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Abstract

This paper studies relationships between the local determinacy of a stationary
equilibrium in the perfect foresight dynamics, and its local stability in dynamics
arising from econometric learning procedures. Attention is focused on linear scalar
economies where agents forecast only one period ahead, and with an arbitrary, but
.xed, number of predetermined variables. In such a framework, it is well known
that there are no clear links between the determinacy of the stationary state in
the perfect foresight dynamics on the levels of the state variable, and its stability
under learning. The paper emphasizes, however, that this is not the right perfect
foresight dynamics to look at whenever agents try to learn the coe¢ cients of the
perfect foresight dynamics restricted to an eigenspace of lower dimension. Indeed
the paper introduces a growth rate perfect foresight dynamics on these coe¢ cients
and proves equivalence between determinacy in that dynamics and stability under
learning provided that a simple sign condition is satis..ed.
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1 Introduction

It is a commonplace knowledge that dynamic models with rational expectations exhibit a
multiplicity of equilibrium paths. Several alternative devices have consequently been pro-
posed for the selection of the solutions on which attention should be focused in practice.
This paper is an attempt to confront two among these, the determinacy of an equilib-
rium and its stability in a learning dynamics. This purpose is related to Guesnerie’s [9]
dynamic equivalence principle which claims that local determinacy should be equivalent
to local stability under learning provided that agents form “reasonably” their forecasts
(see also Lucas [13]), and temporary equilibrium literature provides indeed many exam-
ples of reasonable learning rules (Grandmont and Laroque [6], Grandmont and Laroque
[7] or Guesnerie and Woodford [10]). Nevertheless, the equivalence principle fails when
agents employ recursive (econometric) learning rules (Dury [1], Evans and Honkapohja
[3], Grandmont [5] or Grandmont and Laroque [8]) such as the ordinary least squares al-
gorithm (Marcet and Sargent [14]), the Robbins and Monro [17] scheme (Woodford [20]),
or the gradient one (Evans and Honkapohja [4]). Most of these are studied in Ljung and
Soderstrom [12]. Our aim is to show that the determinacy criterion is not applied in a
suitable way in these cases.

The intuition is easy to grasp in a linear one step forward looking economy where
the current (univariate) state depends on L = 1 predetermined variable (Reichlin [16],
Woodford [18]). In such a model, the dynamics with perfect foresight is governed by
two (local perfect foresight eigenvalues) growth rates , 4 and , , (with j, 1j < j, 2j) in the
immediate vicinity of a stationary state X (where the state variable is equal to X at all
times). Usually the determinacy criterion is applied to X in the perfect foresight dynamics
on the levels of the state variable, whereas agents try to estimate , 4 and ., through a
standard econometric procedure, the asymptotic behavior of which can be approximated
by suitable continuous dicerential equations involving the expectational stability criterion
(Evans [2]). It turns out that agents discover the growth rate of least modulus , 1 in such
a speci..cation, so that the learning dynamics may be stable (j, 1j < 1) even if X is locally
indeterminate (j, oj < 1). One may wonder, however, whether this is the right perfect
foresight dynamics to look at. The main innovation of the paper is indeed to apply the
determinacy criterion to the . xed points in the learning dynamics (, 1 and , ;) by de. ning
a perfect foresight dynamics of growth rates whose stationary equilibria are the perfect
foresight growth rates. The outcome is particularly appealing within this simple economy
(with only one predetermined variable) since a perfect foresight growth rate is stable under
learning if and only if it is determinate in the perfect foresight dynamics of growth rates
so de..ned.

In the more general framework where the current state depends on expectations of
the next state and on an arbitrary, but . xed, number L , 0 of predetermined variables,



the dynamics with perfect foresight involves (L + 1) local perfect foresight eigenvalues

supposed to try tolearn the L coeg¢ cients of the linear perfect foresight dynamics restricted
to a L-dimensional eigenspace spanned by L eigenvectors among those associated with the
(L + 1) local eigenvalues. When | .1and ', have the same sign (which must be the

case if L - 1), the eigenspace that is locally stable in the learning dynamics corresponds

dynamics if and only if j, | j < 1, which encompasses both the saddle point determinate
con. guration (1 < j, 1+4j) and the indeterminate con. guration (j, ++j < 1), for the
perfect foresight dynamics. When , .4 and ', have opposite signs, the eigenspace
that is locally stable under learning always includes the eigenvector associated with | | .1,
and the learning dynamics will be stable if and only if j,  +4j < 1, i.e., in the locally
indeterminate con. guration for the perfect foresight dynamics. These results imply again
that the learning dynamics may be stable even if X is locally indeterminate in the perfect
foresight dynamics on the levels of the state variable. Nevertheless one should instead look
at a new perfect foresight dynamics, the extended growth rate perfect foresight dynamics,
de. ned on the L-dimensional vectors of the coe¢ cients that agents try to estimate. The
issue is whether there is a neater relation between local stability under the considered
class of learning algorithms, and local determinacy in this extended growth rate perfect
foresight dynamics, of a particular eigenspace or of the L-dimensional vector of coe¢ cients
associated to it. The outcome here is still very simple since the L-dimensional eigenspace
only one to be locally determinate. Therefore, if , .4 and ', have the same sign (a
condition that may be related to the one sided sign condition for stability of dixerential
equations, and that is always satis..ed when L = 1), one gets indeed equivalence between
the local determinacy of a particular eigenspace, or of the associats vector, and its local
stability under learning. However this equivalence fails if , .1 and ', have opposite
signs.

In the paper, we .rst present the simple case where L - 1 (Section 2), and then we
turn to the more general one where L is arbitrary (Section 3). The conclusion (Section
4) will open a few leads about possible extensions.

2 A Preliminary Example

We shall suppose that the current state is a real number x; linked with the forecast of the

next state xf, ; and with the predetermined state x; 1 through the following map:
°Xirqt Xp+ X 1= 0 (1

where ° (with °© = 0, i.e., expectations matter) and £ represent the relative weights of

future and past respectively. This equation stands for a ..rst order approximation of a
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temporary equilibrium dynamics in a small neighborhood of a locally unique stationary
state (X ° 0). We .rst focus interest on the relationships between the usual concept
of the local determinacy of X, in the perfect foresight dynamics generated by (1) with
Xfy 1 = Xt+1, NAmMely:

“Xgr1t X+ X 1= 0 (2)

and its stability under learning. This concept of local determinacy is entirely governed by
the perfect foresight roots , 1 and , » of the characteristic polynomial P (z) = °z2+ z+ ¢
corresponding to (2) We let , 4 and ,, be real, with j, 1j < j,2j. Ifj,4j > 1, then X
is source determinate. If j,4j < 1 < j,j, then it is saddle determinate and for every
arbitrarily small neighborhood V (X) of X, there is a unique equilibrium (x) satisfying
(2) and staying in V (X) at all times, for any initial condition x; 1 close to X. If j, oj < 1,
then X is locally indeterminate. In that case, for any arbitrarily small neighborhood V (%)
of X, and any initial condition x; 1 close to X, there are in..nitely many perfect foresight
equilibria staying in V (X) at all times.

One can interpret perfect foresight equilibria as a situation where traders believe that
the state variable behavior is governed by:

Xt = X 1 (3)

for every x; 1 2 V (X) and every t , 0, and set the growth rate  equal to , 1 or , 5.
Indeed agents are supposed to form their expectations by iterating twice (3) at time t,
I.€., Xfyq1 = _thi 1 (note that they do not condition on x;), so that the actual dynamics
comes by inserting x¢, 4 into (1):

Xe= i (0 2+ By 1. (4)

Their belief is self-ful.lling for — = ,; (i = 1;2) since then j (° 2+ #) equals ,; by
de. nition. One needs the additional condition j, ;j < 1to get alocally feasible equilibrium
that stays near the stationary state X at all times. Thus the belief = _ 4 is the only one
to be self-ful.lling and locally feasible when % is saddle determinate. Both beliefs = | ;
and = ,, are self-ful.lling and locally feasible in the indeterminate case. None of these
self-ful. lling beliefs is locally feasible when X is source determinate.

According to the above interpretation, perfect foresight requires that agents coordinate
their expectations on some self-ful.lling belief = _; (i = 1;2). This is a demanding
hypothesis in a decentralized framework where agents may even not know the dynamic
laws of their environment, summarized by , 1 and , 5. It is thus natural to analyze how
agents may in fact discover asymptotically , 1 and , , through some learning process, where
they would formulate their expectations at each date t from beliefs (3) with = (t) and
would revise them at the beginning of period (t+ 1) as a function of the actually observed



forecasting error (x¢j (t)x; 1) in period t. Here we shall consider the class of econometric
learning algorithms whose recursive form is:

St )= O+ Mh()xy 1 Ixei (x4l (5)

Xe= 0 (T ()2 £)xy 4 (6)

where ®(t) > 0 tends toward 0 as t becomes large, and where h(t) is some function of
past history of the state variable. One must also impose that h(t) > 0 for if agents
overestimate the actual growth rate, i.e., x; < (t)x; 1, then they set (t+ 1) < (1)
in (5). A particular case of this formulation is for instance the ordinary least-squares
learning scheme (Marcet and Sargent [14]) where h(t) = 1=(xt2i 1t pee+ X12 1)-

If agents set ~ (t) = ,; in (5), then their belief is self-ful.lling, i.e., Xy = , ixy; 1 in (6),
and they cease to revise their estimates (t) in (5),i.e., (t+1) = (t) = ,;, thuslearning
the whole trajectory x; = ,iX; 1. Although the dynamics (5)-(6) seems, at ..rst sight,
complex to analyze because of the coupling between growth rates and levels of the state
variable, it can be shown (Ljung’s [11]) that, provided that j,;j < 1 and ®(t) goes to 0
but not too fast, local asymptotic stability of (t) = ,; and of x; = , ix; 1 in (5)-(6) are
equivalent to local stability of (t) = ,; in the simpler associated dizerential equation:

d h . i
A=K T U
where ¢ is a . ctitious scale of time related to t, and A is assumed to be the limit of some
statistics of the process involving ®(t), h(t) and x;." Provided that A> 0 (a condition
that should be thought as a consistency requirement in the learning process), the root | ;
will be locally stable for (7) if and only if it is locally stable for the following expectational
stability dizerential equation (Evans [2]):
d (; o= -
) e s W ®
¢
which makes the revision of growth rate estimates to depend directly on the discrepancy

between the actual growth rate (j (° (;)? + %)) and the initial guess (;). The next
lemma states the properties of (8) in the immediate vicinity of its rest points , 4 and , ».

Lemma 1 Let ° = 0. The low perfect foresight root , 4 is locally stable while the high one
, 2 is locally unstable in the dynamics with learning (8).

P
' The sug¢ cient conditions for this result are j, ;j < 1, ®(t) tends to 0 but the serie t1= 4 ®(t) diverges
to+1 , and, for ®(t) = 1=t,

"= lim hixg ¢ asT! +1.
t=1
For more general sequences (®(t)), see Ljung [11] (conditions C3, C5, CB6)). For the case of weighted
least-squares learning schemes where " = 1, see Marcet and Sargent [14].
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Proof. Local stability of ,; (i = 1;2) in (8) is obtained if and only if the ..rst derivative
of (j (° 2+ %)) ) with respect to is negative for ~ = ,; (see, e.g., Theorem 1.1.1 in
Wiggins [19]), namely:

d —9 — E 2 i

- . o + i_ . -— = 5 . 1< 0 9
0T ) s (9)
since (,1+,2) " (1=, If,; = ,4,then (9), 4= 2 < 1, which is always satis. ed.
Otherwise, if ,; = ,2,> 0, then (9), ,2 < ,4, which never holds true. If ,; = ,, <0,

then (9), 2>, 1, which is impossible too. B

Thus the equivalence principle does not hold under the class of learning processes
considered here, since agents then learn always the root , 1 of lowest modulus, and never
discover , ,. Indeed convergence of the trajectories (x;) to the stationary state value X
imposes j, 1j < 1, but this is compatible with both the saddle indeterminate con..guration
(1 < j, 2J)) and with the indeterminate case (j, oj < 1). We argue in this paper that this
failure is in large part due to the fact that the usual notion of determinacy, as recalled
above, is stated in terms of the perfect foresight dynamics of the levels of the state variable
X, While in fact traders try to discover some growth rate = ,; (i = 1;2). We introduce
now a new perfect foresight dynamics of growth rates, which is obtained by assuming that
the traders’ belief about the law of motion of the state variable . ts (3) with = (t):

Xt = _(t)Xt; 1 (10)

for every x;; 1 2 V(X) and every t , 0. Perfect foresight of the state variable x induces a
dynamics of the growth rate ~ (t) whose .xed points are the roots , 1 and , ,. The issue
is to study whether there exist links between stability of these roots under learning and
their determinacy properties in such a growth rate perfect foresight dynamics. It turns
out that, in fact, a perfect foresight growth rate is locally stable under learning if and
only if it is locally determinate in the growth rate perfect foresight dynamics.

Let us recall that (10) holds for every t , 0, so that traders expectations are:
Xg= (t)xy;1 and X§ = (t+1)xf= (t+1) (t)x 1.

In the perfect foresight dynamics (2), these forecasts are equal to x; and X+ ¢, respectively.
One can consequently rewrite (2) as a recursive equation of growth rates only.

De..nition 2 Let ° = 0. Assume also that (10) holds for every x;; 1 2 V (X) and every
t . 0. The growth rate perfect foresight dynamics is a sequence of growth rates ( (t))
such that:

T (t+1) (H)+ (H)+£=0. (11)



Taking (t) = (t+ 1) in (11) shows that the ..xed points of (11) are ., and , ,. This
dynamics is well de..ned if and only if ~ (t) = 0 in each period. Therefore it must be
the case that (t) = j + if £ = 0 (otherwise (t+ 1) = 0), in which case (11) does not
de..ne a global dynamics but is yet well de..ned around , 1 and , , (both dixer from j t).
If £+=0,then = 0 (sincethen,q,,  j*=° = 0andj,j <], 2j) so that the dynamics
is not well de..ned locally, but one may say that , 4 is unstable while | , is stable because
either (t) =, at all times, or (t) = 1=° = ,, = 0if (t) = 0 at some date.

The dynamics (11) has the classical one-step forward looking structure without pre-
determined variables (the current rate (t) is not given at outset of t). So its ..xed points
are locally determinate if and only if they are locally unstable in (11), which allows us to
state our equivalence result.

Proposition 3 Let ° = 0. The low perfect foresight root , ¢ is locally determinate in the
growth rate perfect foresight dynamics (11) while the high one , , is locally indeterminate
in the same dynamics. Therefore, in view of Lemma 1, the root ,; (i = 1;2) is locally
stable in the learning dynamics (8) if and only if it is locally determinate in the growth
rate perfect foresight dynamics (11).

Proof. The growth rate perfect foresight dynamics in the neighborhood of ,; (i = 1;2)
is obtained by linearizing (11) at this point:

L ED L) CLrNC M L)=0

The condition for ,; to be locally unstable in (11) is:
go,i"' 1§= ;i i L1+ ,2)
L Ji

> 1 (12)

If ,i = ,4, then (12) , j,»=, 4 > 1, which always holds. If
i, 1=.2j > 1, which never holds. ®

i = ,2, then (12) ,

s

3 On the Dynamic Equivalence Principle

We now deal with economies where the current state depends on the forecast of the next
state but also on an arbitrary number L of predetermined variables through the following
map:

*Xfpq Xt F ° X1 =0 (13)

where the parameter £, (1 - | - L) represents the relative contribution to x; of the
predetermined state x;; | at t. We shall proceed here as in the previous section, namely
we shall .rst state the lack of link between determinacy of the stationary state (X = 0)



in the perfect foresight dynamics on the levels of the state variable x, and its stability
under learning when agents try to estimate how the state of period t is related to the

foresight dynamics restricted to a L-dimensional eigenspace. Then we shall de..ne the
perfect foresight dynamics on the L-dimensional vectors of these coe¢ cients. Thus the
issue will be to study whether there is a neater relationship between determinacy and
stability under learning with this new perfect foresight dynamics.

3.1 State Variable Perfect Foresight Dynamics

T he usual concept of local determinacy of the stationary state X is de..ned from the perfect
foresight dynamics on the levels of the state variable x obtained by setting xf, ; = X+ 1 in
(13), namely:

°Xt+1 + X + e i|Xti | = 0 (14)

satis.es (14) and stays in V (X) at all timest, 0. Ifj,  +4j < 1, then X is indeterminate,
i.e., for every arbitrarily small neighborhood V (X) of X, and for every initial condition

(x¢) that stay in V (X) at all datest, O.

Here again one can interpret perfect foresight as a situation where traders believe that
the law of motion of the system is governed by:

R _
Xy = 1 Xtj 1 (15)

|=
for every x; 1 2 V (X) and every t , 0, and where this belief is self-ful. lling. In that case,
the expectation are formed at date t by iterating twice (15):
p1_ _  _

R — - —
e _ —
Xee1 = 1 X1 T |_1( 1t )Xt g Xy L

This forecast, once reintroduced into (13), generates the actual dynamics:

p1h _ _ _ i o
Xt = j " SOt )t X POy O+ t]x L. (16)

Hence the initial belief (15) is self-ful.lling if and only if it coincides with (16), namely:
h i

R G S I o forl =1;:::;L (17)
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with | ,, = 0. Vectors solutions to (17) will be called stationary extended growth rates
(henceforth EGR(L)), and denoted * = (+1; e ;+L). Intuitively the self-ful.lling belief
(15) with ~ “ (" 4;:::; )= " should correspond to the perfect foresight dynamics (14)
restricted to an invariant subspace W of dimension L, i.e., to an eigenspace spanned
by L eigenvectors among the (L + 1) eigenvectors u; associated with the eigenvalues |

(i=1;:::;L+ 1). There are clearly (L + 1) such invariant L-dimensional eigenspaces W

expect (17) to have (L + 1) distinct vector solutions +k, where *¥ corresponds to the
perfect foresight dynamics restricted to Wy. The next lemma makes precise this intuition

Lemma 4 Assume that the characteristic polynomial P corresponding to the (L + 1)-
dimensional dixerence equation (14) admits (L + 1) real and distinct roots , i, with j, ¢j <
666 < j,L+1j. Let the (L + 1) £ 1 eigenvector uy, 1- k- L + 1, be associated with | .
Finally let W, u IRS, 1+ k- L+ 1, be the eigensubspace spanned by all the eigenvectors
except ugx. The perfect foresight dynamics of the state variable restricted to Wy writes:
R4k
Xt = 1 Xt 1

where the Ith entry +:( of the stationary EGR(L) s

BRI i (Lig80¢,5) foralli,=k,z=1;:35l
1 i <gpg iy

The (L + 1) stationary EGR(L) * are the solutions of the equations (17).
Proof. See in Appendix 5.1. W

Of course, for the self-ful. lling belief (15) with ¥ to be locally feasible, one must also
require that the perfect foresight dynamics of the state variable x in Wy be stable (all the
perfect foresight roots dizerent from , « must be stable, i.e., j, ij < 1for i = k). Therefore
the self-ful. lling belief = K withk = L+ 1is the only one to be locally feasible in
the saddle point con.guration for the dynamics (14). Any self-ful.lling belief “ with
k = 1;:::;L + 1 is locally feasible if X is indeterminate in this dynamics, and none of
these self-ful. lling beliefs is locally feasible when X is source determinate.

3.2 Dynamics with Learning

Even if agents are initially aware of the (L + 1) stationary EGR(L) to the model (13), they
have to coordinate their behavior on one among them, which may be quite demanding
in a decentralized framework. In this section we shall instead assume that agents need
learning how the state variable behaves in V (X) through a process where they form at



the outset of period t their forecasts from the law (15) with some L-dimensional vector

learning schemes:

(t+ 1) =" () + ®OHxy 1(xei (1) Xt 1), (18)

ph _ i ] _

(4 1O+ g @)+ 2 xg0 7 - C (1) x4 (19)
Asin (5), the sequence of scalars ®(t) > 0in (18) is still assumed to tend toward 0 as time
passes, and Hy isnow a L £ L matrix related to past history of the economic system. The
rule (18) is general enough to encompass, €.g., the weighted least-squares schemes where
Hi= (X 1x{ 4+ ¢6¢+ X, 1x]4)i ' Equation (19) is (16) with | is replaced by ~(t) (for

Xt = j °
I=1

L £ 1 vector - ( (t)) is the actual weight of x¢; | in (19)).

+k

If agents set (t) = in (18) for some k (k = 1;:::;L + 1) at date t, then x; =
("")Txti 1 in (19). Therefore they do not revise their estimates, i.e., they set  (t + 1) =
(b)) = “*in (18), thus learning the law of motion of the state variable restricted to W.
The dynamics (18)-(19) is, however, complex to analyze because of the coupling between
components of  (t) and levels of the state variable. Here again, as in Section 2, we may
appeal to the existing theory on the convergence of learning algorithms (Ljung’s [11]) to
assert that local asymptotic stability in (18)-(19) of some particular T corresponding to
a stable (feasible) dynamics in W is equivalent, provided that ®(t) goes to 0 but not to
fast, to its local stability in the associated ordinary dizerential equation (see footnote 1
for details):

S =0 NI Q) (20)
where ; is a . ctitious continuous scale of time, and where the L £ L matrix © is assumed
to be the limit of some statistics involving ®(t), H; and the state variable x. We need

here additional assumptions to be able to reduce the study of the stability in (20) to the
dizerential expectational stability criterion (Evans [2]):

@) =0 @) (21)

An intuition for local equivalence between (20) and (21) is easy to grasp by considering
Jacobian matrices ®(D- ("*)j 1) and (D- (**)j 1) that govern the dynamics near
K in (20) and (21), respectively. One can show that (D- (+k)i I, ) has distinct real
eigenvalues under the assumption of distinct real eigenvalues ,; (i = 1;:::;L + 1) (see
Appendix 5.2). It is therefore diagonalizable. In the corresponding basis, one should
expect the asymptotic learning dynamics (20) to be consistent with that structure and to

10



involve correcting each “diagonal error” along the direction of the corresponding eigenvec-
tor of (D- (+k) i 1) with a positive weight. In other words, both ® and (D- (+k) i 1)
should be diagonalizable in the same basis, and the diagonalized matrix © should have only
positive entries on its diagonal. Local stability of (20) and (21) are clearly equivalent in
such circumstances, which are in principle more general than usual least-squares schemes
where © is in fact the identity matrix (see Marcet and Sargent, Proposition 3). Of course
the dynamics (21) will be locally stable around "X if and only if the real part of all the
eigenvalues of (D- (+k) i 1) is negative (see, e.g., Theorem 1.1.1 in Wiggins [19]).

Theorem 5 Let ° = 0. Assume that beliefs .t (15) for every xi; | in V (X) and every
t , 0. Then there exists a unique stationary EGR(L) ** which is locally stable in the

>

learning dynamics (21). It governs the behavior of the state variable restricted to the L-
dimensional eigensubspace Wy of the state variable perfect foresight dynamics (14) spanned
by all the eigenvectors except ux where uy is associated with the perfect foresight root |

which satis. es: ( )
1 L1
L k= i T miax si=

i=1
+L+1

%

sl

i=1

Therefore the stationary EGR(L) that governs the perfect foresight dynamics (14)

of lowest modulus, is the unique stationary EGR(L) to be locally stable in the learning
. . P L+1 . iy . . . L+1 . .
dynamics (21) if , L +1 = .i is positive. Otherwise, i.e., if [ +1 2 .i IS negative,
then the stationary EGR(L) that is locally stable in the learning dynamics (21) governs
the perfect foresight dynamics (14) restricted to an L-dimensional eigenspace that contains

in particular the eigenvector u, . ¢ associated to the eigenvalue of largest modulus , | 1.

Proof. See in Appendix 5.2. W

This result implies again that there are no simple links between the determinacy of X
in the perfect foresight dynamics (14) and its stability under learning. In the case where
,L+1and 51 have the same sign (the reader will note that this condition is always met
in the case of a single predetermined variable L - 1 considered in the previous section),
convergence of the state variable x; to X in the learning dynamics requires also that
j, Lj < 1, but this condition is compatible with both the saddle determinate con. guration
1 < j.i+4j and the indeterminate case j, .1 < 1. On the contrary, when , . and

Fr1 i have not the same sign (which may occur only if L , 2), convergence of x; to
X in the learning dynamics requires j, | +1j < 1, which corresponds to the indeterminate

case.

3.3 Extended Growth Rate Perfect Foresight Dynamics

We argue here again that the fact that there are no simple links between the determinacy
of the stationary state X and its stability under learning, may be due to the fact that

11



determinacy was applied to the perfect foresight dynamics (14) on the levels of the state
variable x;, while agents try to learn extended growth rates. We may thus expect that
simpler relationships might arise if one considers instead determinacy in a perfect foresight
dynamics on extended growth rates. Such a dynamics is constructed in assuming that the

traders’ beliefs . t: °
Xt = 1_| (t) X¢; | (22)

points are the stationary EGR(L). Applying the determinacy criterion to these vectors, in
this extended growth rates dynamics, allows us to show by that the stationary EGR(L)
that governs the perfect foresight dynamics restricted to the L-dimensional eigenspace

that is locally determinate. In view of theorem 5, this fact implies that the equivalence
between determinacy and stability under learning will be restored, at least when | | .4

P )
and 1. have the same sign.

Since (22) holds for each t, the corresponding expectations are as follows:

P — — R _
X{ = . ()X and Xf = g (t+ )P+ s (1) X gy 1
Under the perfect foresight hypothesis x{ and x{, 4 are equal to x; and X+ 1 respectively
so that (14) becomes:

L 1

(1 + °_1 (t + 1))Xt =i (0_|+1 (t + 1) + iI)Xti i ithi L- (23)

Since (22) and (23) holds for every x;; |, the EGR(L ) perfect foresight dynamics is obtained
whenever the coe¢ cients of (22) and of (23) coincide.

and every t , 0. The EGR(L) perfect foresight dynamics is a sequence of L-dimensional

vectors (* (t)) such that: B

C o (tH )+ 4
T+ (t+ 1)

)= (24)

This dynamics is well de..ned if and only if | (t) = 0 in each period. For in that case
(24) for | = L determines ,(t+ 1) while the other equations determine | (t+ 1) for
| =1;:::;L i 1. Inthecase L , 2 (the case L = 1 was dealt with Section 2), | (t)= 0
implies | (t+ 1) = 0ifandonlyif® | (t+1)=(  1(t)= L ()% %, 1= 0. So, when
t, = 0, global dynamics are not well de..ned but local dynamics near every stationary

12



EGR(L) are (see appendix 5.3). If £ = 0, then , 1 = 0 (since , ¢¢
and j, 1j < ¢6¢ < j, L+1j), which implies (by using Lemma 4) that *

b,ier =i %= =0
!'=0but T =0 for
k = 1) but one may say that "X is unstable for k = 1 while ™" is stable in the sense that
either ~ (t) = 7% (k = 1) at all times, or ~ (t) = 7" if 7, (t) = 0 at some date.

Since (24) displays a (multidimensional) one-step forward looking structure without
predetermined variables, a stationary EGR(L) is locally determinate if and only if all the
eigenvalues which govern (24) close to it have modulus greater than 1.

4+ L+1

Proposition 7 The stationary EGR(L) that governs the perfect foresight dynamics
of lowest modulus, is the unique stationary EGR(L) to be is locally determinate in the
EGR(L) perfect foresight dynamics (24). Therefore, in view of Theorem 5, the dynamic

. . . . P, .
equivalence principle holds true if , | has the same sign as 1", ,;, and not otherwise.

Proof. See in Appendix 5.4. B

4 Conclusion

The main innovation of the paper is to describe an extended growth rate perfect foresight
dynamics whose . xed points are the L-dimensional vectors of coe¢ cients which govern
the local perfect foresight dynamics restricted to some L-dimensional eigensubspace. Such
a dynamics allows us to save the equivalence between determinacy and stability under
recursive learning under a simple one sided (sign) condition that may be related to the
condition for stability of dimerential equations. It is clear, however, that this result de-
pends on speci..c features of the model.

(i) Agents were assumed to condition forecasts at t only on past data up to date
(tij 1). An interesting topic for further research would be to investigate what would
happen if agents may condition also on the current equilibrium state x;.

(i) Finally, agents were assumed to care about deviations from the stationary state
value X so that, in fact, they were a priori aware of this value. One may go beyond such
an assumption by introducing an estimate A of the value X into the perceived laws of
motion (15). Namely (15) rewrites:

R _ )

Xy = - Xt A
One can prove that, in this case, saddle deteerinacy of the stationary state (X) is equiv-
alent to its stability under learning if , +4= ',i>0and ;,i=j1=° >0, i.e, if

13



,L+1 > 0. Actually learning a stationary extended growth rate does not rely on the fact
that agents already know X. Therefore the former condition ensures that agents discover
the law of motion of the state variable restricted to the subspace corresponding to the L

where L = 0, agents discover the value X (° > j 1) if and only if the stationary state (%)
is locally determinate (j°j < 1).

5 Proofs

5.1 Proof of Lemma 4

We . rst transform the dynamics (14) into a vector ..rst order dizerence equation:
Xt+1 = TXt

where: 0 1
Xt T T TE A 1 T B I

0
L
: 0
Xt E and T'E ) E
: I :
0

Xti L
The proof proceeds from the fact that x; belongs to a L-dimensional eigensubspace W

convenient form for the (L + 1) £ 1 eigenvector u; (i = 1;:::;L + 1) associated with _; is

s

obtained by using the relations between the coe¢ cients and the roots of P. Namely:

L@ + L1 +q Q1
Let us identify the coe¢ cients in the expression above and those of P. One gets:
G D" %eq($) = 1= forl=0;:5L+ 1, withzg ™ 1 (25)

elementary symmetric polynomial of $, i.e., the sum on all the possible products over |

dizerent elements of $: 5

W) E T (idet)
1+ i< g<i
By de..nition u; is such that Tu; = ,;u; (i = 1;:::;L + 1). It can be shown that:
Ui = G )



where the symbol ’ denotes the (vector) transpose. T he perfect foresight trajectory that is
restricted to Wy is such that x; is a linear combination of all the u; but ux. This condition
writes det (x¢; Ux) = 0 where U is the (L + 1) £ L matrix whose columns are all the u;
but uy. Developing det (x¢; Uk) with respect to its ..rst column x; leads to:

o Xt = p1a|Xti | = ® ((i 1)|+1 ¢1=¢ 0)Xt; 1

where ¢ o is the determinant of the (L 1) £ (L j 1) Vandermonde matrix and ¢, =
% ($«) ¢ o (see respectively Ch. 10 and Ex. 10.12 in Ramis, Deschamps and Odoux [15])
and $ is the set of all the perfect foresight roots but | . Thus a, is as stated in Lemma
1, namely:

al = (i )" % (%) (26)

al = +:‘ (I =1;2;L and k = 1;::;;L + 1). We show this directly by replacing | in (17)
by the coe¢ cient af given (26) for any k given. Observe .rst that, for ° = 0, the Ith
equation of (17) rewrites:

(1=°+ ) =0 jeqi &= (27)

Since a% = %4($x) and (j 1=°) = %4($), we have (1="+ %) = . Hence the Lth equation
of (17) becomes (recall that |, , = 0):

o

1+

- _ L=

L

1k(i 15 %1 1($) (28)

> k >
where we used (25) with | = L. By de. nition, %_.+($) is the product over all the perfect
foresight roots. Therefore (28) rewrites:

_ ..l .
C= G 1i 1"@(5 N 1% (S k)
=k

As (26) shows, | is equal ak, and so af = " Assume now that ,, = a%, (I < L). We
are going to prove that | = af (I < L). Indeed, by using (25) and (26) in (27) for some
[, one obtains:

LG 2 () *+ (0 ) ar(8)) = —

sk sk
But, by de. nition, %..+1($«) is the sum on all the products over (I + 1) dizerent elements
of $« while %, 1($) is the sum on all the products over (I + 1) dizerent elements of $.
The dizerence between these sums is just the sum on all the products over (I + 1) dizerent
perfect foresight roots, provided that each of the remaining products includes the root | .
Hence:

G DG Bea($) + %i1(8))

i % 1($31) + %e(8) = Lk %($k)) =G DT (S = af
Since |, = a, we have ©\ = ak for any | (I = 1;:::;L) and for any given k, which
completes the proof of Lemma 1.
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5.2 Proof of Theorem 5

0 1
a??£1 N 0 ¢4 O
ot . otk | . o
i 2 i 101 ¢ 0
a k= |°+§ 0 .
» : .o ik°
L 0 pee 0 i° it

These eigenvalues are the L solutions of the equation det(® «j *"1.) = 0, where | denotes
the L £ L identity matrix. Let develop det(® «j *1.) with respect to its ..rst column:

AT VIR TT 0o
GazTi . ) T .-
Z : T i Z
0 SR R T
it 0 iz -
(R E LY
- - i -
0 NN R
- o ° 0 72 U
O e L L gi
‘ 0 NN
Therefore:
det(®* xj "1L)=0
S Q@)= ()t TRt =0 (29)

1=1

The expression of +:‘ given in (26) lead to:

GD°™ = GG DS = GNTTUE °Skg)

o

where the L elements of the set fj °$«g are (j
reintroduce now the expression of (j 1=°) given in (25):

A( ) !
. . 1
G0 =GO p—S (30)

i=1 51
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Let nowy = 1+ °"% + z so that (29) rewrites (with (30)):
A( ) !

¥ 1 _
Qi(y) = yL i | 1(i 1)| 1%:( PT$k y'—l =
= =1 s

e

This shows that the L roots of Q, are ,,-=P Lrl iforj = 1;:::;L+1andj = k. Namely:

otk . 1k — 5]
T+ 9+ 77 =4 XN
i= s |

Since+'1‘ = %1 ($«) = %1($)j ., «, one ..nally gets (by using again the expression of (j 1=°)
given in (25):

_ . _ PL+11_ PL+11 o
1k— #J . . o _— AJ . i= s i_ s | B
A v Tl S SR Tl oy el L o e i e
i=1 s i=1 sl i=1 sl i=1 s

A stationary EGR(L) s locally stable under learning if and only if 1}‘ < 0 for each
j=1b+1butj =k (k=1;:::;L + 1). The result follows.

5.3 Local Extended Growth Rate Dynamics

Recall that, from (25), we have:

== (i D) Mq($) and 1420 = (3 DW($) (31)

If +, = 0, then %_+($) = QL” i

Now, it follows from (26) that.

= 0,sothat ,; = 0 whatever i is (i = 1;:::;L + 1).

= GN$) and T = (1) Y a($ ) (32)
Since % ($«) = QI-T, ..iandsince ,; = 0 when# = 0, it follows that *; = 0 whatever
kis (k= 1;:::;L+ 1). It remains consequently to show that, when £, = 0 we have:
+k
Lo _ t1 _ ta=°
e e

Using de. nitions (31) and (32), this condition is equivalent to:

T ($) _ hea($)
i 1($k) (%)

Observe now that % +1($)=%_($«) = . «, so that (33) rewrites:

kB (8 i %($)=0, % ($)=0

which is true when £ = 0. This proves the claim.
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5.4 Proof of Proposition 7
The dynamics (24) in the neighborhood of X is obtained by linearizing (24) at M

B Kt+ i Y=+ TR T

where: 0
R TOR 40 w0,
: : 0 1 :
N : , Bk’ Do .0
) i 0 e 0
< (t) TE0 g gg6 O

Assume that det B¢ = +'[ = 0,i.e., ¥ = 0 (see appendix 4). One can express ( * (t + 1)j
") as a function of (T¥(t); %) for “*(t) near . Namely:

+k
k L1+ e
%) where Fy" !

Ct+ D "= Fe(R ) Bl

o

Let p}‘ and b}‘ (j = 1;:::;L) denote the L eigenvalues of F, and By (k = 1;:::;L + 1)

respectively. Then we have: pi = j (1+ °+'1()=(°b}‘). Remark now that 2 ( = | °Bg
(1+° "L, so that: = oh °™* | 1. Hence:

le = 1 + °+l1( = i

J (1 + o‘1'|:) + 1J!( 5

where the last equality comes by replacing +'1( by %, 1($«) (see (26)). A given stationary
EGR(L) T (k = 1;:::;L + 1) is locally determinate in (24) if and only if 'pjk' > 1
(j = 1;::;L+1andj = k), which holds true if and only if k = L + 1. The result follows.
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