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ABSTRACT

The Linux kernel does not export a stable, well-defined ker-
nel interface, complicating the development of kernel-level
services, such as device drivers and file systems. While
there does exist a set of functions that are exported to ex-
ternal modules, these frequently change, and have implicit,
ill-documented preconditions. However, no specific debug-
ging support is provided.
We present Diagnosys, an approach to automatically con-

structing a debugging interface for the Linux kernel. First,
a designated kernel maintainer uses Diagnosys to identify
constraints on the use of the exported functions. Based on
this information, service developers can then use Diagnosys
to generate a debugging interface specialized to their code.
When a service including this interface is tested, it records
information about potential problems. This information is
preserved following a kernel crash or hang. Our experiments
show that the generated debugging interface provides useful
log information and incurs a low performance penalty.

Categories and Subject Descriptors

D.2.5 [Software Engineering]: Testing and Debugging—
Debugging aids; D.4.5 [Operating Systems]: Reliability

General Terms

Design, Experimentation, Reliability

Keywords

Diagnosys, Debugging, Wrappers, Linux, Device drivers

1. INTRODUCTION
Debugging is difficult. And debugging an operating sys-

tem kernel-level service, such as a device driver, file system,
or network protocol, is even more difficult. When a crash
occurs, the service developer is presented with a backtrace,
containing the location of the instruction that caused the
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crash and the pending return pointers on the stack. This
information may be unreliable or incomplete. Even when
the backtrace information is present and correct, it does
not capture context information such as the values of local
variables and the effect of recent decisions that are often es-
sential to identify the problem. Indeed, kernel service code
contains many execution paths, taking conditions from the
operating environment into account, and is difficult to test
deterministically. Support is needed for providing more in-
formation at the time of the crash, without introducing a
substantial performance penalty or imposing an additional
burden on the developer.
As Linux is becoming more and more widely used, in plat-

forms ranging from embedded systems to supercomputers,
there is an increasing interest from third-party developers,
having little expertise in Linux internals, in developing new
Linux kernel services. Such services must integrate with the
Linux kernel via the various kernel-level APIs. Developing
code at this level is a challenging task. Indeed, the Linux
kernel development process is based on the assumption that
the source code of all kernel-level services is available within
the publicly available kernel source tree, and thus kernel
APIs are, for efficiency, only as robust as required by their
internal client services. Furthermore, kernel developers can
freely adjust the kernel APIs, as long as they are willing to
update all of the affected service code. The kernel implemen-
tation is thus, by design, maximally efficient and evolvable,
enabling it to rapidly meet new performance requirements,
address security issues, and accommodate new functionali-
ties. But these assumptions complicate the task of the de-
velopers of new services who require more safety and help
in debugging. Advances in bug-finding tools [3, 18, 20], spe-
cialized testing techniques [17, 21], and code generation from
specifications [30] have eased but not yet fully solved these
difficulties. Current approaches put substantial demands on
the developer, both to learn how to use the approach and to
effectively integrate it into his development process.
We concretize the difficulty confronting a Linux service

developer as the notion of a safety hole. We define a safety
hole as a fragment of code that introduces the potential for
a fault to occur in the interaction between a kernel-level
service and the rest of the kernel. For example, code in
the definition of a kernel API function that dereferences a
parameter without testing its value represents a safety hole,
because a service could invoke the function with NULL as the
corresponding argument. Likewise, code in the definition
of a kernel internal API function that returns NULL as the
result represents a safety hole, because a calling service could



dereference this result without checking its value.
To address the problem of safety holes in Linux kernel

internal API functions, we propose an approach, named Di-
agnosys, that automatically generates a debugging interface
to the Linux kernel tailored for a particular kernel-level ser-
vice under development, based on a prior static analysis of
the Linux kernel source code. To limit the runtime overhead,
the generated debugging interface is localized at the bound-
ary of the interaction between the service and the OS kernel.
This strategy focuses the feedback provided by the interface
on the part of the code that the developer has written, and
thus is expected to be the most familiar with. Because the
interface is only visible to the service, it has no impact on
the performance of code within the kernel, even code that
uses functions that contain safety holes. When the service
executes, the interface generates log messages whenever ser-
vice code invokes a kernel API function containing a safety
hole in a potentially risky way. Such a debugging interface
requires no manual intervention from the service developer
until there is a crash or hang, and is thus well-suited to inten-
sive service development, when the developer is modifying
the code frequently, and bugs are likewise frequent. Because
the debugging interface is automatically generated, it can be
regenerated for each new version of the Linux kernel, as the
properties of the kernel APIs change.
Diagnosys is composed of two tools: SHAna (Safety Hole

Analyzer), which statically analyzes the kernel source code
to identify safety holes in the definitions of the kernel ex-
ported functions, and DIGen (Debugging Interface Genera-
tor), which uses the information about the identified safety
holes to construct a debugging interface tailored to a given
service. Diagnosys also includes a runtime system, provided
as a kernel patch. SHAna is run by a Linux kernel main-
tainer once for each Linux version, to take into account the
current definitions of the Linux kernel internal API func-
tions. DIGen is run by a service developer as part of the
service compilation process. During the execution of the
resulting service, the debugging interface uses the runtime
system to log information in a crash-resilient buffer about
any unsafe uses of functions containing safety holes. On a
kernel crash or hang, the service developer can subsequently
consult the buffer to obtain the logged information.
The main contributions of this paper are as follows:

• We identify the interface of kernel exported functions
as a sweet spot at which it is possible to interpose the
generation of debugging information, in a way that
improves debuggability but does not introduce an ex-
cessive runtime overhead.

• We identify safety holes as a significant problem in the
interface between a service and the kernel. Indeed,
of the 703 Linux 2.6 commits for which the changelog
refers explicitly to a function exported in Linux 2.6.32,
38% corrected faults that are related to one of our
identified safety holes.

• We propose an approach to allow a service developer to
seamlessly generate, integrate, and exploit a kernel de-
bugging interface specialized to the service code. This
approach has a low learning curve, and in particular
does not require any particular Linux kernel expertise.

• Using fault-injection experiments on 10 Linux kernel
services, we demonstrate the improvement in debug-

gability provided by our approach. We find that in
90% of the cases in which a crash occurs, the log con-
tains information relevant to the origin of the defect,
and in 95% of these cases, a message relevant to the
crash is the last piece of logged information. We also
find that in 93% of the cases in which a crash or hang
occurs, the log information reduces the number of files
that have to be consulted to find the cause of the bug.

• We show that the generated debugging interface incurs
only a minimal runtime overhead on service execution,
allowing it to be used up through the phase of early
deployment.

The rest of this paper is organized as follows. Section 2
illustrates problems in kernel development that have been
related to safety holes and gives an overview of kinds of
safety holes that we take into account. Section 3 discusses
the challenges in kernel debugging, focusing on crashes and
hangs derived from safety holes. Section 4 presents Diag-
nosys, including the process of collecting information about
the occurrences of safety holes and their associated precon-
ditions, and the process of generating a debugging interface.
Section 5 evaluates our approach. Finally, Section 6 dis-
cusses related work, and Section 7 concludes.

2. SAFETY HOLES
To understand the challenges posed by safety holes, we

first consider some typical examples in Linux kernel internal
API functions and the problems that these examples have
caused, as reflected by Linux patches. Then, we present
a methodology for identifying kinds of safety holes, and use
this methodology to enumerate the kinds of safety holes con-
sidered in the rest of the paper. Finally, we consider how
to statically identify preconditions on these safety holes, to
limit the generation of log messages in the debugging inter-
face to cases that may actually cause a crash or hang.

2.1 Examples of safety holes
Because the Linux kernel does not define a precise internal

API, we focus on the set of functions that are made avail-
able to dynamically loadable kernel modules using either
EXPORT_SYMBOL or EXPORT_SYMBOL_GPL. Dynamically load-
able kernel modules provide a convenient means to develop
new services, as they allow the service to be loaded into and
removed from a running kernel for the testing of new ser-
vice versions. We refer to kernel functions that are made
available to such modules as kernel exported functions.
Fig. 1a shows an excerpt of the definition of the kernel

exported function skb_put, which dereferences its first ar-
gument without first checking its value. Many kernel func-
tions are written in this way, assuming that all arguments are
valid. This code represents a safety hole, because the deref-
erence is invalid if the corresponding argument is NULL. Such
a fault occurred in Linux 2.6.18 in the file drivers/net/force-
depth.c. In the function nv_loopback_test, skb_put is called
with its skb argument being the result of calling dev_alloc_-
skb, which can be NULL. The fix, as implemented by the
patch shown in Fig. 1b, is to avoid calling skb_put in this
case. skb_put remains unchanged.
Fig. 2a shows an excerpt of the definition of the kernel

exported function open_bdev_exclusive, which returns a
value constructed using the kernel function ERR_PTR when an



1 unsigned char *skb put(struct sk buff *skb, unsigned int len)
2 { unsigned char *tmp = skb tail pointer(skb);
3 SKB LINEAR ASSERT(skb);
4 skb−>tail += len; . . .
5 }

a) Excerpt of the definition of skb_put

1 commit 46798c897e235e71e1e9c46a5e6e9adfffd8b85d

2 tx skb = dev alloc skb(pkt len);
3 + if (!tx skb) { . . . goto out; }
4 pkt data = skb put(tx skb, pkt len);

b) Excerpt of the bug fix patch

Figure 1: Bug fix of the usage of skb_put

error is detected. Dereferencing such a value will crash the
kernel. Thus, this return statement also represents a safety
hole. In Linux 2.6.32, in the file fs/btrfs/volumes.c, the func-
tion btrfs_init_new_device called open_bdev_exclusive

and compared the result to NULL before dereferencing the
value. This test, however, does not prevent a kernel crash,
because an ERR_PTR value is different from NULL. Fig. 2b
shows a patch fixing the fault.

1 struct block device *open bdev exclusive(
2 const char *path, fmode t mode, void *holder)
3 {
4 . . .
5 return ERR PTR(error);
6 }

a) Excerpt of the definition of open_bdev_exclusive

1 commit 7f59203abeaf18bf3497b308891f95a4489810ad

2 bdev = open bdev exclusive(. . .);
3 − if (!bdev) return −EIO;
4 + if (IS ERR(bdev)) return PTR ERR(bdev);

b) Excerpt of the bug fix patch

Figure 2: Bug fix of error handling code

In the previous cases, the safety hole is apparent in the
definition of a kernel exported function. A safety hole, how-
ever, may also be interprocedural, making the danger that
it poses more difficult to spot. For example, as shown in
Fig. 3(a,b), the kernel exported function kmap, defined in
arch/x86/mm/highmem 32.c, passes its argument to the func-
tion page_zone via the macro PageHighMem, which in turn
forwards the pointer, again without ensuring its validity, to
the function page_to_nid. This function then dereferences
it, unchecked. This safety hole resulted in a fault, which was
fixed by the patch shown in Fig. 3c.

1 void *kmap(struct page *page)
2 { might sleep();
3 if ( !PageHighMem(page))
4 . . .
5 }

a) Excerpt of kmap

1 static inline int page to nid
2 (struct page *page) {
3 return ( page–>flags >> . . .)
4 & NODES MASK;
5 }

b) Excerpt of page_to_nid

1 commit 649f1ee6c705aab644035a7998d7b574193a598a

2 page = read mapping page(. . .);
3 + if (IS ERR(page)) { . . . goto out; }
4 pptr = kmap (page);

c) Excerpt of the bug fix patch

Figure 3: Bug fix of a use of kmap

2.2 Taxonomy of safety holes
As illustrated in Section 2.1, some fragments of code exe-

cuted by kernel exported functions, while themselves being
correct, can provoke kernel crashes or hangs when the func-

tion is used incorrectly. We distinguish between entry safety
holes, in which the crash or hang is provoked within the ex-
ecution of the kernel exported function, due to an invalid
argument provided by the service, and exit safety holes, in
which the crash or hang is provoked within the subsequent
execution of the service due to a possible effect of the ker-
nel exported function that the service has not taken into
account.
As a first source of kinds of safety holes, we consider the

fault kinds identified by Chou et al. in their 2001 study of
Linux code [5]. A fault is not in itself a safety hole, because
the faulty code can be completely contained within a single
function definition. Likewise, a safety hole is not in itself
a fault, as illustrated by the above examples. Nonetheless,
we observe that many fault kinds involve the conjunction
of multiple disjoint code fragments. When some of these
fragments are present in a kernel exported function and the
remainder may be present in a service implementation, we
say that the kernel exported function contains a safety hole.
For example, a NULL pointer dereference fault typically in-
volves an initialization of a variable to NULL followed by a
dereference of this variable. Returning NULL from a kernel
exported function can cause it to be dereferenced in service
code, and receiving NULL as an argument in a kernel exported
function can lead to a NULL pointer dereference in the kernel
exported function code.
These observations suggest a methodology for translating

fault kinds into kinds of safety holes. When the suffix of a
sequence of code fragments associated with a fault kind is
found in a kernel exported function and depends in some way
on the calling context, e.g., via arguments of that function,
then that suffix represents an entry safety hole. Likewise,
when a prefix of such a sequence is found in a kernel exported
function and has some impact on the function’s result, then
that prefix represents an exit safety hole.
Table 1 summarizes the fault kinds identified by Chou et

al., as well as the entry and exit safety hole kinds that we
have derived from these fault kinds according to the above
methodology. For example, given the above analysis of the
structure of a Null fault, the corresponding entry safety hole
is a dereference of an unchecked pointer parameter, while the
corresponding exit safety hole is a return of a NULL value.

2.3 Safety hole preconditions
From a collection of safety holes, our goal is to create

a debugging interface that informs the service developer of
possibly dangerous uses of kernel exported functions within
his code. Nevertheless, merely invoking a kernel exported
function that contains an entry or exit safety hole does not
necessarily cause a fault. Instead, some properties of the
argument or return values, such as the presence of a NULL

value, must typically be satisfied. Thus, we require infor-
mation not just about safety holes, but also about the pre-
conditions that must be satisfied for a fault to occur [16].
We furthermore distinguish between safety holes that are
certain, if satisfaction of the precondition is guaranteed to
result in a crash or hang within the execution of the kernel
exported function, or possible, if satisfaction of the precon-
dition may cause a crash or hang on at least one possible
execution path. All exit safety holes are possible, as the
usage context of the function result is unknown.

3. KERNEL DEBUGGING



Category Actions to avoid faults safety hole safety hole description Analysis type

Block
To avoid deadlock, do not call blocking functions entry EF calls a blocking function (function referencing GFP KERNEL) interprocedural
with interrupts disabled or a spinlock held exit EF returns after disabling interrupts or while holding a lock intra/interprocedural

Null
Check potentially NULL/ERR PTR pointers entry EF dereferences an argument without checking its validity interprocedural
returned from routines exit EF returns a NULL/ERR PTR pointer interprocedural

Var
Do not allocate large stack variables (> 1K) entry EF allocates an array whose size depend on a parameter intraprocedural
on the fixed-size kernel stack exit EF returns a large value interprocedural

INull
Do not make inconsistent assumptions about entry EF dereferences an argument without checking its validity interprocedural
whether a pointer is NULL/ERR PTR exit EF returns a NULL/ERR PTR pointer interprocedural

Range
Always check bounds of array indices entry EF uses an unchecked parameter to compute an array index intraprocedural
and loop bounds derived from user data exit EF returns a value obtained from user level interprocedural

Lock Released acquired locks; do not double-acquire locks
entry EF acquires a lock derived from a parameter interprocedural
exit EF returns without releasing an acquired lock interprocedural

Intr Restore disabled interrupts
entry EF calls a blocking function interprocedural
exit EF returns with interrupts disabled intraprocedural

Free Do not use freed memory
entry EF dereferences a pointer-typed parameter value none
exit EF frees memory derived from a parameter interprocedural

Float Do not use floating point in the kernel These fault kinds depends on local properties and are therefore none

Real
Do not leak memory by updating pointers not relevant to the interface between a service none
with potentially NULL realloc return values and the kernel exported functions

Param Do not dereference user pointers
entry EF dereferences a pointer-typed parameter none
exit EF returns a pointer-typed value obtained from user level interprocedural

Size
Allocate enough memory to hold the entry EF allocates memory of a size depending on a parameter intraprocedural
type for which you are allocating exit EF returns an integer value none

Table 1: Categorization of common faults in Linux [5]. EF refers to the exported function.

Each of the examples presented in Section 2 could crash
the kernel. When this occurs, the kernel generates an oops
report, consisting of the reason for the crash, the values
of some registers and a backtrace, listing the function calls
pending on the stack. Using this information in debugging
raises two issues: 1) the reliability of the provided informa-
tion, and 2) the relevance of the provided information to the
actual fault.

Reliability of kernel oops reports. Linux kernel backtraces
suffer from the problem of stale pointers, i.e. addresses in
functions that have actually already returned at the cur-
rent point in the execution. To illustrate this problem, we
consider a crash occurring in the function btrfs_init_-

new_device previously shown in Fig. 2. The crash occurred
because the kernel exported function open_bdev_exclusive

returns an ERR_PTR value in case of an error, while btrfs_-
init_new_device expects that the value will be NULL. This
caused a subsequent invalid pointer dereference.
To replay the crash, we installed a version of the btrfs

module from just before the application of the patch. To
cause open_bdev_exclusive to fail we first create and mount
a btrfs volume and then attempt to add to this volume a
new device that we have not yet created. This operation
is handled by the btrfs_ioctl_add_dev ioctl which calls
btrfs_init_new_device with the device path as an argu-
ment. This path value is then passed to open_bdev_exclu-

sive which fails to locate the device and returns an ERR_PTR

value. Fig. 4 shows an extract of the resulting oops report.
Line 1 shows that the crash is due to an attempt to access
an invalid memory address. Line 5 shows that the faulty op-
eration occurred in the function btrfs_init_new_device a
priori during a call to btrfs_ioctl_add_dev (line 8). Source
files and line numbers can be obtained by applying the stan-
dard debugger gdb to the compiled module and to the com-
piled kernel.
This backtrace contains possibly stale pointers, as indi-

cated by the ? symbol on lines 8 and 9. While btrfs_ioctl-
_add_dev really does call btrfs_init_new_device, this is
not the case of memdup_user. Since it cannot be known a

1 [ 847.353202] BUG: unable to handle kernel paging request at ffffffee
2 [ 847.353205] IP: [<fbc722d9>] btrfs init new device+0xcf/0x5c5 [btrfs]
3 [ 847.353229] *pdpt = 00000000007ee001 *pde = 00000000007ff067
4 [ 847.353233] Oops: 0000 [#1] . . .
5 [ 847.353291] EIP is at btrfs init new device+0xcf/0x5c5 [btrfs] . . .
6 [ 847.353298] Process btrfs−vol (pid: 3699, . . .
7 [ 847.353312] Call Trace:
8 [ 847.353327] [<fbc7b84e>] ? btrfs ioctl add dev+0x33/0x74 [btrfs]
9 [ 847.353334] [<c01c52a8>] ? memdup user+0x38/0x70 . . .
10 [ 847.353451] −−−[ end trace 69edaf4b4d3762ce ]−−−

Figure 4: Oops report following a btrfs ERR_PTR

pointer dereference crash.

priori whether a function annotated with ? is really stale,
the service developer has to find and study the definitions of
all of the functions at the top of the backtrace, until finding
the reason for the crash, including the definitions of func-
tions that may be completely unrelated to the problem. A
goal of the kernel debugger kdb,1 which was merged into
the mainline in Linux 2.6.35, was to improve the quality
of backtraces. Nevertheless, backtrace quality remains an
issue.2

Relevance of kernel oops reports. A kernel oops back-
trace contains only the instruction causing the crash and
the sequence of function calls considered to be on the stack.
The actual reason for a crash, however, may occur in pre-
viously executed code that is not represented. For the fault
shown in Fig. 2, the oops report mentions a dereference of
the variable bdev in the function btrfs_init_new_device,
but the real source of the problem is at the initialization
of bdev, to the result of calling open_bdev_exclusive. This
call has returned and thus no longer appears on the stack.
Such situations make debugging more difficult as the devel-
oper must thoroughly consult kernel and service source code
to localize important initialization code sites.

1
https://kgdb.wiki.kernel.org/

2
https://lkml.org/lkml/2012/2/10/129



Figure 5: The steps in using Diagnosys

Kernel hangs. By default, the Linux kernel gives no feed-
back in the case of a kernel hang. It can, however, be con-
figured to panic when it detects no progress over a certain
period of time. When the hang is due to an infinite loop,
the backtrace resulting from the panic can occur anywhere
within this loop; the point of the panic may thus have no
relation to the actual source of the problem.

4. DIAGNOSYS
The goal of Diagnosys is to improve the quality of the logs

available when a crash or hang occurs and this crash or hang
results from a safety hole in a kernel exported function. The
use of Diagnosys involves three phases (Fig. 5): 1) identifi-
cation of safety holes in kernel exported functions and infer-
ence of the associated preconditions, using the static analysis
tool SHAna, 2) automatic generation of a debugging inter-
face using DIGen based on the inferred preconditions, and
3) testing service code with the support of the debugging
interface. The first phase is carried out only once by a ker-
nel maintainer, for each new version of the mainline Linux
kernel,3 and the remaining phases are carried out by each
service developer who would like to use Diagnosys.

4.1 Identifying safety holes and their precon-
ditions

SHAna first searches the kernel code for occurrences of
the kinds of safety holes listed in Table 1 in the implemen-
tations of exported functions, and then computes the pre-
conditions that must be satisfied for these safety holes to
cause a kernel crash or hang. The analysis focuses on unsafe
operations that occur in code that is in or is reachable from
an exported function. For each such occurrence, a backward
analysis amounting to a simple version of Hoare logic [16]
produces the weakest precondition to be satisfied on entry
to the function, for entry safety holes, and on exit from the
function, for exit safety holes, such that the safety hole may
cause a crash. The result of SHAna is a list mapping each
kernel exported function identified as containing safety holes
to the associated preconditions.
The analysis starts from the definition of an exported

function, recognized as one declared using EXPORT_SYMBOL

or EXPORT_SYMBOL_GPL. Table 1 indicates for each category
of safety hole whether intraprocedural, interprocedural or
no analysis is used. In search scenarios that only require in-
traprocedural analysis, the analyzer scans the definition of
the exported function to identify code fragments that rep-

3
Each Linux distribution may add some specific patches to the Linux

kernel. These are unlikely to affect the kernel API. Furthermore a
service that should ultimately be integrated into the mainline kernel
must be developed against the API supported by that kernel.

resent safety holes. For example, in searching for Intr exit
safety holes, SHAna only looks for interrupt disabling opera-
tions in the kernel exported function itself, because interrupt
state flags should not be passed from one function to another
[29]. In the case of interprocedural analysis, SHAna starts
from the definition of an exported function and iteratively
analyzes all called functions. For example, in searching for
Null entry safety holes, SHAna searches through both the
kernel exported function itself and all called functions that
receive a parameter of the kernel exported function as an ar-
gument to find unchecked dereferences. SHAna furthermore
includes unchecked dereferences of values that somehow de-
pend on the value of an unchecked parameter.

4.2 Generating and integrating a debugging
interface

Based on the results of SHAna, DIGen generates a debug-
ging interface in the form of a collection of wrapper functions
that augment the definitions of kernel exported functions
with the necessary checks and calls to logging primitives in
order to detect and record violations of safety hole precondi-
tions. Ideally, the kernel maintainer who runs SHAna would
also generate a single debugging interface for the entire ker-
nel that could be used by all service developers. The Linux
kernel, however, is highly configurable, targeting a wide
range of hardware platforms, and thus many kernel source
files have incompatible header file dependencies. Therefore,
it is not possible to compile a single debugging interface
wrapping all of the kernel exported functions at the same
time. Accordingly, we shift the interface generation process
into the hands of the service developer, who generates an in-
terface specific to his service. Because the functions invoked
by a single service can necessarily be compiled together, this
approach avoids all compilation difficulties, while producing
a debugging interface that is sufficient for and individual ser-
vice’s needs. We now describe the generation of the debug-
ging interface and how it is integrated into a service under
development.

Generating a debugging interface. For each kernel ex-
ported function that is used in the service and for which
SHAna identified at least one safety hole, DIGen generates a
wrapper function. The general structure of such a wrapper is
shown in Figure 6. Based on the argument values, the wrap-
per first checks each entry safety-hole precondition (line 4)
and then, if the precondition is not satisfied, logs a message
indicating the violation. This message includes the safety
hole category, which specifies the kind of safety hole and
whether the violation is certain or possible (line 5), as de-
fined in Section 2.3. The wrapper then calls the original
function. If the original function has a return value, this
value is stored in a local variable, __ret, and then the pre-
conditions on any exit safety holes are checked based on this
information (lines 9-10). Finally, the return value, if any, of
the original function is returned as the result of the wrapper
(line 12).
For performance reasons, Diagnosys does not log format-

ted strings in kernel memory, instead it logs integers repre-
senting unique information identifiers that are decoded and
translated on-the-fly during log retrieval.

Compiling a debugging interface into a service. The
generated debugging interface is implemented as a header



1 static inline 〈rtype〉 debug 〈kernel function〉 (. . .) {
2 〈rtype〉 ret;
3 /* Check preconditions for entry safety holes */
4 if 〈an entry safety−hole precondition is violated〉
5 diagnosys log(〈EF id〉, 〈SH cat〉, 〈info (e.g., arg number)〉);
6 /* Invocation of the intended kernel function */
7 ret = 〈call to kernel function〉;
8 /* Check preconditions for exit safety holes */
9 if 〈an exit safety−hole precondition is violated〉
10 diagnosys log(〈EF id〉, 〈SH cat〉, 〈info (e.g., err ret type)〉);
11 /* Forward the return value */
12 return ret;
13 }
14 #define 〈kernel function〉 debug 〈kernel function〉

Figure 6: Wrapper structure for a non-void function

file to be included in the service code. Once compiled with
the interface included, the service uses the wrapper functions
instead of the corresponding kernel exported functions.
Diagnosys provides an automated script, dmake, that man-

ages the generation of a debugging interface. This script
(1) compiles the original service code, (2) identifies the ker-
nel exported functions referenced by the resulting object
files, (3) generates an interface dedicated to these functions,
and (4) recompiles the service with the interface included.

4.3 Running service code with Diagnosys
To be able to use a Diagnosys-generated debugging inter-

face, the service developer must use a version of the Linux
kernel in which support for the Diagnosys runtime system
has been installed. This support is expressed as a kernel
patch, which we have implemented for Linux 2.6.32, that ex-
tends the kernel with a crash resilient logging system. The
patch additionally configures the kernel to send all crashes
and hangs (Linux soft and hard lockups) to the kernel panic
function, which the patch extends to reboot into a crash ker-
nel if Diagnosys is activated or to continue with a normal
panic, otherwise. Finally, the Diagnosys runtime system in-
cludes a tool that can be run from user space to install a
copy of the Diagnosys kernel as a crash kernel, initialize the
reserved log buffer, and activate and deactivate logging.
Once the Diagnosys logging system has been activated,

the service developer may test his code as usual. During ser-
vice execution, if a wrapper function detects a safety hole for
which the precondition is violated, the wrapper logs infor-
mation about the safety hole in a reserved area of memory,
annotated with a timestamp and including the memory ad-
dress of the call site. The reserved area of memory is man-
aged through a ring buffer that retains information about
only the most recent violations.
On a kernel crash or hang, the Diagnosys runtime sys-

tem uses a Kexec-based [24] mechanism to reboot into a
new instance of the Diagnosys-enabled kernel. The Kexec-
based mechanism performs the reboot without reinitializing
any hardware, including the memory, thus ensuring that the
accumulated Diagnosys log is still available. The service de-
veloper may then access the log messages through a pseudo
character device. The messages are made available in the
order in which they were generated. When a crash occurs,
the Diagnosys runtime system also inserts the kernel stack
trace into the Diagnosys log before rebooting.

4.4 Implementation
Table 2 gives the code sizes of the various parts of our

prototype Diagnosys implementation. The implementation

includes the SHAna analysis of Linux kernel, DIGen and
dmake for generating and compiling wrappers for a given
service, and the patch for the runtime system.

Diagnosys component Tool Code size (LOC) Language

Kernel code analyzer SHAna 2438 + 1331 SmPL[25] + OCaml

Wrapper generator dmake + DIGen 49 + 1301 sh + OCaml

Logging system
user-space 115 + 355 sh + ansi C

kernel-space 645 ansi C code patch

Table 2: Diagnosys prototype code size

5. EVALUATION
In designing Diagnosys, we have chosen to focus on the

interface between the service code and the kernel. We first
assess the number of safety holes in this interface and their
past impact on kernel robustness, as evidenced by commits
to the Linux kernel. We then assess the difficulty of debug-
ging kernel faults derived from safety holes, by studying the
feedback made available to the service developer on a crash
or hang without Diagnosys, namely the kernel backtrace.
Then, we assess the coverage of Diagnosys with respect to
the possible crashes and hangs that are triggered by misuse
of the interface between the service code and the kernel, and
show that the Diagnosys log messages allow the service de-
veloper to find the cause of a crash or hang more rapidly than
when relying on a kernel backtrace alone. Finally, we show
that Diagnosys incurs a sufficiently low runtime overhead to
be embedded in a service, up to the early deployment phase.
Our experiments use code from Linux 2.6.32, which was

released in December 2009. This version is used in the cur-
rent Long Term Support version of UbuntuR© (10.04), in
Red Hat Enterprise Linux 6, in Oracle Linux, etc. Our per-
formance experiments are carried out on a Dell 2.40 GHz
IntelR© CoreTM 2 Duo with 3.9 GB of RAM. Unless other-
wise indicated, the OS is running a Linux 2.6.32 kernel that
has been modified to support the Diagnosys logging infras-
tructure. 1MB is reserved for the crash-resilient log buffer.

5.1 Prevalence and impact of safety holes
Diagnosys is only beneficial if SHAna identifies safety holes

in functions that are used by a wide range of drivers and if
these functions are likely to be used in an incorrect way. In
this section, we assess the number of safety holes collected
by SHAna and then study the impact these safety holes have
had on the robustness of the Linux kernel itself.
In Linux 2.6.32, SHAna reports 22,940 safety holes in

7,505 exported functions. Table 3 summarizes for each kind
of safety hole the number of functions that SHAna identifies
as containing at least one occurrence of that kind of safety
hole. In the largest category, INull/Null, about 94% of the
reported functions perform unsafe dereferences directly, and
5% forward the parameter value to other functions that un-
safely use them with no prior check. Around 1% perform un-
safe dereferences on variables whose validity are indirectly
correlated to that of pointer parameters. Defects due to
safety holes in the latter two categories are more difficult for
the service developer to identify.
Static analysis is necessarily approximate, as it does not

have complete access to run-time values. This may lead to
false positives, in which a safety hole is reported that in fact
cannot lead to a crash. Such false positives can increase the
logging time and clutter the log with irrelevant messages.
Nevertheless, having studied the complete set of results for



Safety hole
Number of exported functions collected in the

entry sub-category exit sub-category

Block 367 815
INull/Null 7,220 1,124
Var 5 11
Lock/Intr/LockIntr 815 23
Free - 11
Size 8 -
Range - 8

Table 3: Prevalence of safety holes in Linux 2.6.32

Linux 2.6.32, we have found only 414 false positives. 405
of these are due to the presence of multiple, configuration-
specific, definitions of some functions. SHAna annotates
safety holes derived from calls to such functions with the file
in which the relevant function instance is defined, so that
the service developer can remove those that are not relevant
to his configuration.
Of the 147,403 call sites across the entire kernel source

code where exported functions are used, half invoke a func-
tion containing an identified safety hole. This suggests that
the kernel exported functions containing safety holes are
likely to be useful to new services.
To assess the past impact of the identified safety holes over

the course of the development of Linux, we have searched
through 278,078 commits to Linux 2.6,4 from 2.6.12 to 2.6.39.3,
to identify those whose changelog mentions the name of at
least one kernel function exported in Linux 2.6.32, ignoring
changelogs in which the function name is used as a com-
mon word (e.g., “sort”, “panic”, etc.). Linux commits by
convention make only a single logical change, thus making
the analysis precise.5 703 of these commits contain bugs de-
scribed in kernel changelogs6 that are related to the usage
of exported functions. 267 of them, i.e., 38% are related to
the categories of safety holes that we consider in this paper.

5.2 Kernel debugging with Diagnosys
As discussed in Section 3, kernel debugging is made dif-

ficult by unreliable backtraces and by the questionable rel-
evance of the information in crash reports. To assess the
qualitative benefits of Diagnosys, we have replayed a crash
and a hang reported in kernel commit logs.

Replaying a kernel crash. As an example of kernel crash,
we again consider the btrfs example of Fig. 2. Study of
the corresponding crash report in Fig. 4 showed that the
source of the problem was not readily available in the back-
trace. We have therefore replayed the same execution sce-
nario when using Diagnosys. A typical Diagnosys log line
contains the timestamp of the log, the source file and line
number where the unsafe call was performed, the name of
the exported function, the category of the safety hole and
eventually the name of a relevant argument or an unsafe re-
turn value. In the case of the replay of the btrfs crash, Fig. 7
shows the last line added to the Diagnosys log before the
crash, which is the line that the developer is likely to consult
first. This line shows that the function open_bdev_exclusive
activated an Inull exit safety hole by returning an ERR PTR.
It also reports the runtime timestamp and the call site where
the safety hole was violated. Combining this information

4
git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git.

5
Documentation/SubmittingPatches in the Linux kernel source tree,

http://www.kernel.org
6
http://www.kernel.org/pub/linux/kernel/v2.6/

with the information about the crash site in the oops report
and the service source code shows that the problem is the
inadequate error handling code after open_bdev_exclusive.

1 [4294934950]|@/var/diagnosys/tests/my btrfs/volumes.c:1441|
2 →֒open bdev exclusive|INULL(EXITED)|ERR PTR|

Figure 7: Diagnosys log line in the execution of btrfs

Replaying a kernel hang. Kernel hangs are notoriously
hard to debug7 as the panic, which occurs long after the ac-
tual fault, can produce a backtrace that is hard to correlate
to the source of the problem. Diagnosys records information
about previous potentially dangerous operations.
Just before the release of Linux 2.6.33, the nouveau_drm

nVidiaR© graphics card driver contained a hang resulting
from the use of the kernel exported function ttm_bo_wait.
This function exhibits a Lock entry safety hole and a Lock
exit safety hole, as it first unlocks and then relocks a lock re-
ceived via its first argument. The nouveau_drm driver called
this function without holding this lock, hanging the kernel.
In Fig. 8a, the last line of the Diagnosys log shows that

ttm_bo_wait has been called without the expected lock held.
Correlating this information with the source code suggests
taking the lock before the call and releasing it after the call,
as shown in the Linux patch in Fig. 8b.

1 [437126]|@/var/diagnosys/tests/nouveau/nouveau gem.c:929|
2 →֒ttm bo wait|LOCK/ACQUIRE(POSSIBLE)|bo−>lock|

a)Diagnosys log line in the execution of nouveau_drm.

1 commit f0fbe3eb5f65fe5948219f4ceac68f8a665b1fc6

2 + spin lock(&nvbo−>bo.lock);
3 ret = ttm bo wait(&nvbo−>bo, false, false, no wait);
4 + spin unlock(&nvbo−>bo.lock);

b) Bug fix related to the usage of ttm_bo_wait.

Figure 8: Fault involving a Lock safety hole in
nouveau_drm

5.3 Quantifying the debugging benefit
To be useful, Diagnosys must cover a high percentage of

the misuses of kernel exported functions. We first evalu-
ate this by artificially creating and activating misuses of
exported functions in kernel services and measuring how
many are trapped by Diagnosys. Additionally, Diagnosys
must be able to produce log messages that significantly ease
the debugging process. We evaluate the debugging effort by
measuring the number of files and functions that have to be
studied to identify the cause of a crash, with and without
Diagnosys. Our experiments involve a number of commonly
used kinds of services: networking code, USB drivers, multi-
media drivers, and file systems. Services of these kinds make
up over a third of the Linux 2.6.32 source code. We have
selected a range of services in Linux 2.6.32 that run on our
test hardware. These are presented in Table 4.

Coverage of Diagnosys. To determine the coverage of Di-
agnosys, we first mutate existing services so as to artificially
create bugs. Then, we inject faults at run-time to potentially
cause the mutation to trigger a crash.

7
http://www.linuxjournal.com/article/5749



Since the largest percentage of our identified safety holes
are related to NULL and ERR_PTR dereferences, we focus on
these safety holes. One prominent source of such values is as
the result of a call to a function that has failed in performing
some sort of allocation. Robust kernel code checks for these
values and aborts the ongoing computation. Nevertheless,
omission of these tests is common. For example, in Linux
2.6.32, even for the standard kernel memory allocation func-
tions kmalloc, kzalloc, and kcalloc, over 8% of the calls
that may fail do not test the result before dereferencing the
returned value or passing it to another function.
Based on these observations, our experiments focus on

missing NULL and ERR_PTR tests in the service code. Our
mutations remove such tests from the service code, one by
one, and use the failslab feature of the Linux fault injec-
tion infrastructure [6] within the initialization of the tested
value to inject failures into the execution of any call to a
basic memory allocation function that this initialization in-
volves. Because the initialization can invoke basic memory
allocation functions multiple time, a single mutation exper-
iment may involve multiple injected faults.
A first possible result is that there is no observable ef-

fect. This occurs when the called function does not involve
a memory allocation, when the failure of memory alloca-
tions does not lead to a NULL or ERR_PTR result, or when the
safety hole is possible and is not encountered in the actual
execution. A second possibility is that there is a crash, but
there is no relevant information in the Diagnosys log. In this
case, either the information has been overwritten in the ring
buffer, SHAna has not detected the safety hole, or the call
to a kernel exported function occurs in a header file that, for
technical reasons, has to be included before the Diagnosys
wrapper function definitions. The third possibility is that
there is a crash and the information is logged, representing
a success for Diagnosys.
We have evaluated the coverage of Diagnosys on the 10

services listed in Table 4. Removing the NULL and ERR_PTR

tests one by one leads to 555 mutated services. For each
mutated service, we have exercised the various execution
paths of the affected module in order to execute the mu-
tated code. The results are shown in Table 5. 56% of the
mutations resulted in a kernel crash. After reboot, in 90%
of the crashes, the log contained information relevant to the
crash origin and in 86% of the crashes, a log was present and
it was additionally in the last position. For one service, the
latter only holds for 66% of the crashes, but this amounts to
only one missing log, as this service has few mutation sites.

Ease of the debugging process. Provided with an oops
report containing a backtrace and debugging tools that can
translate stack entries into file names and line numbers, a

Category Service module Description
Used functions
with safety holes

Networking
e1000e Ethernet adapter 57
iwlagn Intel WiFi Next Gen AGN 57
btusb Bluetooth generic driver 26

USB drivers
usb-storage Mass storage device driver 51
ftdi sio USB to serial converter 31

Multimedia uvcvideo Webcam device driver 28
device drivers snd-intel8x0 ALSA driver 35

File systems
isofs ISO 9660 file system 26
nfs Network file system 198
fuse File system in userspace 86

Table 4: Tested services

Category
Kernel
module

# of
mutations

# of crashes with
Coverage

no log
log is
not last

log is
last

Networking
e1000e 57 0 0 20 100%
iwlagn 18 1 0 8 88.9%
btusb 9 1 0 7 87.5%

USB drivers
usb-storage 11 0 0 3 100%
ftdi sio 9 0 0 6 100%

Multimedia snd-intel8x0 3 1 0 2 66.7%
device drivers uvcvideo 34 3 3 17 73.9%

File systems
isofs 28 3 0 9 75.0%
nfs 309 13 9 157 87.7%
fuse 77 3 1 41 91.1%

Table 5: Results of the mutation experiments

developer typically starts from the point of the crash, visit-
ing all files and caller functions until the origin of the crash
is localized. When the crash occurs deep in the execution,
the number of functions and files to visit can become large.
We have considered 199 of the mutations performed in

our coverage tests that lead to crashes, from btusb, nfs, and
isofs. We also consider 31 mutations in nfs code that add
statements for arbitrarily acquiring and releasing locks in
services in order to provoke kernel hangs, focusing on locks
that are passed between functions as they can trigger safety
holes in core kernel code.
We have compared the 230 oops reports with the corre-

sponding Diagnosys logs. In 92% of these crashes, the Di-
agnosys log contains information on the origin of the fault.
We have found that for those cases, debugging with the oops
report alone required consulting 1 to 14 functions, including
on average one possibly stale pointer, in up to 4 different
files distributed across kernel and service code. In 73% of
the cases for which the Diagnosys log contains relevant in-
formation, we find that using Diagnosys reduces by at least
50% the number of files and functions to consult. In 19% of
the cases for which the Diagnosys log contains relevant infor-
mation, the crash occurred in the same file as the mutation,
but the Diagnosys log made it possible to more readily pin-
point the fault by providing line numbers that are closer to
the mutation site.

5.4 Overhead
Introducing wrappers on kernel-exported functions incurs

a performance overhead on service execution. To assess the
impact of this overhead, we execute various real-world kernel
services with and without a debugging interface.
Network driver performance. Our first test involves

a Gigabit Ethernet device that requires both low latency
and high throughput to guarantee high performance. We
evaluate the impact of a debugging interface by exercising
the e1000e Linux device driver using the TCP STREAM,
UDP STREAM and UDP RR tests from the netperf bench-
mark.8 For these experiments, the netperf utility was config-
ured to report results accurate to 5% with 99% confidence.
Table 6 summarizes the performance for the e1000e driver
when it is run without and with a debugging interface. The
debugging interface only reduces the throughput by 0.4% to
6.4%.
File system performance. Our second test involves

the NFS file system, whose implementation uses around 200
exported functions exhibiting safety holes. The experiment
consists of sequential block read and write phases based on

8
http://www.netperf.org



Test Without Diagnosys With Diagnosys Overhead

TCP_STREAM Throughput 907.91 Mb/s 904.32 Mb/s 0.39%

UDP_STREAM Throughput 951.00 Mb/s 947.73 Mb/s 0.34%

UDP_RR Throughput 7371.69 Tx/s 6902.81 Tx/s 6.36%

Table 6: Performance of the e1000e driver

patterns generated by the IOzone file system benchmark9

during which 8G of data are accessed. For this experiment,
the client and server run on the same machine, connected
using a loopback interface. Read and write operations are
performed in the direct I/O mode with varying record sizes.
With a debugging interface integrated into the nfs file sys-
tem, we have recorded around 16 million calls to the inter-
face wrapper functions when using a record size of 512 Kb.
As shown in Table 7, the overhead varies between 3% and
11%, depending on the record size.

Record block
Without Diagnosys With Diagnosys

Overhead
(Access rate - K/sec) (Access rate - K/sec)

size(Kb) read/write read/write read/write

128 45309/31672 42141/28072 6.99%/11.36%

256 49780/36577 48196/32900 3.18%/10.05%

512 49764/39957 45765/37981 8.03%/4.94%

Table 7: Performance of the NFS file system

6. RELATEDWORK
In the last decade, studies have shown that kernel-level

services, in particular device drivers, are responsible for the
majority of OS crashes. Ganapathi et al. have found that
65% of all Windows XP crashes are due to device drivers [14].
Ten years ago, Chou et al. found that the fault rate in Linux
drivers is 3–7 times higher than that of other parts of the
kernel [5]. Palix et al. have shown that while this error rate
is decreasing, Linux drivers still contain many defects [26].
They have also found that file systems have recently had a
high fault rate, indeed even higher than that of drivers.

System robustness testing. Fault injection has been ap-
plied to the Linux kernel to evaluate the impact of various
fault classes [1, 7]. Our work identifies the safety holes in
kernel interfaces that explain their observations. Marinescu
and Candea [21] focus on the returns of error codes from
userspace library functions. These are analogous to our Null
exit safety holes. Their approach, however, is not applicable
to other types of safety holes.

Static bug finding. Model checking, theorem proving, and
program analysis have been used to analyze OS code to find
thousands of bugs [3, 9, 18, 27]. Nevertheless, these tools
take time to run and the results require time and expertise
to interpret. Thus, these tools are not well suited to the
frequent modifications and tests that are typical of initial
code development. A number of approaches have proposed
to statically infer so-called protocols, describing expected se-
quences of function calls [9, 18, 19, 20, 28]. These approaches
have focused on sequences of function calls that are expected
to appear within a single function, rather than the specific
interaction between a service and the rest of the kernel.
Some of our kinds of safety holes could be eliminated by

the use of advanced type systems. For example, Bugrara
and Aiken propose an analysis that differentiates between
safe and unsafe userspace pointers in kernel code [4]. Their

9
http://www.iozone.org/

work, however, focuses on the kernel as a whole, and not on
the interface between the kernel and a new service under de-
velopment, thus potentially informing the service developer
about faults in code with which he is not familiar.

Logging. Runtime logs are frequently insufficient for fail-
ure diagnosis especially in case of unexpected crashes [8].
LogEnhancer [32] enriches log messages with extra informa-
tion, but does not create new messages. Diagnosys creates
new log messages along the kernel-service boundary, where
they can be most helpful to service developers.

Robust interfaces. LXFI [31] isolates kernel modules and
includes the concept of API integrity, which allows devel-
opers to define the usage contract of kernel interfaces by
annotating the source code. LXFI, however aims at limiting
the security threat posed by the privileges granted to kernel
modules, while Diagnosys focuses on various categories of
common faults encountered in kernel code.
Healers automatically generates a robust interface to a

user-level library without access to the source code [11]. It
relies on fault injection to identify the set of assumptions
that a library function makes about its arguments. Healers
can obtain information about runtime values, such as array
bounds, that may be difficult to detect using static analysis.
However, Healers does not address safety hole kinds such as
Lock that require calling-context information. Supporting
Lock would require testing the state of all available locks,
which would be expensive and are likely unknown.

Programming with contracts. A software contract repre-
sents the agreement between the developer of a component
and its user on the component’s functional behavior [13, 15,
22, 23]. Contracts include pre- and post-conditions, as well
as invariants. A safety hole is essentially the dual of a con-
tract, in that a contract describes properties that the context
should have, while a safety hole describes properties that it
should not have.
Contract inference is analogous to the execution of SHAna.

Arnout and Meyer infer contracts based on exceptions found
in .NET code [2]. Daikon infers invariants dynamically by
running the program with multiple inputs and generalizing
the observations [10]. Diagnosys targets situations that lead
to unhandled exceptions, either in the kernel or the service
code. Linux kernel execution is highly dependent on the
particular architecture and devices involved, and thus a ser-
vice developer would have to actively use Daikon in his own
environment. SHAna allows the collection of safety holes to
be centralized. Finally, only one of the invariants targeted
by Daikon,10 NonZero, may correspond to one of our safety
hole kinds, namely INull. Daikon does not handle common
safety hole kinds such as Free, or kernel-specific safety hole
kinds such as Param, for user/pointer bugs.
The Extended Static Checker for Java (ESC/Java) [13] re-

lies on programmer annotations to check method contracts.
Annotation assistants such as Houdini [12] automate the in-
ference of annotations. Houdini supports various exceptions
involving arguments, such as NullPointerException and In-
dexOutOfBoundsException, but does not provide tests for
the validity of allocated memory.

10
http://groups.csail.mit.edu/pag/daikon/download/doc/

daikon.html#Invariant-list



7. CONCLUSION
Defects in kernel-level services can cause the demise of the

entire system, often leaving developers without any clue as
to what went wrong. Debugging such problems is particu-
larly challenging during the initial development of a service,
when the code changes frequently and the developer is not
necessarily aware of the usage preconditions of kernel in-
terfaces. We have designed Diagnosys, a tool that detects
safety holes in Linux kernel exported functions and supports
the generation of a debugging interface, tailored for a partic-
ular service, according to this information. At runtime Diag-
nosys provides a crash-resilient logging system for recording
information about risky uses of functions containing safety
holes.
Using fault injection tests on 10 Linux kernel-level ser-

vices, we have shown that our interface alerts the developer
to the critical defects in his code. Using a driver for a Giga-
bit Ethernet device and a NFS file system, we have shown
that the performance impact of our approach is within the
limits of what is acceptable when testing a kernel-level ser-
vice in the initial stages of development, and can even be
used up to the phase of initial deployment.
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