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Abstract

The main contribution of the present article consists of
new 3D parallel and symmetric thinning schemes which
have the following qualities:

- They are effective and sound, in the sense that they
are guaranteed to preserve topology. This guarantee is
obtained thanks to a theorem on critical kernels;

- They are powerful, in the sense that they remove
more points, in one iteration, than any other symmetric
parallel thinning scheme;

- They are versatile, as conditions for the preservation
of geometrical features (e.g., curve extremities or
surface borders) are independent of those accounting
for topology preservation;

- They are efficient: we provide in this article a small
set of masks, acting in the grid Z3, that is sufficient, in
addition to the classical simple point test, to straight-
forwardly implement them.

Keywords: Thinning algorithm, skeleton, parallel al-
gorithm, critical kernel, cubical complex, simple point,
collapse.

1 Introduction

Computing the skeleton of a 3D shape is a fundamental
step in several applications dealing with shape analysis,
shape recognition, registration, visualization, animation,
etc. A fundamental property of skeletons is topology
preservation: a skeleton must have the same topological
characteristics as the original shape.

*This work has been partially supported by the “ANR-2010-
BLAN-0205 KIDICO” project.

In discrete grids (Z2, Z3, Z*), a topology-preserving
transformation can be defined thanks to the notion of
simple point [25]: intuitively, a point of an object (a
subset of Z?) is called simple if it can be deleted from
this object without altering topology. Let us illustrate
this notion by Fig. 1, which displays a same subset of
72 under two usual representations: as a set of points
(left), and as a set of pixels (right). In this example, the
pixels (or points) a,b, ¢ are simple but z,y, z, ¢ are not.
This notion, pioneered by Duda, Hart, Munson [18], Go-
lay [20] and Rosenfeld [43], has since been the subject
of an abundant literature. In particular, local charac-
terizations of simple points have been proposed (see e.g.
[13, 17]), on which efficient implementation of thinning
procedures are based.
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Figure 1: Illustration of 2D simple points/pixels. The set
X is made of the points represented as black discs on the
left, and by gray pixels on the right. The points/pixels
a, b, c are simple while z, y, z,t are not: deleting  would
create a hole in X, deleting y would suppress a hole,
deleting z would split a connected component, and delet-
ing t would suppress a connected component.

The most “natural” way to thin an object consists of
removing some of its border points in parallel. By paral-
lel, we mean that the same operation is executed simul-



Figure 2: Different kinds of skeletons: (a) surface skeleton, (b) curvilinear skeleton, (c¢) minimal skeleton.

taneously and independently for each image point. By
repeating such a procedure until stability, one can ob-
tain a well-centered “skeleton” of the original object (see
Fig. 2). Furthermore, parallel thinning algorithms tend
to produce skeletons which are more robust to small vari-
ations of shape contours, in comparison with sequential
algorithms which must make arbitrary choices regarding
the order of the processing of points.

However, parallel deletion of simple points does not, in
general, guarantee topology preservation: see for exam-
ple Fig. 1 where the points a and b are both simple, and
removing these two points simultaneously would merge
two background components. In fact, such a guaran-
tee is not obvious to obtain, even for the 2D case (see
[16], where fifteen published parallel thinning algorithms
are analyzed, and counter-examples are shown for five of
them).

For the 2D case, A. Rosenfeld introduced in [44] a
method that consists of dividing each thinning step into
four substeps. Each of these substeps considers as can-
didate for deletion, only the simple points that have
no neighbor belonging to the object in one of the four
main directions (north, south, east, west) and have at
least two 8-neighbors belonging to the object. However,
this so-called directional strategy cannot be straightfor-
wardly extended to 3D. In this case, the six main di-
rections are north, south, east, west, up and down. In
Fig. 3, the voxels z,y are simple voxels that have no
neighbor belonging to the object in the direction “up”,
but if we remove them in parallel, the object splits.

Some authors (see e.g. [9, 33, 39, 38]) have proposed
thinning algorithms based on the so-called subfield strat-
egy, a general strategy which permits the parallel dele-
tion of certain simple points. It consists of considering,

in each substep, only simple points that belong to a given
subgrid (also called subfield). For example in 2D (resp.
3D), four (resp. eight) disjoint subfields may be defined
by saying that two points belong to the same subfield
if the parity of each of their coordinates is the same.
Variants with four or even two subfields, in 3D, have
also been proposed; but additional conditions must be
checked to ensure topology preservation.

The directional and the subfield strategy share a com-
mon drawback: depending on the order of the considered
directions or subfields, one can obtain different skele-
tons. An alternative to these strategies consists of delet-
ing points in a symmetric manner. By symmetric, we
mean that this operation is invariant by any isometry
(an isometry, in Z<, is a bijection which preserves adja-
cency relations). For topology preservation, additional
conditions must be verified when deleting simple points
in this way. Such conditions are difficult to design: in-
deed, very few symmetric 3D thinning algorithms have
been published [31, 32, 37, 29, 40], and among these, [31]
and [32] do not preserve topology (see [27, 28]).

Recently, one of the authors introduced a general
framework, called critical kernels [8], that permits to

Figure 3: All voxels are simple, the voxels x and y are
both “up” voxels.



check the topological soundness of parallel thinning al-
gorithms in any dimension, and also to design new ones
that preserve topology “by construction”.

As proven in [12], critical kernels constitute a non-
trivial generalization of all previously proposed frame-
works with similar aims, namely minimal non-simple
sets [42] and P-simple points [6]. Thanks to critical ker-
nels, we were able to propose in [11] nine new 2D thin-
ning algorithms which respond to specific needs (sym-
metry, centering, thinness, geometrical criterions, etc.)
and which had no equivalent among previously published
works. The clear separation of topological and geometri-
cal constraints, which is a key feature of this framework,
makes easy the design of such algorithms.

The main contribution of the present article consists of
new 3D parallel and symmetric thinning schemes which
have the following qualities:

- They are effective and sound, as the main theorem of
critical kernels and additional properties proven in this
article provide the guarantee of topology preservation;
- They are powerful, in the sense that they remove more
points, in one iteration, than any other symmetric par-
allel thinning scheme. In particular, they can be used to
compute minimal skeletons;

- They are versatile, as conditions for the preservation
of geometrical features (e.g., curve extremities or surface
borders) are independent of those accounting for topol-
ogy preservation. We give in this article examples and
illustrations of minimal, curvilinear and surface skele-
tons produced using these schemes;

- They are efficient: we provide in this article a small
set of masks, acting in the grid Z3, that is sufficient, in
addition to the classical simple point test, to straightfor-
wardly implement them.

All the proofs of properties stated below are in the ap-
pendix. Some preliminary results of the work presented
in this paper appear in [10].

2 Cubical and Xel Complexes

In this section, we give some basic definitions for cubi-
cal complexes, see also [26, 3, 2]. We consider here the
three-dimensional case. Note that most of the notions
introduced in the first sections make sense in arbitrary
n-dimensional cubical spaces.

Let Z be the set of integers. We consider the families
of sets F}, F1, such that F} = {{a} | a € Z}, F} =
{{a,a + 1} | a € Z}. A subset f of Z3 which is the
Cartesian product of exactly d elements of F{ and (n—d)

elements of F} is called a face or a d-face of Z3, d is the
dimension of f, we write dim(f) = d.

We denote by F? the set composed of all d-faces of
73, with d € {0,1,2,3}. A d-face of Z3 is called a point
if d =0, a (unit) segment if d = 1, a (unit) square if
d=2,a (unit) cube if d = 3.

If X is a finite set of faces in F3, we write X~ = {y €
F3 | y C z for some x € X}, X~ is the closure of X. A
finite set X of faces in F3 is a cubical complex (in F3) if
X = X~. We denote by C? the collection composed of
all such complexes.

Let X be a finite set of faces in F3. We say that X
is a xel compler (in F3) if, for any x,y € X, we have
y = x whenever y C 2. We denote by X? the collection
composed of all such complexes. Observe that, if X € X3
and Y C X, then we have necessarily Y € X3.

If X is a finite set of faces in F3, we denote by X+ the
set of faces in X which are maximal for inclusion in X.
Thus, if X € C?, we have X+ € X? and (X )™ = X. If
X € X3, we have X~ € C? and (X7)" = X.

Therefore, it is equivalent, with the above correspon-
dences, to specify a cubical complex or a xel complex.
See an illustration Fig. 4.
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Figure 4: (a): Four points z,y, z,t. (b): A graphical rep-
resentation of the set of faces {{z,vy,z,t},{z,y},{z}}.
(c): A set of faces X, which is neither a cubical com-
plex nor a xel complex. (d): The set X, which is a xel
complex composed of 4 segments, 1 square, and 1 cube.
(e): The set X, which is a cubical complex.

3 Simple Faces

Intuitively a face x of a xel complex X is simple if its
removal from X “does not change the topology of X”.
In this section, we propose a definition of a simple face
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Figure 5: The cubical complex of Fig. 4 (e) and three
steps of elementary collapses.

based on the operation of collapse [47, 19]. This op-
eration, which is a discrete analogue of a continuous
deformation (a homotopy), is defined hereafter for an
arbitrary cubical complex X € C3.

Let X € C3 and z,y € X such that x C y. If y is
the only face of X distinct from x that contains x, we
say that (z,y) is a free pair for X, and that the cubical
complex X \ {z,y} is an elementary collapse of X.

Let X,Y € C3. We say that X collapses onto Y if
there exists a sequence (Xo, ..., Xx) such that Xy = X,
X, =Y, and X; is an elementary collapse of X;_1, i =
1,..., k. See illustration Fig. 5.

Now, we give the definition of a simple face in an ar-
bitrary xel complex X € X3, see [8]. It may be seen as a
discrete analogue of the one given by T.Y. Kong in [23]
which lies on continuous deformations in the Euclidean
space. See the illustration given Fig. 6.

Definition 1. Let X € X2 and let x € X. We say that
x is simple for X if X~ collapses onto (X \ {z})~. If
is simple for X, we say that X \ {«} is an elementary
thinning of X.

Let X,Y € X3. We say that Y is a thinning of X if
there exists a sequence (Xo, ..., Xj) such that Xy = X,
X, = Y, and X; is an elementary thinning of X, 1,
i=1,..k.

Observe that, if Y is a thinning of X, then X~ col-
lapses onto Y .

4 Critical Kernels

Let X be a xel complex in F3. As seen in the introduc-
tion, if we remove simultaneously (in parallel) simple
faces from X, we may “change the topology” of the orig-
inal object X. More precisely, we may obtain a set Y
such that X~ does not collapse onto Y .
Thus, it is not possible to use directly the notion of sim-
ple face for thinning discrete objects in a symmetrical
manner.

In this section, we recall a framework for thinning
discrete objects in parallel with the warranty that we do
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Figure 6: Four xel complexes X, Y = X \ {z}, Z =
Y \{y}, T = Z\ {2z} (X is the xel complex of Fig. 4
(d)). The cubical complexes X, Y, Z~, T~ are also
given. The face x is simple for X, y is simple for Y, but
z is not simple for Z, for Z— does not collapse on T~

-
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Figure 7: (a) A xel complex X which is made of 3 seg-
ments, 3 squares, and 4 cubes, (b) the faces which are
essential for X and which are not faces of X are high-
lighted in dark.

not alter the topology of these objects [8]. This method
holds for complexes of arbitrary dimension. As far as
we know, this is the first general method which permits
to thin arbitrary complexes in a symmetric way.

Let C € X3. We say that C is a d-clique, or a clique,
if N{xz € C} is a d-face.

Definition 2. Let X € X3 and let € X~. We say
that x is an essential face for X if x is precisely the
intersection of all faces of X which contain z, i.e., if
x=nN{y € X |z Cy}. If x is an essential face for X, we
write 2% = {y € X | # C y}, and we say that the clique

r¥ is essential for X.

Let x be any face of X € X3. We observe that x is
an essential face for X and we have v = {z}. The
essential faces for the xel complex X of Fig. 7 (a) which
are not faces of X are highlighted Fig. 7 (b).

Definition 3. Let X € X® and let = be an essential face
for X. We say that x is regular for X if x is simple for
(X \z%)U{x}. We say that z is critical for X if x is not
regular for X. If z is critical (resp. regular) for X, we

say that the clique =¥ is critical (resp. regular) for X.



Observe that, in the previous definition, (X \z%)U{z}
is a xel complex. If z € X, we have (X \z})U{z} = X.
Thus, a face x € X is regular for X if and only if it
is simple for X. Observe also that a 0O-clique which is
essential for X is necessarily critical for X. See Fig.
8 and 9 which illustrate the notion of a critical face.
Note that an alternative and equivalent definition of a
regular/critical face is given in [§].

(d)

The xel complex X of Fig. 7 and four
(b): The xel

Figure 8: (a):
essential faces z, y, z, ¢t (highlighted).
complex (X \ z}) U {z}: z is regular for X. (c) The xel
complex (X \ y¥)U{y}: y is critical for X. (d): The xel
complex (X \ z%) U {z}: z is regular for X. (e) The xel
complex (X \ t§) U {t}: t is critical for X.

Remark 4. Let X € X3, let = be an essential face for
X, and let C' be the clique x} If C is regular for X,
and if x € X, then (as mentioned above) x is simple for
X, and we have C' = {z}. Thus X \ C is a thinning of
X: we can remove such a regular clique from the object
without altering the topology. Now let us consider the
case where C'is regular but x ¢ X. For that purpose, let

(a)

(b)

Figure 9: (a): The xel complex X of Fig. 7: the faces of
X which are critical for X (not simple) are highlighted.
(b): The faces which are critical for X and which are
not faces of X are highlighted.

us consider the xel complex X of Fig. 8 (a) and the faces
2 and z . Let C be the clique (made of 2 squares) such
that C' = x;}, C is a regular clique for X. We observe
that X \ C is a thinning of X (see Fig. 8 (b)). Now
let C" = 2% (a clique composed of two cubes) which is
also a regular clique for X. We note that X \ C' has not
the same topology as X (X has two tunnels and X \ ¢’
has only one tunnel, see Fig. 8 (a) and (d)). Thus
X\ €' cannot be a thinning of X. In fact, the difference
between these two situations is that the two faces of 2%
are regular (i.e. simple) for X, while there is a face of
2% which is not regular for X (the cube above z). In
the sequel of this section, we will give some conditions
which, in the context of critical faces and critical cliques,
ensure that a given subset Y C X is a thinning of X.

The following result is a consequence of a general the-
orem which holds for complexes of arbitrary dimensions
(see [8]).

If X € X3, the critical kernel of X is the cubical complex
composed of all faces that are critical for X and all faces
that are included in these faces.

Theorem 5. Let X € X® and let Y C X.
The zel complex Y is a thinning of X if Y~ contains the
critical kernel of X.

In other words, the xel complex Y is a thinning of X
if Y~ contains all faces that are critical for X. See Fig.
10 which provides two examples of a complex Y that
satisfies the above property.

As a direct consequence of Th. 5, we obtain the follow-
ing property which will be our guideline for the sequel.



Corollary 6. Let X € X° and let Y C X.
The xel complex Y is a thinning of X if any clique that
is critical for X contains at least one face of Y.

We conclude this section by giving a characterization
of the complexes which satisfy the condition of Th. 5.

Theorem 7. Let X € X® and let Y C X. The cubical
complex Y~ contains the critical kernel of X if and only
if any Z such that Y C Z C X is a thinning of X.
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Figure 10: (a): A xel complex X made of 12 cubes. (b):
The faces that are critical for X are highlighted. (c) and
(d) : two xel complexes Y/ C X and Y” C X. By Th.
5,Y" and Y are both thinnings of X.

5 Characterization of critical
cliques in voxel complexes

In this paper, we investigate a methodology for thinning
objects which are made of voxels (i.e., unit cubes).
For that purpose, we propose, in the following, several
characterizations of d-cliques (with d = 3,2, 1,0) which
are critical for such objects. We first give a few basic
definitions for voxel complexes.

We denote by V3 the collection of all xel complexes
which are composed solely of unit cubes. A unit cube
is also called a vozel, an element of V3 is called a vozel
complex.

For example, the xel complex of Fig. 10 (a) is a voxel
complex, while the one of Fig. 7 (a) is not.

/X

Figure 11: Different types of neighborhoods: N (x)
(squares), N (z) (squares and circles), N (z) (squares,
circles, and triangles). The voxel x corresponds to the
central point.

Let d € {0,1,2}. We say that two voxels x,y are
d-adjacent if x Ny is a k-face, with £k > d. If x is a
voxel, we write Ny(z) for the set of all voxels which
are d-adjacent to z, Ny(z) is the d-neighborhood of x.
Note that, for each voxel z, we have x € Ny(z). We set
Ni(z) = Na(z) \ {z}. See an illustration Fig. 11 where
the voxel z is represented by a point.

Let X,Y € V3, with Y C X. We say that Y is
d-connected in X if, for any x,y € Y, there exists a
sequence (xq, ..., x) of voxels in X such that z¢ = =z,
rr =y, and x; is d-adjacent to x;—1, 1 =1, ..., k.

We say that X € V3 is d-connected if X is d-connected
in X.

A 3-clique which is critical for X € V? is a set com-
posed solely of one voxel which is not simple for X. Thus,
any characterization of simple voxels is sufficient to char-
acterize such cliques.

The following proposition shows that, when consider-
ing voxel complexes, Definition 1 leads to a characteri-
zation of simple voxels which is equivalent to previous
ones [5, 13, 46, 22, 17]. If X € V3, we write X for the
set of voxels which are not in X.

Proposition 8. Let X € V3 and let x € X.

The vozel x is simple for X if and only if:

1) The set N (z)NX is non-empty and 0-connected; and
2) The set Ny (x) N X is non-empty and 2-connected in

Let d € {0,1,2}. The voxels which belong to d-cliques
that are critical for X € V3 may be detected by:
1) Detecting all d-faces in X~ which are essential for X



(Def. 2);

2) Detecting all essential d-faces x which are not simple
for (X \ 2%) U {x} (Def. 3);

3) Labeling all the voxels of X which contain such faces.

In the following, we propose to characterize critical
cliques in a way such that the computation of X~ is
not necessary.

We first observe that, up to /2 rotations, the three
configurations Co, Ci, and Cp given in Fig. 12 may
be used for the detection of an arbitrary (regular or
critical) clique which is essential for a given voxel
complex X in V3 (in this figure a voxel is represented
by a point). In fact, it may be seen that:

- C2 may be used for detecting a 2-clique C' which is
essential for X: there is such a clique if both voxels A
and B are in X. In this case, we have C'= {4, B}.

- C; may be used for detecting a 1-clique C' which is
essential for X: there is such a clique if both A and D
are in X or both B and C are in X. In this case, we
have C = {A,B,C,D} N X.

- Cop may be used for detecting a 0-clique C' which is
essential for X: there is such a clique if A and H, or B
and G, or C' and F, or D and E are in X. In this case,
we have C = {A,B,C,D,E,F,G,H} N X.

We now introduce a notion of neighborhood which is
fundamental for our purpose.

Definition 9. Let S € V3. The K-neighborhood of S,
written KC(S), is the set made of all voxels which are
0-adjacent to each voxel in S. We set £*(S) = K£(S)\ S.

We note that we have K(S) = Np(z) whenever S is
made of a single voxel x. We also observe that:
- we have K(T') C K(S) whenever S C T,
- we have S C K(S) whenever S is a clique;

R

C2 Cl CO

Figure 12: Masks for 2-cliques (Cz), 1-cliques (C;), and
0-cliques (Cp). Here, a voxel is represented by its central
point.

1

Ko

Figure 13: K-neighborhoods for 2-cliques (K5), 1-cliques
(K1), and O-cliques (Kp). A voxel is represented by its
central point.

- we have K(S) = K(T') whenever S and T are two
cliques such that N{z € S} =nN{z € T}.

The K-neighborhoods of the configurations Cs, C1, and
Co are given Fig. 13. Observe that we have K£*(S) = )
for the configuration Cy.

Let X € V3. As mentioned earlier, a 0-clique which is
essential for X is necessarily critical. With the following
two propositions, we give some characterizations for 2-
and 1-cliques which are regular for X. Recall that a 2-
clique which is essential for X is necessarily composed
of two voxels which are 2-adjacent (configuration Cs).

Proposition 10. Let X € V3, let C = {x,y} be a 2-
cliqgue which is essential for X. The clique C is reqular
for X if and only if:

1) The set of vozels K*(C) N X is non-empty and 0-
connected; and

2) There exists two vozels z',y' € K*(C) N X such that
' e N5 (x), v € N5(y), and 2’ € N5 (v').

Proposition 11. Let X € V3, let C be a 1-clique which
is essential for X. The clique C' is reqular for X if and
only if the set of vozels K*(C) N X is non-empty and
0-connected.

We are now in position to propose some masks for
detecting critical cliques. These masks ICo, K1, Ko are
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Figure 14: (a): The xel complex X which is the one of
Fig. 10 (a). Here, each voxel of X is represented by
a black disk. (b): The mask K, with A, B matching
voxels z,y of X. Condition ii) of Def. 12 for K5 is not
satisfied but condition i) is fulfilled since the set of voxels
{Xoy .oty X7, Y0, ..., Y7} N X is not 0-connected. Thus, by
Prop. 13, the voxels x, y constitute a 2-clique of S which
is critical for X. See also Fig. 10 (b) where the critical
face z = x Ny is highlighted, we have z;g ={z,y}.

described using Fig. 13. For each of these masks, we also
consider all the masks obtained from them by applying
/2 rotations about each axis. We get 7 masks (3 for I,
3 for K1, and 1 for Ky). See Fig. 14 for an illustration
of the use of the mask &Cs.

Definition 12. Let X € V3, and let S be a set of
voxels of X. We say that:
1) S matches Ko in X if S = {A, B}; and

i) the set of voxels { Xy, ..., X7, Yo, ..., Y7} N X is either
empty or not 0-connected; or

ii) for each i € {0,2,4,6}, X; or Y; belongs to X.
2) S matches K1 in X if S = {A,B,C,D} N X; and

i) at least one of the sets {A, D}, {B,C} is a subset
of X; and

ii) we have either [UNX # 0 and VN X # 0 ] or
[UNX =0and VNX =0], with U = {Xo,..., X3}
and V = {Yo, ,}/3}
3) S matches Ko in X it S ={A,B,C,D,E,F,G, H}NX
and at least one of the sets {A, H}, {B,G},{C, F},
{D, E} is a subset of X.

Prop. 13 is a direct consequence of Prop. 10 and 11.

Proposition 13. Let X € V3, let S be a set of voxels
in X, and let d € {2,1,0}. The set S is a d-clique which
is critical for X if and only if S matches Kyq in X.

We conclude this section by giving a characterization
of simple voxels and regular cliques that is based on the

notion of a reducible set of voxels. A reducible set is

defined recursively as follows.

Definition 14. Let X € V3.

We say that X is reducible if either:

i) X is composed of a single voxel; or

ii) there exists 2 € X such that N (z) N X is reducible
and X \ {z} is reducible.

The following theorem allows us to characterize sim-
ple voxels with reducible sets, see also [23, 7] for other
recursive approaches for simplicity.

Theorem 15. Let X € V3 and let x € X. The vozel x
is simple for X if and only if N§(x) N X is reducible.

Thus, a complex X € V3 is reducible if and only if it
is possible to reduce X to a single voxel by iteratively
removing simple voxels.

More precisely, X € V? is reducible if and only if there
exists a sequence (xg, ..., xx) such that X = {xq, ..., 24},
and x; is simple for {x;,...,x}, i € [0,k — 1].

The following theorem is an extension of Th. 15 to

arbitrary regular cliques.

Theorem 16. Let X € V3 and let C be a clique that
is essential for X. The clique C' is reqular for X if and
only if K*(C) N X is reducible.

Thus, Th. 16 makes it possible to characterize, in
a unified way, regular d-cliques, with d = 3,2,1,0. In
particular, for d = 3, we get the characterization of
simple voxels given Th. 15. In this case, the clique C'
is made of a single voxel z, and we have K*(C) = N (z).

Let X € V3 be a reducible complex which is not
composed of a single voxel. By the very definition of
such a complex, and by Th. 15, there exists a simple
voxel for X such that X \ {z} is reducible. But if
x is an arbitrary simple voxel for X, then X \ {a}
is not necessarily reducible. Such a situation occurs
when X \ {z} is an object such as the so-called dunce
hat [48] or house with two rooms [14], see also [34] for
algorithmic issues.

The following result shows that there is not enough
space for such objects to be in the K-neighborhood of a
clique.

Theorem 17. Let C € V3 such that C is a clique, and
let S C K*(C). If S is reducible, then S\ {x} is reducible
whenever x is a simple vozel for S.



Let X € V3 and let C be a clique that is essential for
X. As a consequence of Th. 16 and 17, determining
whether C' is regular or critical for X may be done by
the following greedy algorithm RegularClique.

Algorithm 1: RegularClique

Data: X € V2, a clique C which is essential for X

Result: Regular

S=K"(C)nX;

repeat
arbitrarily select a voxel = that is simple for S;
S =5\ {z};

until stability ;

If Card(S) =1, then Regular = True;

Else Regular = False;

o B = SR B

6 Crucial Kernels and Minimal
Skeletons

Our goal is to define a subset of a voxel complex X that
is guaranteed to include at least one voxel of each clique
that is critical for X. By Cor. 6, this subset will be a
thinning of X.

We want this subset to be as small as possible in
order to obtain an efficient thinning procedure. We also
want our method to be independent of arbitrary choices,
in particular of a choice of specific voxels in a given
critical clique. For that purpose the following notion of
a “maximal critical face” was introduced [11, 12].

Let X € V3 and let  be a critical face for X. We say
that x is M-critical for X if x is not a proper face of
a face which is critical for X. If x is M-critical for X,
we say that the clique a:} is M-crucial for X. We say
that a voxel z € X is M-crucial for X if x belongs to a
clique which is M-crucial for X.

If X € V3, we denote by M(X) the set composed
of all voxels that are M-crucial for X, M(X) is
the M-crucial kernel of X. Thus, M(X) is the set of
voxels of X that contain a face which is M-critical for X.

In Fig. 15 (a), the M-critical faces of a complex X are
highlighted (see also Fig. 10 (b) where the critical faces
of the same complex are given). The M-crucial kernel
of X is given Fig. 15 (b).

Remark 18. Let X € V3 and let C C X. It may be
seen that C is an M-crucial clique for X if and only if
C'is a critical clique for X and no proper subset of C is
a clique which is critical for X.

Remark 19. Let X € V3 and let C C X. It has been
proved that C' is non-simple for X whenever C' is an
M-crucial clique for X, which means that the set X \ C
is not a thinning of X. In fact, it was shown in [12]
(Th. 28), that a subset of X is an M-crucial clique for
X if and only if it is a minimal non-simple set for X,
see [42, 21, 30, 24] for other properties of the so-called
MNS’s.

By the very definition of an M-crucial voxel, M(X)
is guaranteed to include at least one voxel of each clique
which is critical for X, thus M(X) is a thinning of
X. Nevertheless, through the following observation, it
may be seen that it is possible to obtain a subset of
voxels of X which fulfills the conditions given in the
very beginning of this section, and which contains less
voxels than M (X).

Let us consider again Fig. 15 (a). The voxel x contains
an M-critical 1-face and thus it belongs to M(X). But
this 1-face is also included in the voxel y, which contains
a 2-face which is also M-critical. This motivates the
following recursive definition of a crucial voxel which is
based on dimension.

Definition 20. Let X € V3 and C be a d-clique which
is critical for X. We say that C' is D-crucial for X if:

i) d =3; or

ii) d € {2,1,0} and C does not contain any voxel be-
longing to a d’-clique that is D-crucial for X and such
that d’ > d.

We say that a voxel x € X is D-crucial for X if x belongs
to a clique that is D-crucial for X.

Note that a voxel that is not simple necessarily
constitutes a 3-clique which is D-crucial. Observe also
that, if d’ # d, a voxel x that belongs to a d-clique
which is D-crucial cannot belong to a d’-clique which is
also D-crucial.

If X € V3, we denote by D(X) the set composed of all
voxels which are D-crucial for X, D(X) is the D-crucial
kernel of X.

Again, by the very definition of a D-crucial face, D(X)
is guaranteed to include at least one voxel of each clique
which is critical for X. Thus, by Cor. 6, D(X) is a
thinning of X.



The following proposition shows that, in the context of
thinning, the D-crucial kernel corresponds to an opera-
tion which is “more powerful” than the M-crucial kernel.

Theorem 21. Let X € V3. The D-crucial kernel of X
is a subset of its M-crucial kernel.

Observe that the example of Fig. 15 (a) shows
that the above inclusion may be strict: the voxel z is
M-crucial for X but not D-crucial for X.

Let X € V3. Let (X, ..., Xi) be the sequence of dis-
tinct elements such that Xo = X, X = D(Xy), and
X; =D(X;_1), for i = 1,.... k. The set Xy is the mini-
mal D-skeleton of X.

In Fig. 15 (c¢), the complex Z = D(X) is highlighted,
the complex X being the one of Fig. 15 (a). The complex
Z'=D(Z)is given in (d) and (e). We have Z' = D(Z"),
thus Z’ is the minimal D-skeleton of X.

Two other examples of minimal D-skeletons are given
Fig. 16. We will see in the next section that a minimal
D-skeleton may be obtained by an algorithm which is a
special instance of a generic parallel thinning scheme.

7 Three Generic Symmetric Thin-
ning Schemes

In this section, we propose three generic thinning
schemes which permit to compute a wide variety of
skeletons.

For that purpose, we first introduce the notion of a D-
crucial kernel which is constrained to preserve a given set
K (Def. 23), and which generalizes the definition of a D-
crucial kernel presented in Sec. 6. In fact, for thinning
objects, we often want to keep other voxels than the
ones that are crucial. Intuitively, the set K corresponds
to a set of features that we want to be preserved by a
thinning algorithm (like extremities of curves, if we want
to obtain a curvilinear skeleton).

All the three proposed thinning schemes are based on
such constrained D-crucial kernels.

Definition 22. Let X € V3, K € V3, and let C be a
d-clique which is critical for X and such that C C X\ K.
We say that C' is D-crucial for (X, K) if:

i) d =3; or

ii) d € {2,1,0} and C does not contain any voxel be-
longing to a d’-clique which is D-crucial for (X, K) and
such that d’ > d.
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Figure 15: (a): A voxel complex X and its M-critical
faces (highlighted). (b): The complex ¥ = M(X) is
highlighted. (c): The complex Z = D(X) is highlighted.
(d): The complex Z' = D(Z) is highlighted. (e): We
have Z/ = D(Z'): Z’ is the minimal D-skeleton of X.

We say that a voxel z € X is D-crucial for (X, K) if
x is in K or if z belongs to a clique which is D-crucial
for (X, K).

Definition 23. Let X € V2, K € V3. We denote by
D(X, K) the set composed of all voxels which are D-
crucial for (X, K), D(X, K) is the D-crucial kernel of X
constrained by K.

From the previous definitions and from Cor. 6, we
immediately deduce the following proposition which en-
sures that any constrained D-crucial kernel of an object
preserves the topology of this object.

Proposition 24. Let X € V3, K € V3. The D-crucial
kernel of X constrained by K is a thinning of X.

By construction, the following procedure D-crucial
computes the D-crucial kernel of an object X € V3
constrained by K. It consists of 5 steps, each step
may be done in parallel. Voxels that are not simple
and critical cliques may be detected with the charac-
terizations given Prop. 8 and Prop. 13, or with the



Figure 16: Two voxel complexes and their minimal D-
skeleton (in red).

unified characterization given Th. 16 which can be
implemented using algorithm RegularClique.

Algorithm 2: D-crucial

Data: X € V3, K € V3
Result: X
1 R3 := set of all voxels of X which are not simple for
X or which are in K;
2 Ry := set of all voxels belonging to any 2-clique
which is critical for X and included in X \ Rj ;
3 R; := set of all voxels belonging to any 1-clique
which is critical for X and included in
X \ (R3 U RQ) o
4 Ry := set of all voxels belonging to any 0-clique
which is critical for X and included in
X\ (RsURyURy) ;
5 X := R3URsU R1 U Rg;

We present now the first thinning scheme which con-
sists in computing iteratively, starting from X, D-crucial
kernels constrained by a given set K, this constraint set
is fixed from the beginning. By Prop. 24, the result is a
thinning of X. Furthermore, the result contains K N X.

Definition 25. Let X € V3, K € V3. Let (X, ..., Xx)
be the sequence of distinct elements such that Xy = X,
X; =D(X;—-1,K) for i = 1,...,k, and X}, = D(Xj, K).
The set Xy, is the D-skeleton of X constrained by K.

Observe that the minimal D-skeleton of an object S
is a D-skeleton of S constrained by K, with K = (.

Note also that the D-skeleton of X constrained by K
may be easily obtained by repeating, until stability, the

procedure D-crucial.

The second thinning scheme is based on a “dynamic
constraint set”. This constraint set is defined thanks
to a function ¥ from V3 to V3 which is fixed from the
beginning. This function allows one to define, at each it-
eration, the very subset of the object which must be pre-
served during the thinning procedure. Again, by Prop.
24, the result is a thinning of X.

Definition 26. Let ¥ be a function from V2 to V3. Let
X € V2 and let (Xo,..., Xx) be the sequence of distinct
elements such that Xy = X, X; = D(X;_1, V(X,_1)) for
i=1,...,k, and X = D(Xg, ¥(X)). The set Xy, is the
D-skeleton of X constrained by V.

The third thinning scheme is based, as above, on a
dynamic constraint set and a map ¥ from V3 to V3 which
is fixed from the beginning. The difference is that the
constraint set is built iteratively from ¥ and from the
constraint obtained at the previous iteration step. By
Prop. 24, the result is a thinning of X.

Definition 27. Let ¥ be a function from V2 to V3. Let
X € V3, K € V3 and let (Xo,..., Xx) be the sequence
of distinct elements such that Xo = X, Ko = K, X; =
D(Xifl,Ki) with K; = K;_1 U \I/(lel) fori=1,..,k,
and X = D(Xy, K U U (Xy)). The set Sk is the D-
skeleton of X incrementally constrained by ¥ and K.

Again, it may be seen that the D-skeleton of X con-
strained by W, or the D-skeleton of X incrementally con-
strained by ¥ and K, may be easily obtained by itera-
tively applying the procedure D-crucial.

8 Examples

In this section, we give several examples of specific
instances of the three above thinning schemes.

A first basic example of a D-skeleton constrained by
a set of voxels K is given Fig. 17. Here K is made of
5 points, thus the D-skeleton of the original object X
constrained by K is a curvilinear shape. Note that a
D-skeleton may contain some simple points that do not
belong to the constrained set. In other words such a
skeleton may be “thick”, which is the price to pay for
symmetry.

A second example of such a skeleton is given Fig. 18
where X is a solid cube and K is a subset of X which



is a solid torus. The D-skeleton of X constrained by K
is an object which contains the torus and which has no
hole. Since the topology of the cube is preserved during
the thinning process, we see that this method may be
used for closing the holes of all objects provided they
are connected. See also [1].

The quality of a surface skeleton is often assessed by
the fact that it contains, approximately or completely,
the medial axis of the shape. An easy way to obtain such
a skeleton of an object X is to compute the D-skeleton
of X constrained by its medial axis MA(X), the medial
axis of X being made of all the centers of the maximal
balls included in X. Recall that a ball is maximal for
X if it is included in X and if it is not a proper subset
of another ball included in X [41, 15]. See Fig. 19 and
20 where an example of a D-skeleton constrained by
the medial axis is given, here the city-block distance is
considered for defining the balls involved in the medial
axis. It is well-known that, with the city-block distance,
the medial axis of a shape can be obtained by detecting
the local maxima of its distance transform [45]. This
provides an efficient algorithm for computing the set
MA(X).

This strategy is effective in 2D, because the existence
of a single medial axis point is sufficient to generate a
skeleton branch, even in the case where the medial axis is
disconnected. However in 3D, the medial axis of certain
surface-like objects may be quite sparse, and the skeleton
constrained by this medial axis may present unwanted
indentations (see the top of Fig. 20).

In order to obtain surface skeletons which do not
present such indentations, we may constrain the skele-
tons with residual voxels. Following the vocabulary in-
troduced in [11], we say that a voxel  in X is a residual
vozel (for X ) if it is a border voxel of X which is not 2-
adjacent to any interior voxel of X. Here a border (resp.
interior) voxel of X is a voxel of X which is (resp. which
is not) 2-adjacent to a voxel in X. Intuitively, a residual
voxel can be located at curvilinear or surface parts of
the object.

Let ¥ be the map which associates to X the set com-
posed of all residual voxels for X. The D-skeleton of X
constrained by W is depicted Fig. 21, X being the object
of Fig. 19. We observe that no more “indentations” such
as the ones of Fig. 20 appear.

As in 2D (see [11]), this strategy produces a skeleton
which contains most of the medial axis points, but not
necessarily all of them. For instance, the skeleton shown
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Figure 17: Left: in transparent gray, a shape X; in red,
five points that will serve as a constraint set K. Right:
the D-skeleton of X constrained by K.

Figure 18: Left: in transparent gray, an object X which
is a solid cube; in red, a subset K of X which is a solid
torus. Right: the D-skeleton of X constrained by K.
Notice that the hole of the torus has been closed.

in Fig. 21 contains 1987 among the 1995 medial axis
points (only 8 are missing).

A possible way to keep the good quality of the skele-
ton based on residual voxels while preserving all points
of the medial axis, is to consider the D-skeleton of X



Figure 19: Original object X. Up:
tion). Down: two cross-sections.

a rendering (projec-

W

Figure 20: The D-skeleton of X (the object of Fig. 19)
constrained by its medial axis.

incrementally constrained by ¥ and K. We set the map
¥ to be the above map which associates residual vox-
els and K to be the medial axis of the original object
X. When applied to the object of Fig. 19, this skeleton
differs only in few voxels with the one of Fig. 21.
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W

Figure 21: The D-skeleton of X (the object of Fig. 19)
constrained by ¥, where ¥ is the map which associates
to X the set composed of all residual voxels for X.

9 Discussion and conclusion

We introduced in this paper new general 3D parallel
thinning schemes which are symmetric (invariant by
isometries), well defined (which provide results which
do not depend on any arbitrary choice), effective and
sound (thanks to the properties proved in the critical
kernels framework), versatile (allows the user to specify
any additional geometrical condition), simple to imple-
ment and efficient (they can be implemented through a
set, of only three masks in addition to the classical simple
point test). No previously proposed method exhibits all
these qualities. In particular, formerly proposed sym-
metric parallel thinning algorithms for 3D voxel objects
are very few in the literature, let us discuss each of them.
Two algorithms, [31] and [32], do not preserve topology
(see [27, 28]). Manzanera et al. proposed several algo-
rithms [4, 35, 36] that they unified in a common frame-
work for n-dimensional thinning [37]. These algorithms
produce curve skeletons in 2D and surface skeletons in
3D. More recently in 2008, K. Palagyi also proposed a
symmetric algorithm for surface skeletons [40]. In all
these works, topological and geometrical conditions can-
not be separated, implying that there is no easy way to
adapt these algorithms to different geometrical condi-
tions. A symmetric algorithm, based on the framework



of P-simple points, has been introduced in [29], we shall
discuss it in the next paragraphs.

In comparison with most previous works on parallel
thinning (symmetric or not), one of the most remark-
able features of the proposed scheme is the separation of
topological and geometrical conditions. The topological
conditions are clearly stated in the framework of criti-
cal kernels and may be checked by different means (see
section 5). Geometrical conditions are introduced in a
generic way through a constraint set K or a function
U (see section 7). This brings to our scheme a flexi-
bility that allows the user to design specific conditions,
adapted to particular applications. There are only three
other general strategies which allow for such a separa-
tion, namely the subfield approach, P-simple points, and
M-crucial cliques.

The subfield strategy, briefly described in the introduc-
tion, indeed allows for introducing various geometrical
conditions (see [9, 33, 39, 38]). However, the resulting
skeletons are not invariant by isometries.

In the framework of P-simple points, C. Lohou and one of
the authors [29] introduced a symmetric thinning scheme
that they illustrated by two algorithms, one for curvilin-
ear and one for surface skeletons. Nevertheless, it is
not straightforward to use this framework for propos-
ing more powerful thinning operators, as for example a
thinning algorithm producing a minimal skeleton. This
point is discussed in detail and illustrated in [12], sec-
tion 5.

Finally, the notion of M-crucial clique [11, 12] indeed
permits to design a 3D thinning scheme, which is pow-
erful and flexible enough to produce various types of
skeletons, including minimal ones. However, this scheme
is less powerful than the one that we propose, which is
based on D-crucial cliques (see discussion in section 6).
And more importantly, it has not been possible up to
now to design a set of masks acting in Z3 for detecting
M-crucial cliques.

As a price to pay for symmetry, the obtained skeletons
are not free of simple non-end points; in other words,
they are not “thin”. However, the critical kernels frame-
work is flexible enough to permit the design of asym-
metric parallel 3D thinning schemes. This is the topic
of an ongoing work, where we will introduce new curvi-
linear and surface skeletons and compare their qualities
to previously proposed ones.
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10 Appendix

Proof of Th. 5.
The following result is a consequence of theorem 4.3
iii) of [8], note that this theorem holds for complexes of

16

arbitrary dimensions.

Let S € X3, let RC S, and let T such that RC T C S.
If R~ contains the critical kernel of S, then T~ collapses
onto R™.

Now let X € X3 and let Y € X such that Y~ contains
the critical kernel of X.

Let X \Y = {1,...,x5}. Thus the faces of X \ YV are
ordered according to their indices in an arbitrary way.
We set Xo =X, X; = X\ {z1, ...,z }, 7 € [1, K]

Let ¢ € [1,k]. The complex X; contains Y, thus X,
contains all the faces which are critical for X. By the
above result X, collapses onto X, = [X;_1 \ {x:}] ™,
which means that x; is simple for X;_; and that X; is
an elementary thinning of X;_1 (Def. 1). Thus, the xel
complex Y = X is a thinning of X = Xy. O

Proof of Th. 7.

Let X € X3 and let Y C X.
i) Suppose Y~ contains the critical kernel of X. Let Z
such that Y C Z C X. Since Z~ contains the critical
kernel of X, by Th. 5, Z is a thinning of X.
ii) Suppose Y~ does not contain the critical kernel of
X. Then, there exists a face which is critical for X in
X~ \Y . There exists also a face z in X~ \ Y~ which is
M-critical for X. Then, the M-crucial clique C' = x} is
non-simple for X (see [12], Th. 28, and Remark 19), i.e.,
the set Z = X \ C is not a thinning of X. We observe
that Y C Z. Thus, there exists Z such that Y C Z C X,
and such that Z is not a thinning of X. [J

Proof of Prop. 8. We proved the proposition with
the help of a computer program. All 226 possible con-
figurations of the neighborhood of a point z in X were
examined, and for each of them the equivalence between
definition 1 and conditions 1) and 2) was successfully
tested.

Proof of Prop. 10. We proved the proposition with
the help of a computer program. All 2!6 possible con-
figurations of the C-neighborhood of a 2-clique C' in X
were examined, and for each of them the equivalence
between definition 3 and conditions 1) and 2) was suc-
cessfully tested.

Proof of Prop. 11. We proved the proposition with
the help of a computer program. All 28 possible configu-
rations of the K-neighborhood of a 1-clique C'in X were
examined, and for each of them the equivalence between
definition 3 and the condition was successfully tested.



Proof of Th. 16 (and Th. 15). We proved the
proposition with the help of a computer program. The
condition “X*(C)N X is reducible” could not be checked
directly because of combinatorial explosion, so we proved
the property recursively with respect to the cardinality
of S = K*(C) N X. More precisely, knowing that the
proposition is trivially true for |S| = 0, we checked it
for all possible configurations of n elements of S, for
n=1,...,N (with N = 26,16,8 for d = 3,2, 1 respec-
tively, C' being a d-clique), based on the fact that the
proposition was already proved for n — 1. For simplicity,
the configurations of n elements out of N were generated
by scanning all possible 2V configurations and selecting
those with precisely n elements.

Proof of Th. 17. We proved the theorem with the help
of a computer program. It is trivially true when |S| =0
(case of a 0-clique). We checked it for all possible con-
figurations of N elements of S, (with N = 26,16, 8 for
d = 3,2, 1 respectively, C being a d-clique). For each of
these configurations, we tested for each simple voxel x
of S the reducibility of S\ {z}, thanks to Th. 16 and
to characterizations of regular cliques (Prop. 13) and
simple points (Prop. 8).

Proof of Th. 21.

Let X € V3, let C be a d-clique which is critical for
X, and let x = n{x € C}.

Suppose C'is not M-crucial for X. Then there exists
a d’-clique D which is critical for X, and such that z is
a proper face of the face y = N{z € D}. Thus, we have
d < d'" and D is a proper subset of C.
i) Suppose D is D-crucial for X. It means that C' con-
tains a voxel belonging to a d’-clique which is D-crucial
for X, with d’ > d. Thus, C is not D-crucial for X.
ii) Suppose D is not D-crucial for X. It means that D
(hence also C) contains a voxel belonging to a d”’-clique
which is D-crucial for X, with d” > d’ > d. Again, C
cannot be D-crucial for X.
Thus, a clique which is D-crucial for X is necessarily
M-crucial for X. It follows that the D-crucial kernel of
X is a subset of its M-crucial kernel. [J
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