
tion, hence a common way to ensure global synchronization is to perform multiple kernel launches. Global
memory, being accessible to host code, is also the usual communication path between CPU and GPU.

Last, it is worth mentioning that threads may also access read-only to constant and texture memory.
Constant memory is a convenient way to store parameters that will stay unchanged all along runtime.3

3.2. CUDA hardware

A CUDA capable GPU consists in a set of streaming multiprocessors (SMs). Each of these SMs contains
several scalar processors (SPs), registers, shared memory, and caches for constants and textures, as shown
in fig. 3. Furthermore, the GPU is linked to off-chip device memory.

Since being specific to each SM, registers and shared memory are fast, though in rather limited amount.
Device memory, in comparison, has limited throughput, suffers from high latency, but is also considerably
larger. Table 2 summarizes the technical specifications of the GT200 processor we used for our computations.

Number of SMs 30

Number of SPs per SM 8

Registers per SM 16 384

Shared memory per SM 16 KB

Constant cache per SM 8 KB

Texture cache per SM 8 KB

Device memory up to 4 GB

Table 2: Technical specifications of the GT200

The recently released Fermi architecture provides in addition L1 and L2 caches for global memory. The
L1 cache is local to each SM and has configurable size: either 16 KB with 48 KB shared memory or 48 KB
with 16 KB shared memory.

3Since textures are mostly relevant in graphics processing, and is of no use in our case, we shall not discuss this feature any
further.

5



Streaming Multiprocessor 2

Streaming Multiprocessor 1

SP SP SP SP

SP SP SP SP

Registers Shared Memory

Constant Cache Texture Cache

b

b

b

Device
Memory

Figure 3: CUDA hardware

Variables local to a kernel are stored in registers except for arrays, since registers are not addressable.
Local arrays are stored in the so-called local memory, which in fact is hosted in device memory, besides
global, constant, and texture memory. Local memory is also used to spill registers if needed.

3.3. Optimization guidelines

A block of the execution grid can only be processed by a single SM. Yet, a SM may handle several blocks
concurrently. This leads to several constraints regarding the layout of the grid which are summarized in
table 3. To take advantage of the massively parallel architecture of the GPU, the number of concurrently
active threads should be as large as possible. It is up to the programmer to define a grid achieving this
goal, while avoiding register spilling. Nevertheless, the occupancy rate, i.e. the ratio of the number of active
threads to the maximum, is usually not a reliable performance indicator. With data intensive applications,
for instance, the limiting factor is more likely to be the global memory maximum throughput. Nonetheless,
a minimal occupancy rate is required to hide global memory latency.4

Max. number of blocks per SM 8

Max. number of threads per SM 1 024

Max. number of threads per block 512

Maximal block dimensions 512× 512× 64

Maximal grid dimensions 65 535× 65 535

Table 3: Grid layout constraints for compute capability 1.3

When run on a SM, a block of threads is sliced into warps of 32 threads.5 To achieve actual parallelism, all
threads in a warp must follow the same instruction path. When branching divergence occurs, the execution
of the branch paths are serialized, which may dramatically impact performance. Whenever possible, branch
granularity should be a multiple of the warp size.

4According to nVidia, at least 192 active threads per SM are required to completely hide global memory latency.
5The warp size is 32 since the first generation of CUDA capable GPUs. Nevertheless, this value is implementation dependent

and might change in the future.
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Shared memory is arranged in 32 bits wide memory banks. For the GT200, there are sixteen memory
banks.6 Shared memory transactions are issued by half-warps. Threads in a half-warp accessing to different
memory locations lying in the same bank cause a bank conflict, which is resolved by serializing the transac-
tions. Yet, shared memory may be as fast as registers, provided care is taken to avoid bank conflicts. The
primary purpose of shared memory is to enable block-wise communication. Nonetheless, shared memory
is also convenient to prefetch data from global memory, store small local arrays, or avoid register short-
age. Such uses contribute to curtail transactions to device memory, therefore may have a major impact on
performance.

For data-intensive applications, since global memory is not cached on the GT200, using a well designed
memory access pattern is of crucial importance. As for shared memory, global memory transactions are
issued by half-warp. These memory accesses may be coalesced into one single transaction of 32, 64, or
128 bytes, provided the address of the corresponding segment is aligned to its size. When the alignment
condition is not met, several transactions are issued. As of compute capability 1.2, the hardware is able to
reduce the transaction size if possible. For instance, when the threads of a half-warp read consecutive 32-bit
words, it yields a single 64 bytes transaction in case of alignment, two 32 bytes transactions for a 32 bytes
offset, a 32 bytes and a 64 bytes transaction otherwise.

4. Implementation

4.1. Algorithmic aspect

As described in section 2, for a given time and lattice node, the LBM breaks up in two elementary steps,
namely collision and propagation. The lattice Boltzmann equation as formulated in eq. 3 can therefore be
split in:

∣

∣f̃i(x, t)
〉

= M
−1
(

∣

∣mi(x, t)
〉

− S

[

∣

∣mi(x, t)
〉

−
∣

∣m
(eq)
i (x, t)

〉

])

(19)

∣

∣fi(x+ δtξi, t+ δt)
〉

=
∣

∣f̃i(x, t)
〉

(20)

where eq. 19 describes the collision step and eq. 20 the propagation step. Thus, the hybrid thermal LBM
outlined in section 2 corresponds to the following pseudo-code:

1. for each time step t do

2. for each lattice node x do

3. read velocity distribution fi(x, t)

4. read neighboring temperatures T (x+ δtξi, t)

5. if node x is on boundaries then

6. apply boundary conditions

7. end if

8. compute moments mi(x, t)

9. compute equilibrium values m
(eq)
i (x, t)

10. compute updated distribution f̃i(x, t)

11. propagate to neighboring nodes x+ δtξi

12. compute and store new temperature T (x, t+ δt)

13. end for

14. end for

6As for the warp size, the number of shared memory banks is implementation dependent.
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4.2. GPU implementation of the LBM

To take advantage of the massive parallelism of the GPU, CUDA implementations of the LBM usually
assign a thread to each lattice node [9, 22]. The layout of the execution grid needs therefore to reflect the
geometry of the lattice. Global synchronization is achieved by launching a kernel at each time step.

The velocity distribution functions may be stored in either an array of structures (AoS) or a structure
of arrays (SoA). The AoS approach happens to be optimal for sequential CPU implementations since it
improves data locality, and thus ensures efficient use of the caches. Conversely, for GPU implementations,
threads within a warp should access to consecutive global memory locations in order to enable coalesced
memory transactions. Therefore, a SoA data layout (or an equivalent multi-dimensional array) is mandatory
to achieve efficiency.

To meet alignment constraints, the least significant dimension of the array should be a multiple of the
size of a half-warp. Nonetheless, this does not suffice to avoid misalignments, since propagation leads to
one unit shifts for the minor dimension. To face this issue, an effective way is to use shared memory to
perform propagation along the minor dimension. Yet, the scope of shared memory being limited to the
current block, special care has to be taken of distribution values crossing the block boundaries. As described
in [21], outgoing values may temporarily be stored in locations left vacant by incoming values. For large
lattices, this approach requires therefore a second kernel to rearrange data.

As stated in [18], misaligned read accesses are far less expensive than misaligned write accesses. Hence,
an alternative way to handle misalignment consists in replacing the usual out-of-place propagation by in-
place propagation at the next time step. Figures 4 and 5 outline the two propagation schemes (in the
two-dimensional case, for the sake of simplicity). It was shown in [17] that the cost of misaligned reads is of
the same order of magnitude than the overhead of a rearrange kernel.

Figure 4: Out-of-place propagation scheme

Figure 5: In-place propagation scheme

It should be noted that the in-place propagation approach is simpler and exerts less pressure on hardware
than the shared memory approach. Yet, the later has only been used for isothermal LBM implementations
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and leaves few room for possible model enhancement. As a matter of fact, using this approach to implement
on the GT200 the thermal model we chose would lead to shared memory shortage for blocks greater than
192, since ten floating point numbers per node for particle distribution and nine floating point numbers
per node for temperature are required. Handling larger cavities would require the use of a rearrange kernel
which has a significant impact on performance.

4.3. Proposed implementation

Our implementation is based on the isothermal flow solver described in [17]. The lattice is a rectangular
cuboid of dimensions Nx ×Ny ×Nz. We use one-dimensional blocks of size Nx and a two-dimensional grid
of dimensions Ny × Nz. For better performance, Nx should be a multiple of the warp size. Additionally,
when the three lattice dimensions are different, Nx should be chosen such as to maximize the occupancy
rate. Though simple, such a tilling proves to be convenient, since it ensures coalescing of global memory
transactions, sufficient occupancy rate and straightforward retrieving of the node coordinates.

To store the velocity distribution functions, we used a multi-dimensional array. The velocity index may
correspond to any of the dimensions but the minor one, in order to preserve coalescence. According to [1, 24],
the SMs contain translation look-aside buffers (TLB) for global memory. Using the least significant dimension
possible to span the velocity distribution reduces the occurrences of TLB misses. We experimented a 13%
performance improvement over the major dimension version which is used in [17].

The main concern when implementing a finite-difference solver for the GPU is to curtail global memory
read redundancy [15]. For a given block, the required temperatures form aNx×3×3 cuboid. Our approach is
to fetch these temperatures in shared memory. To perform aligned and coalesced global memory transactions,
the threads read the temperatures of nodes sharing the same abscissa. More precisely, thread of index i
within block (j, k) reads the temperatures at nodes:

(i, j, k), (i, j + 1, k), (i, j − 1, k), (i, j, k + 1), (i, j, k − 1),

(i, j + 1, k + 1), (i, j + 1, k − 1), (i, j − 1, k + 1), (i, j − 1, k − 1).

Figure 6 outlines the read access pattern we propose for temperature (in two dimensions, for the sake of
simplicity). It should be noted that, using this approach, no read redundancy occurs at block level.

Figure 6: Read access pattern for temperature

4.4. Performance

To evaluate performance, we carried out computations in single precision for a cubic cavity using a Tesla
C1060 computing device. As usual for GPU implementations of the LBM, the limiting factor appears to

9



be the global memory maximum throughput. For the Tesla C1060, the maximum sustained throughput,
provided by the CUDA bandwidthTest program, is about 73.3 GB/s. Table 4 gives the obtained performance
in million lattice node updates per second (MLUPS) for increasing values of N , as well as the corresponding
data throughput and the ratio to the maximum throughput.7

Size of the cavity 963 1283 1603 1923 2243 2563

Performance (MLUPS) 319 247 305 335 309 301

Data throughput (GB/s) 61.2 47.4 58.6 64.3 59.3 57.8

Ratio to max. throughput 83.6% 64.7% 79.9% 87.8% 81.0% 78.9%

Table 4: Performance using a Tesla C1060

As shown by the rates, performance is close to optimum for most sizes. It is also worth mentioning that
performance is notably higher than with state-of-the-art CPU thermal LBM implementations. For instance,
we tested a Palabos [12] based single precision thermal LBM code on a dual Xeon E5560 at 2.8 GHz. We
recorded 16.7 MLUPS with 16 OpenMPI processes on a 2573 cavity.8

5. Differentially heated cubic cavity

5.1. Phenomenology of the differentially heated cavity

The hybrid LBM solver implemented on the GPU is used to study the differentially heated cubic cavity
outlined in fig. 7. Two opposite vertical walls have imposed temperatures −T0 and +T0, whereas the
remaining walls are adiabatic. This configuration has been extensively studied in the two-dimensional
configuration (for example [3, 8, 13]) for laminar, transitional and fully turbulent flows.

The three-dimensional configuration has been less studied in the literature than the two-dimensional
case because of its computational cost. The first bifurcation is observed for Ra1 ≈ 3.3 × 107 [23] and the
consequence is the unsteadiness of the flow pattern. The flow returns to a steady state for higher values of
the Rayleigh number. This second transition takes place at a Rayleigh number Ra2 belonging to the interval
[6.5× 107; 7 × 107] [2]. Finally, the flow reverts to unsteadiness for Ra3 ≈ 3× 108.

5.2. Computational procedure

The fluid is supposed to be incompressible. Applying the Boussinesq approximation, the buoyancy force
F is given by:

F = −ρβTg (21)

where β is the thermal expansion coefficient, and g the gravity vector of magnitude g.
We imposed half-way bounce back no-slip boundary conditions for the LBE part [26]. The temperature

field at the adiabatic walls is computed using second order extrapolation.
In order to conserve mass up to the second order, we add δtF to the momentum j in two steps: one half

before collision, and one half after.
Setting the Prandtl number Pr = 0.71, we use the Rayleigh number Ra and the kinematic viscosity ν as

parameters. The thermal diffusivity κ and the value of βg are determined using the dimensionless numbers:

Ra =
2T0βgN

3

νκ
Pr =

ν

κ
(22)

where N = Nx = Ny = Nz is the size of the cavity. Furthermore, following [10], we set s1 = 1.19, s2 = 1.4,
s4 = 1.2, s10 = 1.4, s16 = 1.98.

7For each node, 48 floating point numbers are transmitted per time step : nineteen numbers are read and written for particle
distribution, nine numbers are read and one number written for temperature.

8We used N = 257 instead of N = 256 to avoid cache thrashing.
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Figure 7: Differentially heated cavity

To check for convergence, the following estimator is computed:

εn = max
x

|T (x, nδt)− T (x, nδt− kδt)| (23)

every k = 500 iterations. Convergence to steadiness is declared when the criterion εn < 10−5 is satisfied.
The Nusselt number at the isothermal wall is computed using:

Nuw =
1

2T0N2

∑

y,z

∂xT |x=wall . (24)

5.3. Numerical results for steady flow patterns

In order to validate our approach, the flow in the differentially heated cavity is computed for Rayleigh
numbers equal to 104, 105, 106, and 107. The results are compared with data from the literature. Table 5
gives the obtained Nusselt numbers as well as the values published in [25] and [23]. As shown by the relative
deviation, our results are in good accordance with the reference values.

Rayleigh number 104 105 106 107

Present 2.0560 4.3382 8.6457 16.4202

Wakashima et al. [25] 2.0624 4.3665 8.6973 —

Relative deviation 0.3% 0.6% 0.6% —

Tric et al. [23] 2.054 4.337 8.640 16,342

Relative deviation 0.09% 0.03% 0.06% 0.5%

Table 5: Comparison of Nusselt numbers at the isothermal wall (N = 256)

In addition, fig. 8 shows the isosurfaces of temperature in the cavity. As the Rayleigh number increases,
the temperature in the core of the cavity becomes more stratified. The flow is less influenced by the cavity
sidewalls (y = ±1) and the boundary layers at the active walls become thinner and thinner. It is also
possible to confirm the centrosymmetry of the flow and temperature fields.
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(a) Ra = 104 (b) Ra = 105

(c) Ra = 106 (d) Ra = 107

Figure 8: Isosurfaces of temperature
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5.4. Numerical results concerning the first and second bifurcation

To locate the bifurcations, we proceeded a to systematic exploration using several GPUs in parallel.
According to our computations, the first bifurcation occurs between 3.224 × 107 and 3.225 × 107. The
critical Rayleigh number for the first bifurcation is therefore Ra1 = 3.2245± 0.0005× 107.

For Rayleigh numbers greater than the second critical Rayleigh number Ra2, the flow returns to a steady
state. The limit is located between 6.401× 107 and 6.402× 107. Hence, the second critical Rayleigh number
is Ra2 = 6.4015± 0.0005× 107.

t/tmax

N
u

0.2 0.4 0.6 0.8 1

101

102

(a) Nusselt number at the wall (b) Isosurfaces of temperature

Figure 9: Results concerning the differentially heated cavity at Ra = 108

In order to exemplify the flow and temperature fields for the reversion to steadiness, the flow at Ra = 108

is exhibited here. Figure 9a shows that the Nusselt number reaches a constant value of Nu = 30.2027, which
is in good agreement with the value Nu=30.311 extrapolated in [23].

The isosurfaces of temperature, fig. 9b, show that the thermal stratification in the core of the cavity is
conserved.

The modifications of the flow field are illustrated by the isosurfaces of the u velocity component in the
half-cavity (fig. 10a) and in the entire cavity (fig. 10b). The flow field is no more centrosymmetric. However,
there is a symmetry with respect to the plane y = 0. The same conclusion holds for the isosurfaces of v and
of w.

6. Summary

In this work, we devise general optimization strategies for programming data-parallel applications on
CUDA enabled GPUs. We describe an effective implementation of a thermal LBM solver for the GPU.
The proposed approach for dealing with the thermal part is likely to apply to other multiphysics coupling.
Simulation results are in good agreement with available data. Performance is nearly optimal and appears
to be significantly higher than for equivalent CPU implementations.

We used a dichotomous procedure to accurately study the different flow patterns in the differentially
heated cubic cavity. The flow pattern is laminar up to the first bifurcation at Ra1 = 3.2245± 0.0005× 107.
The flow becomes unsteady until Ra2 = 6.4015± 0.0005× 107 for which it returns to a steady state. The
present contribution is the first accurate determination of these critical Rayleigh numbers in the differentially
heated cubic cavity. The next step of our work will be the study of the transition to turbulence around
Ra = 3× 108.
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(a) Half-cavity (b) Entire cavity

Figure 10: Isosurfaces of u for Ra = 108

(a) (b)

Figure 11: Isosurfaces of v (a) and w (b) for Ra = 108
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