
HAL Id: hal-00731106
https://hal.science/hal-00731106

Submitted on 9 Jun 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Multi-GPU Implementation of the Lattice Boltzmann
Method

C. Obrecht, F. Kuznik, Bernard Tourancheau, J.-J. Roux

To cite this version:
C. Obrecht, F. Kuznik, Bernard Tourancheau, J.-J. Roux. Multi-GPU Implementation of the Lat-
tice Boltzmann Method. Computers & Mathematics with Applications, 2013, 65 (2), pp.252-261.
�10.1016/j.camwa.2011.02.020�. �hal-00731106�

https://hal.science/hal-00731106
https://hal.archives-ouvertes.fr

 Elsevier Editorial System(tm) for Computers and Mathematics with Applications

 Manuscript Draft

Manuscript Number:

Title: Multi-GPU Implementation of the Lattice Boltzmann Method

Article Type: SI: ICMMES-2010

Keywords: GPU programming; CUDA; Lattice Boltzmann method; TheLMA project

Corresponding Author: Mr Christian Obrecht,

Corresponding Author's Institution: Centre de Thermique de Lyon (CETHIL)

First Author: Christian Obrecht

Order of Authors: Christian Obrecht; Frédéric Kuznik; Bernard Tourancheau; Jean-Jacques Roux

Multi-GPU Implementation of the Lattice Boltzmann Method

Christian Obrechta,b,∗, Frédéric Kuznikb, Bernard Tourancheauc, Jean-Jacques Rouxb

aEDF Recherche et Développement, Département EnerBAT
bCentre de Thermique de Lyon, UMR5008, CNRS, INSA-Lyon, Université de Lyon

cLaboratoire de l’Informatique du Parallélisme, UMR 5668, CNRS, ENS de Lyon, INRIA, UCB Lyon 1

Abstract

The lattice Boltzmann method (LBM) is an increasingly popular approach for solving fluid flows in a wide
range of applications. The LBM yields regular, data-parallel computations; hence, it is especially well fitted
to massively parallel hardware such as graphics processing units (GPU). Up to now, though, single-GPU
implementations of the LBM are of moderate practical interest since the on-board memory of GPU based
computing devices is too scarce for large scale simulations.
In this paper, we present a multi-GPU LBM solver based on the well-known D3Q19 MRT model. Using

appropriate hardware, we managed to run our program on six Tesla C1060 computing devices in parallel.
We observed up to 2.15× 109 node updates per second for the lid-driven cubic cavity test case. It is worth
mentioning that such performance is comparable to the one obtained with large high performance clusters
or massively parallel supercomputers.
Our solver enabled us to perform high resolution simulations for large Reynolds numbers without facing

numerical instabilities. Though, we could observe symmetry breaking effects for long-extended simulations
of unsteady flows. We describe the different levels of precision we implemented, showing that these effects
are due to round off errors, and we discuss their relative impact on performance.

Keywords: GPU programming, CUDA, Lattice Boltzmann method, TheLMA project

1. Introduction

Although the original Moore’s law [15], i.e. the
exponential growth of transistor count on proces-
sors is still valid nowadays, the advances in comput-
ing performance are less straightforward. During
the last decade, graphics processing units (GPU)
have gradually outrun CPUs in terms of raw com-
putational power. Using nVidia’s CUDA technol-
ogy [16], GPUs have proven to be effective plat-
forms to implement various high performance com-
puting applications, ranging from linear algebra [2]
to CFD [6] and PDE solvers [14].
The lattice Boltzmann method (LBM) is a novel

approach in computational fluid dynamics. It ap-
pears to be an interesting alternative to the solving
of the Navier-Stockes equations for various appli-
cations such as multiphase flows or porous media.
As other CFD methods, the LBM is very demand-

∗christian.obrecht@insa-lyon.fr

ing from a computational standpoint. High perfor-
mance parallel implementations are therefore nec-
essary for the LBM to be of practical interest.

Several successful implementations for the GPU
are described in literature [8, 21, 22]. Nonethe-
less, single-GPU implementations are bound by the
device memory. The maximum available amount,
when using GT200 GPUs, is 4 GB, which enables to
handle at most about 2.83×107 nodes in single pre-
cision using the three-dimensional D3Q19 stencil.
Multi-GPU implementations are therefore manda-
tory to run large scale LBM simulations, but are
still a pioneering field and performance is often be-
low what is expected from such hardware [20].

Recently released motherboards are able to man-
age up to eight GPU based computing devices. Al-
though a MPI based multi-GPU LBM solver would
be of great interest to run on hybrid clusters, we
chose as a first step to implement a simpler POSIX
thread based solver. The remaining of the pa-
per is organized as follows. We first briefly re-

Preprint submitted to Computers & Mathematics with Applications October 29, 2010

Manuscript
Click here to view linked References

mailto:christian.obrecht@insa-lyon.fr
http://ees.elsevier.com/camwa/viewRCResults.aspx?pdf=1&docID=5758&rev=0&fileID=45175&msid={5ECF968B-D1F4-4BA5-80DF-E3AD18C185F3}

view the LBM and the CUDA technology. Then
we give some general guidelines for implementing
the LBM on GPUs and describe our multi-GPU
implementation. Last, we discuss numerical issues
we could observe running large scale simulations at
high Reynolds numbers.

2. Multiple-Relaxation-Time LBM

Although originating from the lattice-gas au-
tomata theory [7], the lattice Boltzmann method
is now generally interpreted as a way to solve the
linearised Boltzmann equation [13]. In our work,
we used the multiple-relaxation-time (MRT) ap-
proach [4] instead of the more popular Bhatnagar-
Gross-Krook (BGK) version of the LBM [19]. In
this section we shall briefly describe the MRT LBM.
With the Boltzmann equation, a fluid is described

using a single-particle distribution function f de-
pending on space and particular velocity, i.e. phase
space, and on time. In the LBM, space is usually
represented by a regular orthogonal mesh of res-
olution δx and time is split in constant steps δt.
The discrete counterpart of the continuous velocity
space is a finite set of velocities ξi, carefully cho-
sen in order to ensure sufficient isotropy. Usually,
vectors δtξi link nodes to only some of their nearest
neighbours. As an example, fig. 1 shows the D3Q19
stencil we used in our computations.

1
2

3

4

5

6

15

18

16

17

14

1112

13

8

9
10

7

Figure 1: D3Q19 stencil

Let us denote:
∣

∣ai
〉

= (a0, . . . aN)T, T being the
transpose operator. The lattice Boltzmann equa-
tion (LBE) writes:
∣

∣fi(x+δtξi, t+δt)
〉

−
∣

∣fi(x, t)
〉

= Ω

[

∣

∣fi(x, t)
〉

]

(1)

where {fi | i = 0, . . .N} is the discrete equivalent of
f , and Ω is the collision operator.

In the MRT approach, collision is performed in
moment space. The particle distribution is mapped
to a set of moments {mi | i = 0, . . .N} by an orthog-
onal matrix M:

∣

∣fi(x, t)
〉

= M
−1

∣

∣mi(x, t)
〉

(2)

where
∣

∣m(x, t)
〉

is the moment vector. Matrix M

for the D3Q19 stencil can be found in appendix A
of [5]. The corresponding moment vector is:

∣

∣mi(x, t)
〉

=
(

ρ, e, ε, jx, qx, jy, qy, jz, qz, 3pxx,

3πxx, pww, πww, pxy, pyz, pzx,mx,my,mz

)T

(3)

where ρ is the mass density, e is energy, ε is en-
ergy square, j = (jx, jy, jz) is the momentum,
q = (qx, qy, qz) is the heat flux, pxx, pxy, pyz, pzx,
pww are related to the components of the stress ten-
sor, πxx, πww are third order moments, mx, my, mz

are fourth order moments. The mass density and
the momentum are the conserved moments.
The LBE thus writes:

∣

∣fi(x+ δtξi, t+ δt)
〉

−
∣

∣fi(x, t)
〉

= −M
−1

S

[

∣

∣mi(x, t)
〉

−
∣

∣m
(eq)
i (x, t)

〉

]

(4)

where S is a diagonal collision matrix and the m
(eq)
i

are the equilibrium values of the moments. For the
sake of isotropy, S obeys:

S = diag(0, s1, s2, 0, s4, 0, s4, 0, s4,

s9, s10, s9, s10, s13, s13, s13, s16, s16, s16) (5)

We additionally set s9 = s13, the initial density
ρ0 = 1, and the speed of sound cs = 1/

√
3, the unit

of speed being δx/δt. The equilibrium values of the
non-conserved moments are thus given by:

e(eq) = −11ρ+ 19j2 (6)

ε(eq) = −475

63
j2 (7)

q(eq) = −2

3
j (8)

3p(eq)xx = 3j2x − j2 (9)

p(eq)ww = j2y − j2z (10)

p(eq)xy = jxjy, p(eq)yz = jyjz, p(eq)zx = jzjx (11)

2

3π(eq)
xx = π(eq)

ww = 0 (12)

m(eq)
x = m(eq)

y = m(eq)
z = 0 (13)

The kinematic viscosity ν of the model is related
to relaxation rate s9 by:

ν =
1

3

(

1

s9
− 1

2

)

(14)

The other rates are set according to [9]. Namely:
s1 = 1.19, s2 = s10 = 1.4, s4 = 1.2, and s16 = 1.98.

3. Overview of the CUDA Technology

The Compute Unified Device Architecture

(CUDA) is nowadays leading technology for gen-
eral purpose computations on GPUs. Initiated
in late 2007 by the nVidia company, CUDA
defines both a programming model and general
hardware specifications. CUDA capable GPUs
consist in a set of streaming multiprocessors (SM),
each containing several scalar processors (SP) as
outlined in fig. 2. The SPs within a SM follow a
single-instruction multiple-data (SIMD) execution
scheme. Yet, SMs are not globally synchronised,
thus the overall execution scheme may be described
as single-instruction multiple-thread (SIMT).
CUDA computing devices show a complex mem-

ory hierarchy. The main storage consists in a rather
large off-chip device memory. This memory is not
cached except for specific read-only data (i.e. con-
stants and textures); hence it suffers of high latency
which has to be properly hidden. Each SM provides
its SPs with non-addressable registers and some
addressable shared memory which allows inter-SP
communication.

Streaming Multiprocessor 2

Streaming Multiprocessor 1

SP SP SP SP

SP SP SP SP

Registers Shared Memory

Constant Cache Texture Cache

b

b

b

Device

Memory

Figure 2: CUDA hardware

The CUDA programming language is an exten-
sion to C/C++ (with some restrictions). A CUDA
program basically consists in CPU code and (at
least) one kernel, i.e. a void returning function to be
executed by the GPU. Kernels are executed in sev-
eral threads with private local variables. Threads
are grouped in identical blocks which may have up
to three dimensions. During execution, a block can-
not be partitioned and therefore must fit into a
single SM. Nonetheless, a SM may execute several
blocks concurrently. Threads within a block may be
synchronised and have access to a shared memory
space. Yet, no protection mechanism, e.g. mutexes,
is available: it is up to the programmer to manage
this aspect.
Blocks are grouped into a one or two-dimensional

execution grid, specified at launch time. Blocks are
executed asynchronously and there is no efficient
dedicated mechanism to ensure global synchronisa-
tion. All threads within a grid have access to a
global memory space which is hosted in the device
memory and is persistent along the application life
cycle. Global synchronisation is therefore achieved
by performing multiple kernel launches.

Thread Local Variables

Block

Shared Memory

Grid

. . .

Global Memory

Figure 3: CUDA programming model

4. GPU Implementation Guidelines

From an algorithmic point of view, the LBM
breaks into two elementary steps: collision in which
the collision operator is applied to the particle dis-
tribution, and propagation in which updated parti-
cle populations are propagated to the neighbouring
nodes. Equation 4 may therefore be split in :

∣

∣f̃i(x, t)
〉

= M
−1

(

∣

∣mi(x, t)
〉

− S

[

∣

∣mi(x, t)
〉

−
∣

∣m
(eq)
i (x, t)

〉

]

)

(15)

∣

∣fi(x+ δtξi, t+ δt)
〉

=
∣

∣f̃i(x, t)
〉

(16)

3

where eq. 15 describes the collision step and eq. 16
the propagation step. Thus, the LBM described in
sec. 2, may be summarised by the following pseudo-
code:

1. for each time step t do

2. for each lattice node x do

3. read velocity distribution fi(x, t)

4. if node x is on boundaries then

5. apply boundary conditions

6. end if

7. compute moments mi(x, t)

8. compute equilibrium values m
(eq)
i (x, t)

9. compute updated distribution f̃i(x, t)

10. propagate to neighboring nodes x+ δtξi

11. end for

12. end for

The most convenient approach to take advan-
tage of the massive parallelism of GPUs is to as-
sign one thread to each node. Threads within a
block are executed in groups of 32 threads named
warps.1 Global memory transactions are issued by
half-warp. Best performance is achieved when these
operations may be coalesced into single transactions
of 32 B, 64 B, or 128 B. Yet, segment transactions
face the important restriction that the segment’s
offset has to be a multiple of its size.
Optimised CPU implementations of the LBM

generally store the particle distribution in an array
of structures, which improves data locality. In or-
der to allow coalescing, GPU implementations must
adopt a reverse approach. A simple and efficient so-
lution is to use one dimensional blocks correspond-
ing to a given spatial direction and to store the
particle distribution in a multi-dimensional array.
The minor dimension of the array is chosen such
as contiguous threads access to contiguous memory
locations.
Nonetheless, this approach is not sufficient to en-

sure optimal memory transactions. For most of the
particle populations, the propagation step leads to
one unit shifts in addresses as illustrated by fig. 4.
With the first generation of CUDA enabled

GPUs, i.e. for compute capability up to 1.1, align-
ment is mandatory for coalescence to occur, hence

1The size of a warp is implementation dependent and may
vary in future.

Figure 4: Misalignment issue

misalignment has dramatic impact on performance.
To address this problem, propagation within the
blocks may be performed using shared memory as
described in [21]. As of compute capability 1.2, mis-
aligned memory accesses are issued in as few seg-
ment transactions as possible. As thoroughly shown
in [18], misaligned reads are far less expensive than
misaligned writes, hence a rather efficient way to
perform propagation is to use the out-of-place prop-
agation scheme [17], outlined in fig. 5.

Figure 5: Out-of-place propagation

5. Multi-GPU Implementation of the LBM

Developing libraries is a common and acknowl-
edged practice in software engineering. The Pala-
bos project [11] for instance, in the case of LBM,
provides a wide set of generic functions which al-
lows to efficiently implement a parallel CPU LBM
solver with given geometry, boundary conditions,
and lattice Boltzmann model.

4

Nevertheless, the CUDA technology has some in-
herent limitations which make difficult to follow the
same path when developing GPU LBM solvers. The
compilation tool chain, for instance, being unable
to link GPU binaries forbids actual modular pro-
gramming. Likewise, devices of compute capability
up to 1.3 have limited support for functions. The
so-called device functions, i.e. functions to be ex-
ecuted by the GPU, are mostly inlined at compile
time, which restricts their use in practice.
In order to improve code reusability, we designed

the TheLMA framework [1]. TheLMA stands for
Thermal LBM on Many-core Architectures, ther-
mal flow simulation being our main topic of interest.
It provides a global template for multi-GPU LBM
solvers on which we developed the present imple-
mentation. Figure 6 outlines the structure of the
framework.

param.c init.c stat.c output.c

main.c

thelma.cu

geometry.cu init.cu compute.cu results.cu

Figure 6: The TheLMA framework

The main.c file contains the main loop of the
simulation and may access to a set of commod-
ity functions in order to retrieve parameters, ini-
tialise variables, perform statistical calculations,
and output simulation results in various formats.
The thelma.cu file is a hub containing some gen-
eral macros and including the CUDA components
responsible for setting up the geometry, initializ-
ing, running the simulation and extracting results.
Each of these component contains a launch function
which is accessible to the C part of the program and
handles the actual kernel invocation.
At initialisation, the program creates one POSIX

thread for each requested computing device in
order to hold the corresponding CUDA context.
A sub-domain of the global lattice is assigned
to each device. As for single-GPU implementa-
tion, synchronisation within the sub-domains is
achieved by launching a kernel for each time step.

Global synchronisation uses standard POSIX barri-
ers. Inter-GPU communication is performed using
page-locked CPU memory and zero-copy memory
transactions.

As for global memory accesses, zero-copy trans-
actions require coalescing to achieve optimal per-
formance. This implies that the interfaces between
sub-domains should be parallel to the direction as-
sociated with the minor dimension of the parti-
cle distribution array. For the sake of simplicity,
we chose to split the lattice in rectangular cuboids
along the direction corresponding to the major di-
mension. Figure 7 outlines the inter-GPU commu-
nication scheme.

Figure 7: Inter-GPU communication scheme

Each interface between sub-domains is associ-
ated to four buffers: two for incoming and two
for outgoing populations. Pointers are switched
after each time step. Maximal parallelization effi-
ciency requires perfect overlapping of computations
and communication. The zero-copy feature enables
such overlapping, but the overlapping ratio depends
on the scheduling of memory transactions at warp
level. The execution grid set-up is therefore an im-
portant optimisation target.

Another problem arise when considering the con-
figuration of the execution grid, since it may only
have up to two dimensions. The simple solu-
tion of using one-dimensional blocks and a two-
dimensional grid to span the three spatial dimen-
sions does not apply to large lattices. On GT200
hardware, for instance, the resource requirements of
a LBM kernel are likely to forbid the use of blocks
greater than 256.

We therefore chose to use a two-dimensional
grid of size (ℓx × ℓy × ℓz/2

m) × (2m−n) with one-
dimensional blocks of size 2n; ℓx, ℓy, ℓz being the

5

dimensions of the lattice, m and n being free pa-
rameters. Retrieval of coordinates is done using the
following code:

w = blockIdx.x<<m | blockIdx.y<<n

| threadIdx.x;

x = w % lX;

y = (w/lX) % lY;

z = w/(lX*lY);

The optimal values for m and n are m = 15 and
n = 7, which were determined empirically. To vali-
date our code, we implemented the well-known lid-
driven cubic cavity test case in which five walls have
null velocity boundary conditions and the top lid
has imposed constant velocity. In order to study
the scalability of the program, we chose to run per-
formance tests on a 1923 lattice which may be han-
dled by one single GPU or split in two, three, four,
or six identical sub-domains as well. Figure 8 shows
the obtained performance in million lattice node up-
dates per second (MLUPS) for single precision with
Tesla C1060 computing devices on a Tyan B7015
server. It is worth mentioning that the maximal
performance is of the same order of magnitude than
the one obtained with optimised double precision
code on supercomputers (see [10], for instance).

� � � � � � � �

	
��
���������

�

���

����

����

����

����

����

�

��
�

��
�

�
�

��
�

�
�

�
�

�

������
� ��
��������

������!�"#�$
��%

Figure 8: Performance on a 1923 lattice

Scalability is excellent with no less than 90% par-
allelization efficiency. Table 1 displays the required
throughput for data exchange at 100% efficiency.
With the Tyan S7015 motherboard of our server,
the bandwidthTest program that comes with the
CUDA development kit gives 2.78 GB/s host to de-
vice and 1.80 GB/s device to host maximum sus-
tained throughput. The data exchange being sy-
metric, we may use the arithmetic mean of these

values, i.e. 2.29 GB/s as a rough estimate of the
available throughput for one PCI-E 16× slot. A
comprehensive study of communications between
computing devices and main memory is beyond the
scope of this work and shall be given in future ref-
erence.
Table 1 shows that even with six GPUs, i.e.

five sub-domain interfaces, the required through-
put is comparable to the one achievable with a sin-
gle PCI-E 16× slot, therefore data exchange is not
likely to overflow the capacity of the PCI-E links.
Furthermore, we see that the execution grid config-
uration we propose enables very satisfactory com-
munication/computation overlapping.
According to the bandwidthTest program, the

GPU to device memory maximum sustained
throughput is 73.3 GB/s for the Tesla C1060. Per-
formance in single precision using one GPU is
387 MLUPS which correspond to a data through-
put of 80.4% of the maximum. We may therefore
conclude that our single precision solver is memory
bound and that performance is nearly optimal.
Performance for the double precision version of

our solver ranges from 117 MLUPS using one GPU
to 683 MLUPS using six, with similar scalability
than for the single precision version. Considering
one GPU, the corresponding data throughput is
only 48.5% of the maximum, which implies that
the double precision version is not memory bound
but computation bound.

6. Numerical Issues

Although the lid-driven cubic cavity test case is
well documented at low Reynolds numbers, there
are–to the best of our knowledge–very few refer-
ences for Re ≥ 12,000 [3, 12]. Using the six avail-
able Tesla C1060 cards, our solver is able to handle
cubic lattices containing as much as 5123 nodes for
single precision D3Q19 and 3843 nodes for double
precision D3Q19. We could therefore run simula-
tions for Reynolds numbers up to 30,000 without
facing numerical instabilities.
According to nVidia, peak performance for the

Tesla C1060 is 933 GFlops in single precision and
78 GFlops in double precision. As a matter of fact,
GT200 GPUs are usually less efficient with double
precision computations than with single precision.
In our case, the performance ratio is about 3.2 to
one. Nevertheless, the GT200 implementation of
single precision is not fully IEEE 754 compliant.
When first running our solver at Re = 30,000 in

6

Number of GPUs 1 2 3 4 6

Kernel duration (ms) 18.29 9.14 6.10 4.57 3.05

Exchanged data (MB) 0.00 1.47 2.95 4.42 7.37

Required throughput (GB/s) 0.00 0.16 0.48 0.97 2.42

Table 1: Required throughput for data exchange at 100% efficiency

single precision, we could see some numerical issue
arise: the flow loses symmetry at a very early stage
of simulation. Further investigation showed us that
the average deviation from initial density decreases
at a constant pace instead of fluctuating around
zero.
To evaluate the impact of machine accuracy on

our simulations, we experimented three levels of
precision: single precision (sp), mixed precision
(mp), i.e. double precision computations with sin-
gle precision storage, and double precision (dp). It
has been reported that using δρ = ρ− ρ0 instead of
ρ in moment space improves accuracy [5]. Thus we
also experimented this approach for the three levels
of precision: sp∗, mp∗, dp∗.

�� �� �� �� �� ��� ��� ��� ��� ���

��	
��
���	���������	
�

������

������

������

������

������

������

�

�����

�����

�
�
�
��
��
	

��
�	
�
��

��
��
��
�
�

�
��
�

���

��!

��"�����

Figure 9: Mass conservation issue (large scale)

�� �� �� �� �� ��� ��� ��� ��� ���

��	
��
���	���������	
�

��������

��������

������

������

������

������

������

�

�
�
�
��
��
	

��
�	
�
��

��
��
��
�
�

�
��

���!

��"!#

��$!#

���!#

Figure 10: Mass conservation issue (small scale)

Figures 9 and 10 show the average deviation
from initial density when running a simulation at
Re = 30,000 on a 3843 lattice for the six levels of
precision. We can see that, regarding conservation
of mass, mixed precision does not provide signif-
icant improvement over single precision, and that
sp

∗, mp∗, and dp
∗ perform better than dp by an

order of magnitude. Furthermore, we may conclude
that sp and mp should not be used when simulating
unsteady flows.
In order to study the loss of symmetry from a

quantitative standpoint, we used the following esti-
mator:

L = max
x

‖u(x, t)− ū(x̄, t)‖ (17)

where x and x̄, and u and ū are symmetric with
respect of the symmetry plane of the cavity. Fig-
ure 11 shows the evolution of L for the different
precision levels running the same simulation than
for mass conservation, i.e. Re = 30,000 on a 3843

lattice. One can deduce from this diagram that the
accumulation of round-off errors is the cause for the
loss of symmetry. Past a certain threshold, due to
the turbulent nature of the flow, the numerical per-
turbations are steeply amplified.

�� �� �� �� �� ��� ��� ��� ��� ���

��	
��
���	���������	
�

�

����

����

����

����

���

����

�
�
�
��
��
	

��
�	
�
��
�
�
�
�
��
�

�����

��� �

�����

�����!

��� �!

�����!

Figure 11: Evolution of L for the six precision levels

Figure 12 displays the evolution of L at different

7

Reynolds numbers for the dp
∗ precision level on a

3843 lattice. This diagram shows that the more tur-
bulent the flow pattern is, the sooner the symme-
try breaking occurs, which corroborates the former
point of view.

�� �� ��� ��� ��� ��� ��� ��� ��� ���

��	
��
���	���������	
�

�

����

����

����

����

���

����

�
�
�
��
��
	

��
�	
�
��
�
�
�
�
��
�

�����������

������������

������������

������������

Figure 12: Evolution of L at different Reynolds numbers

From a performance standpoint, sp, mp, and
dp behave similarly than their stared counterparts,
since the difference in implementation only affects
the initialisation section. Using δρ instead of ρ is
therefore an advisable improvement. Mixed preci-
sion has almost identical performance than double
precision. In this case, the gain in accuracy is not
worth the performance trade-off.

7. Conclusion

In this contribution, we describe a multi-GPU
implementation of the LBM, based on rather sim-
ple technical choices, i.e. POSIX threads and basic
domain tilling. Nevertheless, performance is nearly
optimal, rivalling with the one of supercomputer
or large cluster implementations. Further inves-
tigations are needed to improve understanding of
the inter-GPU communication potential. Moreover,
work has to be done to design some execution grid
layout and domain decomposition compatible with
MPI parallelization.
Our multi-GPU LBM solvers enables the use of

large lattices, thus allowing direct numerical simu-
lation of unsteady flows. We describe some numer-
ical issues that arise at high Reynolds numbers and
investigate the impact of different precision levels
both on accuracy and performance.
The TheLMA framework we designed to imple-

ment our flow solver is meant to improve code

reusability. We are currently developing several ap-
plications based on TheLMA, including a hybrid
thermal solver and a LES solver. In near future,
we plan to extend this framework to generic multi-
GPU parallelization.

References

[1] Thermal LBM on Many-core Architectures.
www.thelma-project.info.

[2] E. Agullo, J. Demmel, J. Dongarra, B. Hadri,
J. Kurzak, J. Langou, H. Ltaief, P. Luszczek, and S. To-
mov. Numerical linear algebra on emerging architec-
tures: The PLASMA and MAGMA projects. In Jour-

nal of Physics: Conference Series, volume 180, page
012037. IOP Publishing, 2009.

[3] R. Bouffanais, M.O. Deville, and E. Leriche. Large-
eddy simulation of the flow in a lid-driven cubical cav-
ity. Physics of Fluids, 19:055108, 2007.

[4] D. d’Humières. Generalized lattice-Boltzmann equa-
tions. Rarefied gas dynamics- Theory and simulations,
pages 450–458, 1994.

[5] D. d’Humières, I. Ginzburg, M. Krafczyk, P. Lallemand,
and L.S. Luo. Multiple-relaxation-time lattice Boltz-
mann models in three dimensions. Philosophical Trans-
actions: Mathematical, Physical and Engineering Sci-

ences, pages 437–451, 2002.
[6] J. Dongarra, S. Moore, G. Peterson, S. Tomov,

J. Allred, V. Natoli, and D. Richie. Exploring new ar-
chitectures in accelerating CFD for Air Force applica-
tions. In Proceedings of HPCMP Users Group Confer-

ence, pages 14–17. Citeseer, 2008.
[7] U. Frisch, B. Hasslacher, and Y. Pomeau. Lattice-gas

automata for the navier-stokes equation. Phys. Rev.

Lett., 56(14):1505–1508, 1986.
[8] F. Kuznik, C. Obrecht, G. Rusaouën, and J.-J. Roux.

LBM Based Flow Simulation Using GPU Computing
Processor. Computers and Mathematics with Applica-

tions, (27), June 2009.
[9] P. Lallemand and L.S. Luo. Theory of the lattice

Boltzmann method: Dispersion, dissipation, isotropy,
Galilean invariance, and stability. Physical Review E,
61(6):6546–6562, 2000.

[10] J. Latt. Palabos Benchmarks (3D Lid-driven Cavity).
www.lbmethod.org/plb wiki:benchmark:cavity n1000.

[11] J. Latt, O. Malaspinas, and D. Lagrava. Parallel Lattice
Boltzmann Solver. www.lbmethod.org/palabos.

[12] E. Leriche and S. Gavrilakis. Direct numerical simula-
tion of the flow in a lid-driven cubical cavity. Physics

of Fluids, 12:1363, 2000.
[13] G. R. McNamara and G. Zanetti. Use of the Boltzmann

Equation to Simulate Lattice-Gas Automata. Phys.

Rev. Lett., 61:2332–2335, 1988.
[14] P. Micikevicius. 3D finite difference computation on

GPUs using CUDA. In Proceedings of 2nd Workshop

on General Purpose Processing on Graphics Processing

Units, pages 79–84. ACM, 2009.
[15] G.E. Moore. Cramming more components onto in-

tegrated circuits. Electronics Magazine, 38(8), April
1965.

[16] nVidia. Compute Unified Device Architecture Program-

ming Guide version 3.0, February 2010.

8

http://www.thelma-project.info
http://www.lbmethod.org/plb_wiki:benchmark:cavity_n1000
http://www.lbmethod.org/palabos

[17] C. Obrecht, F. Kuznik, B. Tourancheau, and J.-J. Roux.
A new approach to the lattice Boltzmann method for
graphics processing units. Computers and Mathematics

with Applications, (in press), 2010.
[18] C. Obrecht, F. Kuznik, B. Tourancheau, and J.-J.

Roux. Global Memory Access Modelling for Effi-
cient Implementation of the LBM on GPUs. In High

Performance Computing for Computational Science –

VECPAR2010. Lecture Notes in Computer Science,
Springer, 2010.

[19] Y. H. Qian, D. d’Humières, and P. Lallemand. Lat-
tice BGK models for Navier-Stokes equation. Europhys.
Lett, 17(6):479–484, 1992.

[20] E. Riegel, T. Indinger, and N.A. Adams. Implemen-
tation of a Lattice–Boltzmann method for numerical
fluid mechanics using the nVIDIA CUDA technology.
Computer Science-Research and Development, 23(3):
241–247, 2009.

[21] J. Tölke. Implementation of a Lattice Boltzmann ker-
nel using the Compute Unified Device Architecture de-
veloped by nVIDIA. Computing and Visualization in

Science, pages 1–11, 2008.
[22] J. Tölke and M. Krafczyk. TeraFLOP computing on

a desktop PC with GPUs for 3D CFD. International

Journal of Computational Fluid Dynamics, 22(7):443–
456, 2008.

9

