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hemes Based onCriti
al Kernels ∗Gilles Bertrand and Mi
hel CouprieUniversité Paris-Est, Laboratoire d'Informatique Gaspard-Monge, ESIEE ParisCité Des
artes, BP 99, 93162 Noisy-le-Grand Cedex Fran
eg.bertrand�esiee.fr,m.
ouprie�esiee.frSeptember 12, 2012Abstra
tThe main 
ontribution of the present arti
le 
onsists ofnew 3D parallel and symmetri
 thinning s
hemes whi
hhave the following qualities:- They are e�e
tive and sound, in the sense that theyare guaranteed to preserve topology. This guarantee isobtained thanks to a theorem on 
riti
al kernels;- They are powerful, in the sense that they removemore points, in one iteration, than any other symmetri
parallel thinning s
heme;- They are versatile, as 
onditions for the preservationof geometri
al features (e.g., 
urve extremities orsurfa
e borders) are independent of those a

ountingfor topology preservation;- They are e�
ient: we provide in this arti
le a smallset of masks, a
ting in the grid Z3, that is su�
ient, inaddition to the 
lassi
al simple point test, to straight-forwardly implement them.Keywords: Thinning algorithm, skeleton, parallel al-gorithm, 
riti
al kernel, 
ubi
al 
omplex, simple point,
ollapse.1 Introdu
tionComputing the skeleton of a 3D shape is a fundamentalstep in several appli
ations dealing with shape analysis,shape re
ognition, registration, visualization, animation,et
. A fundamental property of skeletons is topologypreservation: a skeleton must have the same topologi
al
hara
teristi
s as the original shape.
∗This work has been partially supported by the �ANR-2010-BLAN-0205 KIDICO� proje
t.

In dis
rete grids (Z2, Z3, Z4), a topology-preservingtransformation 
an be de�ned thanks to the notion ofsimple point [25℄: intuitively, a point of an obje
t (asubset of Z
d) is 
alled simple if it 
an be deleted fromthis obje
t without altering topology. Let us illustratethis notion by Fig. 1, whi
h displays a same subset of

Z
2 under two usual representations: as a set of points(left), and as a set of pixels (right). In this example, thepixels (or points) a, b, c are simple but x, y, z, t are not.This notion, pioneered by Duda, Hart, Munson [18℄, Go-lay [20℄ and Rosenfeld [43℄, has sin
e been the subje
tof an abundant literature. In parti
ular, lo
al 
hara
-terizations of simple points have been proposed (see e.g.[13, 17℄), on whi
h e�
ient implementation of thinningpro
edures are based.

y

a
b

c
z

t

x

Figure 1: Illustration of 2D simple points/pixels. The set
X is made of the points represented as bla
k dis
s on theleft, and by gray pixels on the right. The points/pixels
a, b, c are simple while x, y, z, t are not: deleting x would
reate a hole in X , deleting y would suppress a hole,deleting z would split a 
onne
ted 
omponent, and delet-ing t would suppress a 
onne
ted 
omponent.The most �natural� way to thin an obje
t 
onsists ofremoving some of its border points in parallel. By paral-lel, we mean that the same operation is exe
uted simul-1



(a) (b) (
)Figure 2: Di�erent kinds of skeletons: (a) surfa
e skeleton, (b) 
urvilinear skeleton, (
) minimal skeleton.taneously and independently for ea
h image point. Byrepeating su
h a pro
edure until stability, one 
an ob-tain a well-
entered �skeleton� of the original obje
t (seeFig. 2). Furthermore, parallel thinning algorithms tendto produ
e skeletons whi
h are more robust to small vari-ations of shape 
ontours, in 
omparison with sequentialalgorithms whi
h must make arbitrary 
hoi
es regardingthe order of the pro
essing of points.However, parallel deletion of simple points does not, ingeneral, guarantee topology preservation: see for exam-ple Fig. 1 where the points a and b are both simple, andremoving these two points simultaneously would mergetwo ba
kground 
omponents. In fa
t, su
h a guaran-tee is not obvious to obtain, even for the 2D 
ase (see[16℄, where �fteen published parallel thinning algorithmsare analyzed, and 
ounter-examples are shown for �ve ofthem).For the 2D 
ase, A. Rosenfeld introdu
ed in [44℄ amethod that 
onsists of dividing ea
h thinning step intofour substeps. Ea
h of these substeps 
onsiders as 
an-didate for deletion, only the simple points that haveno neighbor belonging to the obje
t in one of the fourmain dire
tions (north, south, east, west) and have atleast two 8-neighbors belonging to the obje
t. However,this so-
alled dire
tional strategy 
annot be straightfor-wardly extended to 3D. In this 
ase, the six main di-re
tions are north, south, east, west, up and down. InFig. 3, the voxels x, y are simple voxels that have noneighbor belonging to the obje
t in the dire
tion �up�,but if we remove them in parallel, the obje
t splits.Some authors (see e.g. [9, 33, 39, 38℄) have proposedthinning algorithms based on the so-
alled sub�eld strat-egy, a general strategy whi
h permits the parallel dele-tion of 
ertain simple points. It 
onsists of 
onsidering,

in ea
h substep, only simple points that belong to a givensubgrid (also 
alled sub�eld). For example in 2D (resp.3D), four (resp. eight) disjoint sub�elds may be de�nedby saying that two points belong to the same sub�eldif the parity of ea
h of their 
oordinates is the same.Variants with four or even two sub�elds, in 3D, havealso been proposed; but additional 
onditions must be
he
ked to ensure topology preservation.The dire
tional and the sub�eld strategy share a 
om-mon drawba
k: depending on the order of the 
onsidereddire
tions or sub�elds, one 
an obtain di�erent skele-tons. An alternative to these strategies 
onsists of delet-ing points in a symmetri
 manner. By symmetri
, wemean that this operation is invariant by any isometry(an isometry, in Z
d, is a bije
tion whi
h preserves adja-
en
y relations). For topology preservation, additional
onditions must be veri�ed when deleting simple pointsin this way. Su
h 
onditions are di�
ult to design: in-deed, very few symmetri
 3D thinning algorithms havebeen published [31, 32, 37, 29, 40℄, and among these, [31℄and [32℄ do not preserve topology (see [27, 28℄).Re
ently, one of the authors introdu
ed a generalframework, 
alled 
riti
al kernels [8℄, that permits to

x
yFigure 3: All voxels are simple, the voxels x and y areboth �up� voxels.2




he
k the topologi
al soundness of parallel thinning al-gorithms in any dimension, and also to design new onesthat preserve topology �by 
onstru
tion�.As proven in [12℄, 
riti
al kernels 
onstitute a non-trivial generalization of all previously proposed frame-works with similar aims, namely minimal non-simplesets [42℄ and P-simple points [6℄. Thanks to 
riti
al ker-nels, we were able to propose in [11℄ nine new 2D thin-ning algorithms whi
h respond to spe
i�
 needs (sym-metry, 
entering, thinness, geometri
al 
riterions, et
.)and whi
h had no equivalent among previously publishedworks. The 
lear separation of topologi
al and geometri-
al 
onstraints, whi
h is a key feature of this framework,makes easy the design of su
h algorithms.The main 
ontribution of the present arti
le 
onsists ofnew 3D parallel and symmetri
 thinning s
hemes whi
hhave the following qualities:- They are e�e
tive and sound, as the main theorem of
riti
al kernels and additional properties proven in thisarti
le provide the guarantee of topology preservation;- They are powerful, in the sense that they remove morepoints, in one iteration, than any other symmetri
 par-allel thinning s
heme. In parti
ular, they 
an be used to
ompute minimal skeletons;- They are versatile, as 
onditions for the preservationof geometri
al features (e.g., 
urve extremities or surfa
eborders) are independent of those a

ounting for topol-ogy preservation. We give in this arti
le examples andillustrations of minimal, 
urvilinear and surfa
e skele-tons produ
ed using these s
hemes;- They are e�
ient: we provide in this arti
le a smallset of masks, a
ting in the grid Z3, that is su�
ient, inaddition to the 
lassi
al simple point test, to straightfor-wardly implement them.All the proofs of properties stated below are in the ap-pendix. Some preliminary results of the work presentedin this paper appear in [10℄.2 Cubi
al and Xel ComplexesIn this se
tion, we give some basi
 de�nitions for 
ubi-
al 
omplexes, see also [26, 3, 2℄. We 
onsider here thethree-dimensional 
ase. Note that most of the notionsintrodu
ed in the �rst se
tions make sense in arbitrary
n-dimensional 
ubi
al spa
es.Let Z be the set of integers. We 
onsider the familiesof sets F1

0, F1
1, su
h that F1

0 = {{a} | a ∈ Z}, F1
1 =

{{a, a + 1} | a ∈ Z}. A subset f of Z3 whi
h is theCartesian produ
t of exa
tly d elements of F1
1 and (n−d)

elements of F1
0 is 
alled a fa
e or a d-fa
e of Z3, d is thedimension of f , we write dim(f) = d.We denote by F

3 the set 
omposed of all d-fa
es of
Z3, with d ∈ {0, 1, 2, 3}. A d-fa
e of Z3 is 
alled a pointif d = 0, a (unit) segment if d = 1, a (unit) square if
d = 2, a (unit) 
ube if d = 3.If X is a �nite set of fa
es in F 3, we write X− = {y ∈
F

3 | y ⊆ x for some x ∈ X}, X− is the 
losure of X . A�nite set X of fa
es in F 3 is a 
ubi
al 
omplex (in F 3) if
X = X−. We denote by C3 the 
olle
tion 
omposed ofall su
h 
omplexes.Let X be a �nite set of fa
es in F 3. We say that Xis a xel 
omplex (in F 3) if, for any x, y ∈ X , we have
y = x whenever y ⊆ x. We denote by X3 the 
olle
tion
omposed of all su
h 
omplexes. Observe that, if X ∈ X3and Y ⊆ X , then we have ne
essarily Y ∈ X

3.If X is a �nite set of fa
es in F 3, we denote by X+ theset of fa
es in X whi
h are maximal for in
lusion in X .Thus, if X ∈ C3, we have X+ ∈ X3 and (X+)− = X . If
X ∈ X3, we have X− ∈ C3 and (X−)+ = X .Therefore, it is equivalent, with the above 
orrespon-den
es, to spe
ify a 
ubi
al 
omplex or a xel 
omplex.See an illustration Fig. 4.

x y

z t(a) (b) (
)
(d) (e)Figure 4: (a): Four points x, y, z, t. (b): A graphi
al rep-resentation of the set of fa
es {{x, y, z, t}, {x, y}, {z}}.(
): A set of fa
es X , whi
h is neither a 
ubi
al 
om-plex nor a xel 
omplex. (d): The set X+, whi
h is a xel
omplex 
omposed of 4 segments, 1 square, and 1 
ube.(e): The set X−, whi
h is a 
ubi
al 
omplex.3 Simple Fa
esIntuitively a fa
e x of a xel 
omplex X is simple if itsremoval from X �does not 
hange the topology of X�.In this se
tion, we propose a de�nition of a simple fa
e3



(a) (b) (
) (d)Figure 5: The 
ubi
al 
omplex of Fig. 4 (e) and threesteps of elementary 
ollapses.based on the operation of 
ollapse [47, 19℄. This op-eration, whi
h is a dis
rete analogue of a 
ontinuousdeformation (a homotopy), is de�ned hereafter for anarbitrary 
ubi
al 
omplex X ∈ C 3.Let X ∈ C 3 and x, y ∈ X su
h that x ⊂ y. If y isthe only fa
e of X distin
t from x that 
ontains x, wesay that (x, y) is a free pair for X , and that the 
ubi
al
omplex X \ {x, y} is an elementary 
ollapse of X .Let X, Y ∈ C 3. We say that X 
ollapses onto Y ifthere exists a sequen
e 〈X0, ..., Xk〉 su
h that X0 = X ,
Xk = Y , and Xi is an elementary 
ollapse of Xi−1, i =
1, ..., k. See illustration Fig. 5.Now, we give the de�nition of a simple fa
e in an ar-bitrary xel 
omplex X ∈ X 3, see [8℄. It may be seen as adis
rete analogue of the one given by T.Y. Kong in [23℄whi
h lies on 
ontinuous deformations in the Eu
lideanspa
e. See the illustration given Fig. 6.De�nition 1. Let X ∈ X 3 and let x ∈ X . We say that
x is simple for X if X− 
ollapses onto (X \ {x})−. If xis simple for X , we say that X \ {x} is an elementarythinning of X .Let X, Y ∈ X

3. We say that Y is a thinning of X ifthere exists a sequen
e 〈X0, ..., Xk〉 su
h that X0 = X ,
Xk = Y , and Xi is an elementary thinning of Xi−1,
i = 1, ..., k.Observe that, if Y is a thinning of X , then X− 
ol-lapses onto Y −.4 Criti
al KernelsLet X be a xel 
omplex in F 3. As seen in the introdu
-tion, if we remove simultaneously (in parallel) simplefa
es from X , we may �
hange the topology� of the orig-inal obje
t X . More pre
isely, we may obtain a set Ysu
h that X− does not 
ollapse onto Y −.Thus, it is not possible to use dire
tly the notion of sim-ple fa
e for thinning dis
rete obje
ts in a symmetri
almanner.In this se
tion, we re
all a framework for thinningdis
rete obje
ts in parallel with the warranty that we do

x

y z

X Y Z T

X− Y − Z− T−Figure 6: Four xel 
omplexes X , Y = X \ {x}, Z =
Y \ {y}, T = Z \ {z} (X is the xel 
omplex of Fig. 4(d)). The 
ubi
al 
omplexes X−, Y −, Z−, T− are alsogiven. The fa
e x is simple for X , y is simple for Y , but
z is not simple for Z, for Z− does not 
ollapse on T−.

(a) (b)Figure 7: (a) A xel 
omplex X whi
h is made of 3 seg-ments, 3 squares, and 4 
ubes, (b) the fa
es whi
h areessential for X and whi
h are not fa
es of X are high-lighted in dark.not alter the topology of these obje
ts [8℄. This methodholds for 
omplexes of arbitrary dimension. As far aswe know, this is the �rst general method whi
h permitsto thin arbitrary 
omplexes in a symmetri
 way.Let C ∈ X3. We say that C is a d-
lique, or a 
lique,if ∩{x ∈ C} is a d-fa
e.De�nition 2. Let X ∈ X3 and let x ∈ X−. We saythat x is an essential fa
e for X if x is pre
isely theinterse
tion of all fa
es of X whi
h 
ontain x, i.e., if
x = ∩{y ∈ X | x ⊆ y}. If x is an essential fa
e for X , wewrite x+

X
= {y ∈ X | x ⊆ y}, and we say that the 
lique

x+

X
is essential for X .Let x be any fa
e of X ∈ X3. We observe that x isan essential fa
e for X and we have x+

X
= {x}. Theessential fa
es for the xel 
omplex X of Fig. 7 (a) whi
hare not fa
es of X are highlighted Fig. 7 (b).De�nition 3. Let X ∈ X

3 and let x be an essential fa
efor X . We say that x is regular for X if x is simple for
(X \x+

X
)∪{x}. We say that x is 
riti
al for X if x is notregular for X . If x is 
riti
al (resp. regular) for X , wesay that the 
lique x+

X
is 
riti
al (resp. regular) for X .4



Observe that, in the previous de�nition, (X\x+

X
)∪{x}is a xel 
omplex. If x ∈ X , we have (X \x+

X
)∪{x} = X .Thus, a fa
e x ∈ X is regular for X if and only if itis simple for X . Observe also that a 0-
lique whi
h isessential for X is ne
essarily 
riti
al for X . See Fig.8 and 9 whi
h illustrate the notion of a 
riti
al fa
e.Note that an alternative and equivalent de�nition of aregular/
riti
al fa
e is given in [8℄.

x
y

z

t

(a)
x
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(d) (e)Figure 8: (a): The xel 
omplex X of Fig. 7 and fouressential fa
es x, y, z, t (highlighted). (b): The xel
omplex (X \ x+

X
)∪ {x}: x is regular for X . (
) The xel
omplex (X \ y+

X
)∪{y}: y is 
riti
al for X . (d): The xel
omplex (X \ z+

X
) ∪ {z}: z is regular for X . (e) The xel
omplex (X \ t+

X
) ∪ {t}: t is 
riti
al for X .Remark 4. Let X ∈ X3, let x be an essential fa
e for

X , and let C be the 
lique x+

X
. If C is regular for X ,and if x ∈ X , then (as mentioned above) x is simple for

X , and we have C = {x}. Thus X \ C is a thinning of
X : we 
an remove su
h a regular 
lique from the obje
twithout altering the topology. Now let us 
onsider the
ase where C is regular but x 6∈ X . For that purpose, let

(a) (b)Figure 9: (a): The xel 
omplex X of Fig. 7: the fa
es of
X whi
h are 
riti
al for X (not simple) are highlighted.(b): The fa
es whi
h are 
riti
al for X and whi
h arenot fa
es of X are highlighted.us 
onsider the xel 
omplex X of Fig. 8 (a) and the fa
es
x and z . Let C be the 
lique (made of 2 squares) su
hthat C = x+

X
, C is a regular 
lique for X . We observethat X \ C is a thinning of X (see Fig. 8 (b)). Nowlet C′ = z+

X
(a 
lique 
omposed of two 
ubes) whi
h isalso a regular 
lique for X . We note that X \C′ has notthe same topology as X (X has two tunnels and X \C′has only one tunnel, see Fig. 8 (a) and (d)). Thus

X \C′ 
annot be a thinning of X . In fa
t, the di�eren
ebetween these two situations is that the two fa
es of x+

Xare regular (i.e. simple) for X , while there is a fa
e of
z+

X
whi
h is not regular for X (the 
ube above z). Inthe sequel of this se
tion, we will give some 
onditionswhi
h, in the 
ontext of 
riti
al fa
es and 
riti
al 
liques,ensure that a given subset Y ⊆ X is a thinning of X .The following result is a 
onsequen
e of a general the-orem whi
h holds for 
omplexes of arbitrary dimensions(see [8℄).If X ∈ X3, the 
riti
al kernel of X is the 
ubi
al 
omplex
omposed of all fa
es that are 
riti
al for X and all fa
esthat are in
luded in these fa
es.Theorem 5. Let X ∈ X3 and let Y ⊆ X.The xel 
omplex Y is a thinning of X if Y − 
ontains the
riti
al kernel of X.In other words, the xel 
omplex Y is a thinning of Xif Y − 
ontains all fa
es that are 
riti
al for X . See Fig.10 whi
h provides two examples of a 
omplex Y thatsatis�es the above property.As a dire
t 
onsequen
e of Th. 5, we obtain the follow-ing property whi
h will be our guideline for the sequel.5



Corollary 6. Let X ∈ X3 and let Y ⊆ X.The xel 
omplex Y is a thinning of X if any 
lique thatis 
riti
al for X 
ontains at least one fa
e of Y .We 
on
lude this se
tion by giving a 
hara
terizationof the 
omplexes whi
h satisfy the 
ondition of Th. 5.Theorem 7. Let X ∈ X3 and let Y ⊆ X. The 
ubi
al
omplex Y − 
ontains the 
riti
al kernel of X if and onlyif any Z su
h that Y ⊆ Z ⊆ X is a thinning of X.
(a) (b)
(
) (d)Figure 10: (a): A xel 
omplex X made of 12 
ubes. (b):The fa
es that are 
riti
al for X are highlighted. (
) and(d) : two xel 
omplexes Y ′ ⊆ X and Y ′′ ⊆ X . By Th.5, Y ′ and Y ′′ are both thinnings of X .5 Chara
terization of 
riti
al
liques in voxel 
omplexesIn this paper, we investigate a methodology for thinningobje
ts whi
h are made of voxels (i.e., unit 
ubes).For that purpose, we propose, in the following, several
hara
terizations of d-
liques (with d = 3, 2, 1, 0) whi
hare 
riti
al for su
h obje
ts. We �rst give a few basi
de�nitions for voxel 
omplexes.We denote by V3 the 
olle
tion of all xel 
omplexeswhi
h are 
omposed solely of unit 
ubes. A unit 
ubeis also 
alled a voxel , an element of V3 is 
alled a voxel
omplex .For example, the xel 
omplex of Fig. 10 (a) is a voxel
omplex, while the one of Fig. 7 (a) is not.

Figure 11: Di�erent types of neighborhoods: N ∗

2 (x)(squares), N ∗

1 (x) (squares and 
ir
les), N ∗

0 (x) (squares,
ir
les, and triangles). The voxel x 
orresponds to the
entral point.Let d ∈ {0, 1, 2}. We say that two voxels x, y are
d-adja
ent if x ∩ y is a k-fa
e, with k ≥ d. If x is avoxel, we write Nd(x) for the set of all voxels whi
hare d-adja
ent to x, Nd(x) is the d-neighborhood of x.Note that, for ea
h voxel x, we have x ∈ Nd(x). We set
N ∗

d
(x) = Nd(x) \ {x}. See an illustration Fig. 11 wherethe voxel x is represented by a point.Let X, Y ∈ V3, with Y ⊆ X . We say that Y is

d-
onne
ted in X if, for any x, y ∈ Y , there exists asequen
e 〈x0, ..., xk〉 of voxels in X su
h that x0 = x,
xk = y, and xi is d-adja
ent to xi−1, i = 1, ..., k.We say that X ∈ V3 is d-
onne
ted if X is d-
onne
tedin X .A 3-
lique whi
h is 
riti
al for X ∈ V 3 is a set 
om-posed solely of one voxel whi
h is not simple for X . Thus,any 
hara
terization of simple voxels is su�
ient to 
har-a
terize su
h 
liques.The following proposition shows that, when 
onsider-ing voxel 
omplexes, De�nition 1 leads to a 
hara
teri-zation of simple voxels whi
h is equivalent to previousones [5, 13, 46, 22, 17℄. If X ∈ V 3, we write X for theset of voxels whi
h are not in X .Proposition 8. Let X ∈ V 3 and let x ∈ X.The voxel x is simple for X if and only if:1) The set N ∗

0 (x)∩X is non-empty and 0-
onne
ted; and2) The set N ∗

2 (x) ∩ X is non-empty and 2-
onne
ted in
N ∗

1 (x) ∩ X.Let d ∈ {0, 1, 2}. The voxels whi
h belong to d-
liquesthat are 
riti
al for X ∈ V 3 may be dete
ted by:1) Dete
ting all d-fa
es in X− whi
h are essential for X6



(Def. 2);2) Dete
ting all essential d-fa
es x whi
h are not simplefor (X \ x+

X
) ∪ {x} (Def. 3);3) Labeling all the voxels of X whi
h 
ontain su
h fa
es.In the following, we propose to 
hara
terize 
riti
al
liques in a way su
h that the 
omputation of X− isnot ne
essary.We �rst observe that, up to π/2 rotations, the three
on�gurations C2, C1, and C0 given in Fig. 12 maybe used for the dete
tion of an arbitrary (regular or
riti
al) 
lique whi
h is essential for a given voxel
omplex X in V3 (in this �gure a voxel is representedby a point). In fa
t, it may be seen that:- C2 may be used for dete
ting a 2-
lique C whi
h isessential for X : there is su
h a 
lique if both voxels Aand B are in X . In this 
ase, we have C = {A, B}.- C1 may be used for dete
ting a 1-
lique C whi
h isessential for X : there is su
h a 
lique if both A and Dare in X or both B and C are in X . In this 
ase, wehave C = {A, B, C, D} ∩ X .- C0 may be used for dete
ting a 0-
lique C whi
h isessential for X : there is su
h a 
lique if A and H , or Band G, or C and F , or D and E are in X . In this 
ase,we have C = {A, B, C, D, E, F, G, H} ∩ X .We now introdu
e a notion of neighborhood whi
h isfundamental for our purpose.De�nition 9. Let S ∈ V3. The K-neighborhood of S,written K(S), is the set made of all voxels whi
h are

0-adja
ent to ea
h voxel in S. We set K∗(S) = K(S)\S.We note that we have K(S) = N0(x) whenever S ismade of a single voxel x. We also observe that:- we have K(T ) ⊆ K(S) whenever S ⊆ T ;- we have S ⊆ K(S) whenever S is a 
lique;
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K1 K0Figure 13: K-neighborhoods for 2-
liques (K2), 1-
liques(K1), and 0-
liques (K0). A voxel is represented by its
entral point.- we have K(S) = K(T ) whenever S and T are two
liques su
h that ∩{x ∈ S} = ∩{x ∈ T }.The K-neighborhoods of the 
on�gurations C2, C1, and
C0 are given Fig. 13. Observe that we have K∗(S) = ∅for the 
on�guration C0.Let X ∈ V3. As mentioned earlier, a 0-
lique whi
h isessential for X is ne
essarily 
riti
al. With the followingtwo propositions, we give some 
hara
terizations for 2-and 1-
liques whi
h are regular for X . Re
all that a 2-
lique whi
h is essential for X is ne
essarily 
omposedof two voxels whi
h are 2-adja
ent (
on�guration C2).Proposition 10. Let X ∈ V3, let C = {x, y} be a 2-
lique whi
h is essential for X. The 
lique C is regularfor X if and only if:1) The set of voxels K∗(C) ∩ X is non-empty and 0-
onne
ted; and2) There exists two voxels x′, y′ ∈ K∗(C) ∩ X su
h that
x′ ∈ N ∗

2 (x), y′ ∈ N ∗

2 (y), and x′ ∈ N ∗

2 (y′).Proposition 11. Let X ∈ V3, let C be a 1-
lique whi
his essential for X. The 
lique C is regular for X if andonly if the set of voxels K∗(C) ∩ X is non-empty and
0-
onne
ted.We are now in position to propose some masks fordete
ting 
riti
al 
liques. These masks K2, K1, K0 are7



y
x (a) B

A(b)Figure 14: (a): The xel 
omplex X whi
h is the one ofFig. 10 (a). Here, ea
h voxel of X is represented bya bla
k disk. (b): The mask K2, with A, B mat
hingvoxels x, y of X . Condition ii) of Def. 12 for K2 is notsatis�ed but 
ondition i) is ful�lled sin
e the set of voxels
{X0, ..., X7, Y0, ..., Y7} ∩ X is not 0-
onne
ted. Thus, byProp. 13, the voxels x, y 
onstitute a 2-
lique of S whi
his 
riti
al for X . See also Fig. 10 (b) where the 
riti
alfa
e z = x ∩ y is highlighted, we have z+

X
= {x, y}.des
ribed using Fig. 13. For ea
h of these masks, we also
onsider all the masks obtained from them by applying

π/2 rotations about ea
h axis. We get 7 masks (3 for K2,3 for K1, and 1 for K0). See Fig. 14 for an illustrationof the use of the mask K2.De�nition 12. Let X ∈ V3, and let S be a set ofvoxels of X . We say that:1) S mat
hes K2 in X if S = {A, B}; andi) the set of voxels {X0, ..., X7, Y0, ..., Y7}∩X is eitherempty or not 0-
onne
ted; orii) for ea
h i ∈ {0, 2, 4, 6}, Xi or Yi belongs to X .2) S mat
hes K1 in X if S = {A, B, C, D} ∩ X ; andi) at least one of the sets {A, D}, {B, C} is a subsetof X ; andii) we have either [ U ∩ X 6= ∅ and V ∩ X 6= ∅ ] or
[ U ∩ X = ∅ and V ∩ X = ∅ ], with U = {X0, ..., X3}and V = {Y0, ..., Y3}.3) S mat
hes K0 in X if S = {A, B, C, D, E, F, G, H}∩Xand at least one of the sets {A, H}, {B, G}, {C, F},
{D, E} is a subset of X .Prop. 13 is a dire
t 
onsequen
e of Prop. 10 and 11.Proposition 13. Let X ∈ V3, let S be a set of voxelsin X, and let d ∈ {2, 1, 0}. The set S is a d-
lique whi
his 
riti
al for X if and only if S mat
hes Kd in X.We 
on
lude this se
tion by giving a 
hara
terizationof simple voxels and regular 
liques that is based on the

notion of a redu
ible set of voxels. A redu
ible set isde�ned re
ursively as follows.De�nition 14. Let X ∈ V3.We say that X is redu
ible if either:i) X is 
omposed of a single voxel; orii) there exists x ∈ X su
h that N ∗

0 (x) ∩ X is redu
ibleand X \ {x} is redu
ible.The following theorem allows us to 
hara
terize sim-ple voxels with redu
ible sets, see also [23, 7℄ for otherre
ursive approa
hes for simpli
ity.Theorem 15. Let X ∈ V3 and let x ∈ X. The voxel xis simple for X if and only if N ∗

0 (x) ∩ X is redu
ible.Thus, a 
omplex X ∈ V3 is redu
ible if and only if itis possible to redu
e X to a single voxel by iterativelyremoving simple voxels.More pre
isely, X ∈ V3 is redu
ible if and only if thereexists a sequen
e 〈x0, ..., xk〉 su
h that X = {x0, ..., xk},and xi is simple for {xi, ..., xk}, i ∈ [0, k − 1].The following theorem is an extension of Th. 15 toarbitrary regular 
liques.Theorem 16. Let X ∈ V3 and let C be a 
lique thatis essential for X. The 
lique C is regular for X if andonly if K∗(C) ∩ X is redu
ible.Thus, Th. 16 makes it possible to 
hara
terize, ina uni�ed way, regular d-
liques, with d = 3, 2, 1, 0. Inparti
ular, for d = 3, we get the 
hara
terization ofsimple voxels given Th. 15. In this 
ase, the 
lique Cis made of a single voxel x, and we have K∗(C) = N ∗

0 (x).Let X ∈ V3 be a redu
ible 
omplex whi
h is not
omposed of a single voxel. By the very de�nition ofsu
h a 
omplex, and by Th. 15, there exists a simplevoxel for X su
h that X \ {x} is redu
ible. But if
x is an arbitrary simple voxel for X , then X \ {x}is not ne
essarily redu
ible. Su
h a situation o

urswhen X \ {x} is an obje
t su
h as the so-
alled dun
ehat [48℄ or house with two rooms [14℄, see also [34℄ foralgorithmi
 issues.The following result shows that there is not enoughspa
e for su
h obje
ts to be in the K-neighborhood of a
lique.Theorem 17. Let C ∈ V3 su
h that C is a 
lique, andlet S ⊆ K∗(C). If S is redu
ible, then S\{x} is redu
iblewhenever x is a simple voxel for S.8



Let X ∈ V3 and let C be a 
lique that is essential for
X . As a 
onsequen
e of Th. 16 and 17, determiningwhether C is regular or 
riti
al for X may be done bythe following greedy algorithm RegularClique.Algorithm 1: RegularCliqueData: X ∈ V3, a 
lique C whi
h is essential for XResult: Regular

S = K∗(C) ∩ X ;1 repeat2 arbitrarily sele
t a voxel x that is simple for S;3
S = S \ {x};4 until stability ;5 If Card(S) = 1, then Regular = True;6 Else Regular = False;76 Cru
ial Kernels and MinimalSkeletonsOur goal is to de�ne a subset of a voxel 
omplex X thatis guaranteed to in
lude at least one voxel of ea
h 
liquethat is 
riti
al for X . By Cor. 6, this subset will be athinning of X .We want this subset to be as small as possible inorder to obtain an e�
ient thinning pro
edure. We alsowant our method to be independent of arbitrary 
hoi
es,in parti
ular of a 
hoi
e of spe
i�
 voxels in a given
riti
al 
lique. For that purpose the following notion ofa �maximal 
riti
al fa
e� was introdu
ed [11, 12℄.Let X ∈ V3 and let x be a 
riti
al fa
e for X . We saythat x is M-
riti
al for X if x is not a proper fa
e ofa fa
e whi
h is 
riti
al for X . If x is M-
riti
al for X ,we say that the 
lique x+

X
is M-
ru
ial for X . We saythat a voxel x ∈ X is M-
ru
ial for X if x belongs to a
lique whi
h is M-
ru
ial for X .If X ∈ V3, we denote by M(X) the set 
omposedof all voxels that are M-
ru
ial for X , M(X) isthe M-
ru
ial kernel of X . Thus, M(X) is the set ofvoxels of X that 
ontain a fa
e whi
h isM-
riti
al for X .In Fig. 15 (a), the M-
riti
al fa
es of a 
omplex X arehighlighted (see also Fig. 10 (b) where the 
riti
al fa
esof the same 
omplex are given). The M-
ru
ial kernelof X is given Fig. 15 (b).

Remark 18. Let X ∈ V3 and let C ⊆ X . It may beseen that C is an M-
ru
ial 
lique for X if and only if
C is a 
riti
al 
lique for X and no proper subset of C isa 
lique whi
h is 
riti
al for X .Remark 19. Let X ∈ V3 and let C ⊆ X . It has beenproved that C is non-simple for X whenever C is an
M-
ru
ial 
lique for X , whi
h means that the set X \Cis not a thinning of X . In fa
t, it was shown in [12℄(Th. 28), that a subset of X is an M-
ru
ial 
lique for
X if and only if it is a minimal non-simple set for X ,see [42, 21, 30, 24℄ for other properties of the so-
alledMNS's.By the very de�nition of an M-
ru
ial voxel, M(X)is guaranteed to in
lude at least one voxel of ea
h 
liquewhi
h is 
riti
al for X , thus M(X) is a thinning of
X . Nevertheless, through the following observation, itmay be seen that it is possible to obtain a subset ofvoxels of X whi
h ful�lls the 
onditions given in thevery beginning of this se
tion, and whi
h 
ontains lessvoxels than M(X).Let us 
onsider again Fig. 15 (a). The voxel x 
ontainsan M-
riti
al 1-fa
e and thus it belongs to M(X). Butthis 1-fa
e is also in
luded in the voxel y, whi
h 
ontainsa 2-fa
e whi
h is also M-
riti
al. This motivates thefollowing re
ursive de�nition of a 
ru
ial voxel whi
h isbased on dimension.De�nition 20. Let X ∈ V3 and C be a d-
lique whi
his 
riti
al for X . We say that C is D-
ru
ial for X if:i) d = 3; orii) d ∈ {2, 1, 0} and C does not 
ontain any voxel be-longing to a d′-
lique that is D-
ru
ial for X and su
hthat d′ > d.We say that a voxel x ∈ X is D-
ru
ial for X if x belongsto a 
lique that is D-
ru
ial for X .Note that a voxel that is not simple ne
essarily
onstitutes a 3-
lique whi
h is D-
ru
ial. Observe alsothat, if d′ 6= d, a voxel x that belongs to a d-
liquewhi
h is D-
ru
ial 
annot belong to a d′-
lique whi
h isalso D-
ru
ial.If X ∈ V3, we denote by D(X) the set 
omposed of allvoxels whi
h are D-
ru
ial for X , D(X) is the D-
ru
ialkernel of X .Again, by the very de�nition of a D-
ru
ial fa
e, D(X)is guaranteed to in
lude at least one voxel of ea
h 
liquewhi
h is 
riti
al for X . Thus, by Cor. 6, D(X) is athinning of X .9



The following proposition shows that, in the 
ontext ofthinning, the D-
ru
ial kernel 
orresponds to an opera-tion whi
h is �more powerful� than the M-
ru
ial kernel.Theorem 21. Let X ∈ V3. The D-
ru
ial kernel of Xis a subset of its M-
ru
ial kernel.Observe that the example of Fig. 15 (a) showsthat the above in
lusion may be stri
t: the voxel x is
M-
ru
ial for X but not D-
ru
ial for X .Let X ∈ V3. Let 〈X0, ..., Xk〉 be the sequen
e of dis-tin
t elements su
h that X0 = X , Xk = D(Xk), and
Xi = D(Xi−1), for i = 1, ..., k. The set Xk is the mini-mal D-skeleton of X .In Fig. 15 (
), the 
omplex Z = D(X) is highlighted,the 
omplex X being the one of Fig. 15 (a). The 
omplex
Z ′ = D(Z) is given in (d) and (e). We have Z ′ = D(Z ′),thus Z ′ is the minimal D-skeleton of X .Two other examples of minimal D-skeletons are givenFig. 16. We will see in the next se
tion that a minimal
D-skeleton may be obtained by an algorithm whi
h is aspe
ial instan
e of a generi
 parallel thinning s
heme.7 Three Generi
 Symmetri
 Thin-ning S
hemesIn this se
tion, we propose three generi
 thinnings
hemes whi
h permit to 
ompute a wide variety ofskeletons.For that purpose, we �rst introdu
e the notion of a D-
ru
ial kernel whi
h is 
onstrained to preserve a given set
K (Def. 23), and whi
h generalizes the de�nition of a D-
ru
ial kernel presented in Se
. 6. In fa
t, for thinningobje
ts, we often want to keep other voxels than theones that are 
ru
ial. Intuitively, the set K 
orrespondsto a set of features that we want to be preserved by athinning algorithm (like extremities of 
urves, if we wantto obtain a 
urvilinear skeleton).All the three proposed thinning s
hemes are based onsu
h 
onstrained D-
ru
ial kernels.De�nition 22. Let X ∈ V3, K ∈ V3, and let C be a
d-
lique whi
h is 
riti
al for X and su
h that C ⊆ X \K.We say that C is D-
ru
ial for 〈X, K〉 if:i) d = 3; orii) d ∈ {2, 1, 0} and C does not 
ontain any voxel be-longing to a d′-
lique whi
h is D-
ru
ial for 〈X, K〉 andsu
h that d′ > d.

x

y (a)
(b) (
)
(d) (e)Figure 15: (a): A voxel 
omplex X and its M-
riti
alfa
es (highlighted). (b): The 
omplex Y = M(X) ishighlighted. (
): The 
omplex Z = D(X) is highlighted.(d): The 
omplex Z ′ = D(Z) is highlighted. (e): Wehave Z ′ = D(Z ′): Z ′ is the minimal D-skeleton of X .We say that a voxel x ∈ X is D-
ru
ial for 〈X, K〉 if

x is in K or if x belongs to a 
lique whi
h is D-
ru
ialfor 〈X, K〉.De�nition 23. Let X ∈ V3, K ∈ V3. We denote by
D(X, K) the set 
omposed of all voxels whi
h are D-
ru
ial for 〈X, K〉, D(X, K) is the D-
ru
ial kernel of X
onstrained by K.From the previous de�nitions and from Cor. 6, weimmediately dedu
e the following proposition whi
h en-sures that any 
onstrained D-
ru
ial kernel of an obje
tpreserves the topology of this obje
t.Proposition 24. Let X ∈ V3, K ∈ V3. The D-
ru
ialkernel of X 
onstrained by K is a thinning of X.By 
onstru
tion, the following pro
edure D-
ru
ial
omputes the D-
ru
ial kernel of an obje
t X ∈ V

3
onstrained by K. It 
onsists of 5 steps, ea
h stepmay be done in parallel. Voxels that are not simpleand 
riti
al 
liques may be dete
ted with the 
hara
-terizations given Prop. 8 and Prop. 13, or with the10



(a) (b)Figure 16: Two voxel 
omplexes and their minimal D-skeleton (in red).uni�ed 
hara
terization given Th. 16 whi
h 
an beimplemented using algorithm RegularClique.Algorithm 2: D-
ru
ialData: X ∈ V
3, K ∈ V

3Result: X
R3 := set of all voxels of X whi
h are not simple for1
X or whi
h are in K;
R2 := set of all voxels belonging to any 2-
lique2 whi
h is 
riti
al for X and in
luded in X \ R3 ;
R1 := set of all voxels belonging to any 1-
lique3 whi
h is 
riti
al for X and in
luded in
X \ (R3 ∪ R2) ;
R0 := set of all voxels belonging to any 0-
lique4 whi
h is 
riti
al for X and in
luded in
X \ (R3 ∪ R2 ∪ R1) ;
X := R3 ∪ R2 ∪ R1 ∪ R0;5 We present now the �rst thinning s
heme whi
h 
on-sists in 
omputing iteratively, starting from X , D-
ru
ialkernels 
onstrained by a given set K, this 
onstraint setis �xed from the beginning. By Prop. 24, the result is athinning of X . Furthermore, the result 
ontains K ∩X .De�nition 25. Let X ∈ V3, K ∈ V3. Let 〈X0, ..., Xk〉be the sequen
e of distin
t elements su
h that X0 = X ,

Xi = D(Xi−1, K) for i = 1, ..., k, and Xk = D(Xk, K).The set Xk is the D-skeleton of X 
onstrained by K.Observe that the minimal D-skeleton of an obje
t Sis a D-skeleton of S 
onstrained by K, with K = ∅.Note also that the D-skeleton of X 
onstrained by Kmay be easily obtained by repeating, until stability, the

pro
edure D-
ru
ial.The se
ond thinning s
heme is based on a �dynami

onstraint set�. This 
onstraint set is de�ned thanksto a fun
tion Ψ from V3 to V3 whi
h is �xed from thebeginning. This fun
tion allows one to de�ne, at ea
h it-eration, the very subset of the obje
t whi
h must be pre-served during the thinning pro
edure. Again, by Prop.24, the result is a thinning of X .De�nition 26. Let Ψ be a fun
tion from V
3 to V

3. Let
X ∈ V3 and let 〈X0, ..., Xk〉 be the sequen
e of distin
telements su
h that X0 = X , Xi = D(Xi−1, Ψ(Xi−1)) for
i = 1, ..., k, and Xk = D(Xk, Ψ(Xk)). The set Xk is the
D-skeleton of X 
onstrained by Ψ.The third thinning s
heme is based, as above, on adynami
 
onstraint set and a map Ψ from V3 to V3 whi
his �xed from the beginning. The di�eren
e is that the
onstraint set is built iteratively from Ψ and from the
onstraint obtained at the previous iteration step. ByProp. 24, the result is a thinning of X .De�nition 27. Let Ψ be a fun
tion from V

3 to V
3. Let

X ∈ V3, K ∈ V3, and let 〈X0, ..., Xk〉 be the sequen
eof distin
t elements su
h that X0 = X , K0 = K, Xi =
D(Xi−1, Ki) with Ki = Ki−1 ∪ Ψ(Xi−1) for i = 1, ..., k,and Xk = D(Xk, Kk ∪ Ψ(Xk)). The set Sk is the D-skeleton of X in
rementally 
onstrained by Ψ and K.Again, it may be seen that the D-skeleton of X 
on-strained by Ψ, or the D-skeleton of X in
rementally 
on-strained by Ψ and K, may be easily obtained by itera-tively applying the pro
edure D-
ru
ial.8 ExamplesIn this se
tion, we give several examples of spe
i�
instan
es of the three above thinning s
hemes.A �rst basi
 example of a D-skeleton 
onstrained bya set of voxels K is given Fig. 17. Here K is made of5 points, thus the D-skeleton of the original obje
t X
onstrained by K is a 
urvilinear shape. Note that a
D-skeleton may 
ontain some simple points that do notbelong to the 
onstrained set. In other words su
h askeleton may be �thi
k�, whi
h is the pri
e to pay forsymmetry.A se
ond example of su
h a skeleton is given Fig. 18where X is a solid 
ube and K is a subset of X whi
h11



is a solid torus. The D-skeleton of X 
onstrained by Kis an obje
t whi
h 
ontains the torus and whi
h has nohole. Sin
e the topology of the 
ube is preserved duringthe thinning pro
ess, we see that this method may beused for 
losing the holes of all obje
ts provided theyare 
onne
ted. See also [1℄.The quality of a surfa
e skeleton is often assessed bythe fa
t that it 
ontains, approximately or 
ompletely,the medial axis of the shape. An easy way to obtain su
ha skeleton of an obje
t X is to 
ompute the D-skeletonof X 
onstrained by its medial axis MA(X), the medialaxis of X being made of all the 
enters of the maximalballs in
luded in X . Re
all that a ball is maximal for
X if it is in
luded in X and if it is not a proper subsetof another ball in
luded in X [41, 15℄. See Fig. 19 and20 where an example of a D-skeleton 
onstrained bythe medial axis is given, here the 
ity-blo
k distan
e is
onsidered for de�ning the balls involved in the medialaxis. It is well-known that, with the 
ity-blo
k distan
e,the medial axis of a shape 
an be obtained by dete
tingthe lo
al maxima of its distan
e transform [45℄. Thisprovides an e�
ient algorithm for 
omputing the setMA(X).This strategy is e�e
tive in 2D, be
ause the existen
eof a single medial axis point is su�
ient to generate askeleton bran
h, even in the 
ase where the medial axis isdis
onne
ted. However in 3D, the medial axis of 
ertainsurfa
e-like obje
ts may be quite sparse, and the skeleton
onstrained by this medial axis may present unwantedindentations (see the top of Fig. 20).In order to obtain surfa
e skeletons whi
h do notpresent su
h indentations, we may 
onstrain the skele-tons with residual voxels. Following the vo
abulary in-trodu
ed in [11℄, we say that a voxel x in X is a residualvoxel (for X) if it is a border voxel of X whi
h is not 2-adja
ent to any interior voxel of X . Here a border (resp.interior) voxel of X is a voxel of X whi
h is (resp. whi
his not) 2-adja
ent to a voxel in X. Intuitively, a residualvoxel 
an be lo
ated at 
urvilinear or surfa
e parts ofthe obje
t.Let Ψ be the map whi
h asso
iates to X the set 
om-posed of all residual voxels for X . The D-skeleton of X
onstrained by Ψ is depi
ted Fig. 21, X being the obje
tof Fig. 19. We observe that no more �indentations� su
has the ones of Fig. 20 appear.As in 2D (see [11℄), this strategy produ
es a skeletonwhi
h 
ontains most of the medial axis points, but notne
essarily all of them. For instan
e, the skeleton shown

Figure 17: Left: in transparent gray, a shape X ; in red,�ve points that will serve as a 
onstraint set K. Right:the D-skeleton of X 
onstrained by K.

Figure 18: Left: in transparent gray, an obje
t X whi
his a solid 
ube; in red, a subset K of X whi
h is a solidtorus. Right: the D-skeleton of X 
onstrained by K.Noti
e that the hole of the torus has been 
losed.in Fig. 21 
ontains 1987 among the 1995 medial axispoints (only 8 are missing).A possible way to keep the good quality of the skele-ton based on residual voxels while preserving all pointsof the medial axis, is to 
onsider the D-skeleton of X12



Figure 19: Original obje
t X . Up: a rendering (proje
-tion). Down: two 
ross-se
tions.

Figure 20: The D-skeleton of X (the obje
t of Fig. 19)
onstrained by its medial axis.in
rementally 
onstrained by Ψ and K. We set the map
Ψ to be the above map whi
h asso
iates residual vox-els and K to be the medial axis of the original obje
t
X . When applied to the obje
t of Fig. 19, this skeletondi�ers only in few voxels with the one of Fig. 21.

Figure 21: The D-skeleton of X (the obje
t of Fig. 19)
onstrained by Ψ, where Ψ is the map whi
h asso
iatesto X the set 
omposed of all residual voxels for X .9 Dis
ussion and 
on
lusionWe introdu
ed in this paper new general 3D parallelthinning s
hemes whi
h are symmetri
 (invariant byisometries), well de�ned (whi
h provide results whi
hdo not depend on any arbitrary 
hoi
e), e�e
tive andsound (thanks to the properties proved in the 
riti
alkernels framework), versatile (allows the user to spe
ifyany additional geometri
al 
ondition), simple to imple-ment and e�
ient (they 
an be implemented through aset of only three masks in addition to the 
lassi
al simplepoint test). No previously proposed method exhibits allthese qualities. In parti
ular, formerly proposed sym-metri
 parallel thinning algorithms for 3D voxel obje
tsare very few in the literature, let us dis
uss ea
h of them.Two algorithms, [31℄ and [32℄, do not preserve topology(see [27, 28℄). Manzanera et al. proposed several algo-rithms [4, 35, 36℄ that they uni�ed in a 
ommon frame-work for n-dimensional thinning [37℄. These algorithmsprodu
e 
urve skeletons in 2D and surfa
e skeletons in3D. More re
ently in 2008, K. Palágyi also proposed asymmetri
 algorithm for surfa
e skeletons [40℄. In allthese works, topologi
al and geometri
al 
onditions 
an-not be separated, implying that there is no easy way toadapt these algorithms to di�erent geometri
al 
ondi-tions. A symmetri
 algorithm, based on the framework13



of P-simple points, has been introdu
ed in [29℄, we shalldis
uss it in the next paragraphs.In 
omparison with most previous works on parallelthinning (symmetri
 or not), one of the most remark-able features of the proposed s
heme is the separation oftopologi
al and geometri
al 
onditions. The topologi
al
onditions are 
learly stated in the framework of 
riti-
al kernels and may be 
he
ked by di�erent means (seese
tion 5). Geometri
al 
onditions are introdu
ed in ageneri
 way through a 
onstraint set K or a fun
tion
Ψ (see se
tion 7). This brings to our s
heme a �exi-bility that allows the user to design spe
i�
 
onditions,adapted to parti
ular appli
ations. There are only threeother general strategies whi
h allow for su
h a separa-tion, namely the sub�eld approa
h, P-simple points, and
M-
ru
ial 
liques.The sub�eld strategy, brie�y des
ribed in the introdu
-tion, indeed allows for introdu
ing various geometri
al
onditions (see [9, 33, 39, 38℄). However, the resultingskeletons are not invariant by isometries.In the framework of P-simple points, C. Lohou and one ofthe authors [29℄ introdu
ed a symmetri
 thinning s
hemethat they illustrated by two algorithms, one for 
urvilin-ear and one for surfa
e skeletons. Nevertheless, it isnot straightforward to use this framework for propos-ing more powerful thinning operators, as for example athinning algorithm produ
ing a minimal skeleton. Thispoint is dis
ussed in detail and illustrated in [12℄, se
-tion 5.Finally, the notion of M-
ru
ial 
lique [11, 12℄ indeedpermits to design a 3D thinning s
heme, whi
h is pow-erful and �exible enough to produ
e various types ofskeletons, in
luding minimal ones. However, this s
hemeis less powerful than the one that we propose, whi
h isbased on D-
ru
ial 
liques (see dis
ussion in se
tion 6).And more importantly, it has not been possible up tonow to design a set of masks a
ting in Z3 for dete
ting
M-
ru
ial 
liques.As a pri
e to pay for symmetry, the obtained skeletonsare not free of simple non-end points; in other words,they are not �thin�. However, the 
riti
al kernels frame-work is �exible enough to permit the design of asym-metri
 parallel 3D thinning s
hemes. This is the topi
of an ongoing work, where we will introdu
e new 
urvi-linear and surfa
e skeletons and 
ompare their qualitiesto previously proposed ones.
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e hat. Topology 2, 341�358 (1964)10 AppendixProof of Th. 5.The following result is a 
onsequen
e of theorem 4.3iii) of [8℄, note that this theorem holds for 
omplexes of

arbitrary dimensions.Let S ∈ X3, let R ⊆ S, and let T su
h that R ⊆ T ⊆ S.If R− 
ontains the 
riti
al kernel of S, then T− 
ollapsesonto R−.Now let X ∈ X3 and let Y ⊆ X su
h that Y − 
ontainsthe 
riti
al kernel of X .Let X \ Y = {x1, ..., xk}. Thus the fa
es of X \ Y areordered a

ording to their indi
es in an arbitrary way.We set X0 = X , Xi = X \ {x1, ..., xi}, i ∈ [1, k].Let i ∈ [1, k]. The 
omplex Xi 
ontains Y , thus X−

i
ontains all the fa
es whi
h are 
riti
al for X . By theabove result X−

i−1 
ollapses onto X−

i
= [Xi−1 \ {xi}]−,whi
h means that xi is simple for Xi−1 and that Xi isan elementary thinning of Xi−1 (Def. 1). Thus, the xel
omplex Y = Xk is a thinning of X = X0. �Proof of Th. 7.Let X ∈ X3 and let Y ⊆ X .i) Suppose Y − 
ontains the 
riti
al kernel of X . Let Zsu
h that Y ⊆ Z ⊆ X . Sin
e Z− 
ontains the 
riti
alkernel of X , by Th. 5, Z is a thinning of X .ii) Suppose Y − does not 
ontain the 
riti
al kernel of

X . Then, there exists a fa
e whi
h is 
riti
al for X in
X− \Y −. There exists also a fa
e x in X− \Y − whi
h is
M-
riti
al for X . Then, the M-
ru
ial 
lique C = x+

X
isnon-simple for X (see [12℄, Th. 28, and Remark 19), i.e.,the set Z = X \ C is not a thinning of X . We observethat Y ⊆ Z. Thus, there exists Z su
h that Y ⊆ Z ⊆ X ,and su
h that Z is not a thinning of X . �Proof of Prop. 8. We proved the proposition withthe help of a 
omputer program. All 226 possible 
on-�gurations of the neighborhood of a point x in X wereexamined, and for ea
h of them the equivalen
e betweende�nition 1 and 
onditions 1) and 2) was su

essfullytested.Proof of Prop. 10. We proved the proposition withthe help of a 
omputer program. All 216 possible 
on-�gurations of the K-neighborhood of a 2-
lique C in Xwere examined, and for ea
h of them the equivalen
ebetween de�nition 3 and 
onditions 1) and 2) was su
-
essfully tested.Proof of Prop. 11. We proved the proposition withthe help of a 
omputer program. All 28 possible 
on�gu-rations of the K-neighborhood of a 1-
lique C in X wereexamined, and for ea
h of them the equivalen
e betweende�nition 3 and the 
ondition was su

essfully tested.16



Proof of Th. 16 (and Th. 15). We proved theproposition with the help of a 
omputer program. The
ondition �K∗(C)∩X is redu
ible� 
ould not be 
he
keddire
tly be
ause of 
ombinatorial explosion, so we provedthe property re
ursively with respe
t to the 
ardinalityof S = K∗(C) ∩ X . More pre
isely, knowing that theproposition is trivially true for |S| = 0, we 
he
ked itfor all possible 
on�gurations of n elements of S, for
n = 1, ..., N (with N = 26, 16, 8 for d = 3, 2, 1 respe
-tively, C being a d-
lique), based on the fa
t that theproposition was already proved for n−1. For simpli
ity,the 
on�gurations of n elements out of N were generatedby s
anning all possible 2N 
on�gurations and sele
tingthose with pre
isely n elements.Proof of Th. 17. We proved the theorem with the helpof a 
omputer program. It is trivially true when |S| = 0(
ase of a 0-
lique). We 
he
ked it for all possible 
on-�gurations of N elements of S, (with N = 26, 16, 8 for
d = 3, 2, 1 respe
tively, C being a d-
lique). For ea
h ofthese 
on�gurations, we tested for ea
h simple voxel xof S the redu
ibility of S \ {x}, thanks to Th. 16 andto 
hara
terizations of regular 
liques (Prop. 13) andsimple points (Prop. 8).Proof of Th. 21.Let X ∈ V

3, let C be a d-
lique whi
h is 
riti
al for
X , and let x = ∩{x ∈ C}.Suppose C is not M-
ru
ial for X . Then there existsa d′-
lique D whi
h is 
riti
al for X , and su
h that x isa proper fa
e of the fa
e y = ∩{x ∈ D}. Thus, we have
d < d′ and D is a proper subset of C.i) Suppose D is D-
ru
ial for X . It means that C 
on-tains a voxel belonging to a d′-
lique whi
h is D-
ru
ialfor X , with d′ > d. Thus, C is not D-
ru
ial for X .ii) Suppose D is not D-
ru
ial for X . It means that D(hen
e also C) 
ontains a voxel belonging to a d′′-
liquewhi
h is D-
ru
ial for X , with d′′ > d′ > d. Again, C
annot be D-
ru
ial for X .Thus, a 
lique whi
h is D-
ru
ial for X is ne
essarily
M-
ru
ial for X . It follows that the D-
ru
ial kernel of
X is a subset of its M-
ru
ial kernel. �
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