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Abstract—An error-correction algorithm, referred as to Low
Density Parity Check (LDPC) stochastic decoding technique,
has recently been introduced for implementing iterative LDPC
decoders in logic technologies with a high rate of transient faults.
In this work, a modified algorithm that includes a feedback
mechanism is first presented. A temporal majority logic is
also applied at the decoder’s output, providing an additional
dimension of redundancy. By comparison to Gallager-A decoding
method, the combination of feedback with temporal redundancy
is shown to significantly increase the decoder’s resilience against
a high rate of internal upsets as a gain of up to three orders of
magnitude.

I. INTRODUCTION

As digital technologies approach the limits of planar in-
tegration, device-level reliability has emerged as a critical
concern. Densely integrated CMOS circuits are increasingly
affected by thermal upsets which induce momentary, transient
signal faults in digital systems. The problem of transient upsets
is compounded with the increased use of three-dimensional
integrated circuits, and with the emergence of “post-CMOS”
nano-scale devices that perform computations using a very
small number of electrons, or even a single electron. Because
of these concerns, it has been proposed to embed error-
correcting logic within integrated digital systems.

Embedded error correction may be used to mask permanent
circuit defects as well as transient faults. Unfortunately an
embedded error correcting decoder has to be designed using
the same error-prone devices as the functions to correct. This
introduces the problem of synthesizing decoders that are able
to detect and/or correct faults in their own operation. There
is a long history of research on this problem, with solutions
in the form of “self-checking checkers.” Self-checking logic
circuits are traditionally designed using formal logic methods,
where it can be proved that the circuit detects or corrects up
to a fixed number of faults. Some researchers also studied
the resilience of iterative decoding algorithms implemented
with faulty internal logic [1]. In this paper, we propose an
alternative analysis style based on probability signal flow.

Probability Signal Flow (PSF) analysis was previously
proposed as a method to embed Low-Density Parity-Check

(LDPC) codes [2] for fault compensation in nano-scale digital
logic [3]. The PSF approach was also applied at the circuit
level, resulting in a robust error correction method known
as Restorative Feedback (RFB) [4]. The RFB method is
logically identical to the traditional method of Triple Modular
Redundancy (TMR) [5]. However it was shown via PSF
analysis that the RFB method achieves a much lower error
rate than TMR in the presence of internal transient upsets. On
the contrary, an LDPC Stochastic Decoding (LSD) technique
has been developed to cope with internal high-rate fault by
requiring redundancy of one under certain constraints [6].

In conventional LDPC code applications, the decoder is de-
signed to operate on very large codewords, usually thousands
of bits. Shorter word sizes are more appropriate for digital
logic systems such as microprocessors and arithmetic circuits.
In this paper, we extend the LSD approach by applying a
space-time technique to refine its error-correction capacity
of embedded decoders for short codewords. We consider the
use of temporal majority logic at the decoder’s output. This
introduces time-redundancy that is shown to be effective at
rejecting transient errors that originate within the decoder’s
logic.

The remainder of this paper is organized as follows: Section
2 reviews the decoding methods and then present the modified
LSD method and the space-time technique as well. Experimen-
tal results are given in Section 3. Discussion and conclusions
are given in Section 4 and Section 5, respectively.

II. DECODING METHODS AND SPACE-TIME TECHNIQUE

In this section, we first review a hard-decision bit-flipping
algorithm, Gallager-A method, and the LSD method as well.
Then, the modified C-element circuit and the modified LSD
algorithm are presented. The space-time technique is detailed
afterwards.

A. LDPC decoding techniques

LDPC decoding methods are traditionally described as
message-passing on the Tanner graph [7] of a sparse parity-
check matrix associated to a LDPC code. As usual, the



Fig. 1: Structure of the variable and parity-check nodes
that comprise an LDPC decoder. The extrinsic information
principle is applied, so that an output on a given edge j is
computed from all inputs except j.

bipartite graph contains two sets of nodes – variable nodes (or
symbol nodes) vi in degree dv and parity-check nodes pj in
degree dc. Without loss of generality, we limit our discussion
to the class of regular LDPC codes, in which all variable nodes
have equal degree dv and all check nodes have equal degree dc.
During the decoding process, binary messages are exchanged
between the two sets of nodes. To simplify notation in this
paper, we index incoming and outgoing messages locally at
a particular node. For instance, when referring to a variable
node vi, the sets of incoming and outgoing messages are
written as fki and yik, respectively, for local edge indices
k ∈ V = {1, . . . , dv}. The channel-side input is written
f0i = xi. Similarly when referring to a check node pj , the
incoming and outgoing messages are written ykj and fjk,
respectively, for local edge indices k ∈ P = {1, . . . , dc}. This
notation is indicated in Fig. 1. When there is no ambiguity,
the i and j subscripts will be omitted, e.g. fk, yk, etc.

For all decoding methods discussed in this paper, the
parity-check nodes perform a modulo-2 summation over their
input messages, as is usual with stochastic and Gallager-style
decoders [8]–[10]. Specifically, the outgoing message for each
k ∈ {0, . . . , dc − 1} is fjk = ⊕m∈Pk

ymj where Pk is the
P excludes k. These operations are implemented by using a
cascade of XOR gates. In the remainder of this paper, we
discuss three decoding algorithms that use this parity-check
rule, but differ in the processing performed at the variable
nodes.

B. The Gallager-A method

Gallager introduced a collection of bit-flipping algorithms
for LDPC decoding in binary channels [2]. In the case of
embedded decoders for digital logic computation, we assume
a binary symmetric channel (BSC) model. For this channel,
the most appropriate of Gallager’s original algorithms is the
Gallager-A method, described as follows. For each variable
node, each outgoing message is initially equal to the received
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Fig. 2: (a) A standard Muller C-element circuit, divided into
C-not and S components. The C-not gate detects whether the
inputs are equal, and the S gate acts as an inverting state
memory. (b) A modified Muller C-element with two-phase
operation. Phase φ = 0 allows initialization of the S latch.
Phase φ = 1 enables normal operation of the C-not gate.

bit xi. In subsequent iterations, the message on edge k is

yk =

⎧⎨
⎩

1,
∏

m∈V\k fmi = 1

0,
∏

m∈V\k fmi = 1

xi, otherwise.

C. The modified C-element circuit
Similar to the RFB method described previously, the LSD

method uses Muller C-elements [11], which are increasingly
used for fault-masking in digital circuits [3], [4], [9], [10],
[12], [13]. A standard binary C-element circuit is shown in
Fig. 2a. In this circuit, the “C-not” gate detects whether the
inputs are equal, with an output given by

Q =

{
x, if x == y
Z, otherwise, (1)

where Z denotes a high-impedance output state. Whenever
Q �= Z, the C-not gate actively drives the S latch, overpow-
ering its state. When Q = Z, the state of S is maintained via
weak feedback. To implement C-element based decoding al-
gorithms, it is necessary to use the modified C-element circuit
shown in Fig. 2b. This circuit was introduced in [4] to support
error-correcting operations in the RFB method. The modified
C-element works in two phases, called “initialization” and
“restoration.” During the initialization phase, the C-not gate
is disconnected so that the S latch can be set to a known
initial state. During the subsequent restoration phase, the C-
element is activated. The two-phase behavior can be applied
to implement Gallager-style error-correction, as shown in the
following subsections. The benefit of this approach is that C-
elements are able to reject transient upsets that occur internally
within the decoder. We suppose the inputs x and y are copies
of a single logic value. Then if the C-element is initialized to
a correct state, any subsequent transient upsets in x or y are
rejected.



D. C-element methods

In this subsection, the LSD [6] and the LSD with feedback
(LSDfb) methods that employ C-element logic to suppress in-
ternal transient faults are presented. The LSD is characterized
by the processing steps applied at the variable nodes. At each
variable node vi, we associate a set of C-element gates Ck,
0 ≤ k < (dv − 1). Each C-element gate Ck contains a single-
bit storage element ck. The error correction algorithm is:

1) Initialize yk = xi, for all k ∈ V .
2) Compute fji = ⊕m∈Pj\iymj for all j ∈ P .
3) Initialize each C-element memory as ck = fm, where

m = (k + dv − 1) mod dv .
4) The C-element’s port connections are as follows. For

C0, the inputs are f0 and f1, and the output is c0. For
the remaining Ck, the inputs are ck−1 and fk+1, and the
output is ck.

5) Iterate steps 2 and 4 during a fixed number of iterations.
The initialization in step 3 is performed only during the
first iteration.

6) The corrected output is zi = c(dv−1).
The LSD algorithm may be modified by adding a restorative

feedback connection, which has been previously shown to
suppress internal transient faults [4]. This modification is
applied to Step 4, which is revised to read

4. The C-element’s port connections are as follows. For C0,
the inputs are yk and f1, and the output is c0. For the
remaining Ck, the inputs are ck−1 and fk+1, and the
output is ck.

This modification will be improved the decoder’s resilience
to internal faults when time-redundancy is applied to the
output bits, zi.

The LSD and LSDfb methods can be regarded as circuit-
level designs for variable nodes in a LDPC decoder. Cascaded
C-element sets are employed in both methods. In Fig. 3
and Fig. 4, the architectures of the variable node for LSD
and LSDfb are detailed, respectively. During the decoding
process, the modified C-element with phase operation is used
to implement the algorithm’s initialization phase. The feedback
modification for the LSDfb method is also given in Fig. 4.

E. The space-time technique

In order to further improve the decoder’s resilience to
internal faults, a temporal majority mechanism is applied at
the decoder’s output. The temporal-redundancy strategy is
expected to improve fault suppression because the LSD and
LSDfb methods are derived from stochastic decoders, in which
messages are considered as stochastic streams [9], [10]. In
a stochastic decoder, the output decisions are rendered by
performing a time-majority on the output streams. Since the
LSD and LSDfb decoders are already performing iterations,
the time-voting can occur during the last few iterations.

To validate the effect of temporal redundancy, the decoder’s
output from c(dv−1) are processed into a majority operation,
Maj(c(dv−1), l) where l denotes the number of samples. In
our work, we consider a three-of-five voter as shown in Fig.
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Fig. 3: LSD circuit, dv = 4.
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Fig. 4: LSDfb circuit, dv = 4.

5. This structure is convenient for logic-level simulation, but
other strategies are also possible, as discussed in Sec. IV.

III. SIMULATION RESULTS

In this section, we apply the embedded decoders to achieve
fault-resilience in a digital logic circuit proposed in [6], as
shown in Fig. 6. A logic function F (x) is implemented using
a digital technology that is subject to errors at its output.
The original function F is complicated by the addition of a
redundant parity-generator module, E ·F , where E represents
the encoding function that generates parity bits codeword
space at the output of F as in [3]. The systematic output
word s with a length K from F is then concatenated with the

c(dv−1) D D D D D

Majority zi

Fig. 5: Structure for a temporal three-of-five majority voter.



parity outputs r from E · F , yielding a complete codeword
[s r] of length N . According to the code’s H matrix, the
embedded decoder is synthesized by instantiating arrays of
variable and check nodes circuits, which are indicated by +

and =©, respectively. The system’s final decisions z are taken
from the variable node circuits, otherwise from the additional
time voter if the space-time redundancy approach is applied.

The Gallager-A, LSD and LSDfb methods were simulated
using a systematic regular (3, 6) LDPC code. To conform with
typical word sizes used in electronic devices, the codeword
size is N = 64, corresponding to 32-bit data words. In our
simulations, the output bits s and r from F (x) and E · F (x),
respectively, are assumed to have a uniform independent error
probability of ε. The logic gates that comprise the decoding
circuit are assumed to be faulty boolean operations, which
have a uniform error probability of α. In our simulations,
the temporal-majority component is assumed to be a reliable
output interface circuit.

The Bit Error Rate (BER) performance results with no time-
redundancy are shown in Fig. 8. With no time-redundancy,
all methods achieve poor performance. In the high-α case
shown in Fig 8(b), the Gallager-A method is seen to degrade
completely with increased iterations. The results using time-
redundancy are shown in Fig. 9. Unlike the degradation with
increased iterations in Gallager-A, the LSD methods introduce
a significant improvement in terms of BER performance
for the high-α case. Time-redundancy is not effective when
applied to the traditional Gallager-A decoder, because its
degradation is too severe. In addition, the feedback approach
is shown to be beneficial in the high-α case as well.

IV. DISCUSSION

A. Redundancy hardware cost of the proposed architecture

To evaluate the hardware redundancy cost of the proposed
architecture, we suppose that F (x) is a large block of crossbar
logic (i.e. gate array logic) representing a minimized sum-
of-products expression [14]. The crossbar fabric may consist,
for example, of a layer of AND operations followed by a
layer of OR operations, which may be used for flat truth-
table synthesis. Although this style of logic is generally not
optimal in terms of device count, it provides a precise strategy
for synthesizing the auxiliary function E · F . For arbitrary
functions F , the average total logic gate-complexity needed
to synthesize E · F is close to the average number of logic
gates needed to synthesize F . Hence the proposed method
requires an average logic gate redundancy of approximately
two, plus the additional logic gates.

B. A feasible time-redundancy implementation

In order to demonstrate the benefits of time-redundancy in
the LSD kind decoders, it is necessary to assume that the time-
voting circuit can be implemented with error-free components.
This assumption merits further examination. In the study of
“post-CMOS” nano-scale electronics, it is common to imagine
a hybrid system in which logic operations are built from faulty
nano-scale gates, while output interfaces are implemented

Fig. 6: The proposed fault-tolerant architecture, the shade area
representing the proposed embedded decoder.

zic(dv-1)

M icro-Scale C ircuit

Parasitic Passive
Low -Pass F ilter

Parasitic Passive
Low -Pass F ilter

Fig. 7: Passive time-redundancy can be obtained by a low-pass
filter. This approach may be implemented, for instance, with
the native R-C parasitics in a large-size output buffer.

using larger, more reliable CMOS devices. For any fault-
masking method, it is critical to assume that the final read-out
circuits are more reliable than the other internal components,
or else the system’s overall reliability will be limited by the
interfaces themselves. It is furthermore possible to imagine
alternative circuit solutions for implementing time-redundancy.
For example, if the logic technology operates at a much
higher speed than the output interface devices, then the time-
redundancy may be implemented via passive RC filtering in
the output interface. An example of this is shown in Fig. 7,
where low-pass filtering is performed by parasitic elements
within two inverter buffers. This arrangement achieves an
average-and-threshold operation, which is functionally equiv-
alent to the time-voting mechanism used in our simulations.

V. CONCLUSION

The main contributions of this work are the introduction
of a space-time redundancy technique for embedded error-
correction, and its implementation at the circuit level. When
temporal redundancy is applied at the decoder’s output, the
new C-element based techniques were shown to be resilient
to errors that appear within the decoder’s logic, whereas the
traditional Gallager-A algorithm proved less efficient under
these conditions.
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Fig. 8: BER results in function of iteration number without applying time-redundancy. When the intrinsic gate-error rate (α)
is high, the Gallager-A performance worsens with increased iterations. The LSD methods do not exhibit this degradation.
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Fig. 9: BER performance results with time-redundancy applied at the decoder’s output. The LSD methods achieve improved
performance when α is high. The feedback approach is also shown to be beneficial in the high-α case.
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