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Abstract—The Cortex codes form an emerging family among
the rate-1/2 self-dual systematic linear block codes with good
distance properties. This paper investigates the challenging issue
of designing an efficient Maximum Likelihood (ML) decoder for
Cortex codes. It first reviews a dedicated architecture that takes
advantage of the particular structure of this code to simplify
the decoding. Then, we propose a technique to improve the
architecture by the generation of an optimal list of binary vectors.
An optimal stopping criterion is also proposed. Simulation
results show that the proposed architecture achieves an excellent
performance/complexity trade-off for short Cortex codes. The
proposed decoder architecture has been implemented on an
FPGA device for the (24,12,8) Cortex code. This implementation
supports an information throughput of 225 Mb/s. At a signal-to-
noise ratio Eb/No=8 dB, the Bit Error Rate equals 2 × 10

−10,
which is close to the performance of the Maximum Likelihood
decoder.

Index Terms—Cortex codes, auto-dual codes, VLSI, ML de-
coding.

I. INTRODUCTION

Nowadays, modern Forward Error Correction (FEC) tech-

niques such as Low-Density Parity-Check (LDPC) codes [1]

approach the limit of the channel capacity, for long code

length (thousands of bits). Nevertheless, a long FEC code

may be not relevant for particular applications, such as mo-

bile phone communications or internet protocols, because of

latency constraints. For short block length (hundreds of bits

or less), LDPC codes showed a low performance due to the

increasing density of ’1’s in the Parity-Check matrices. Turbo-

codes[2] achieve near optimal decoding performance for codes

longer than a few hundreds bits but become less appropriate

for shorter codes.

The emerging Cortex codes [3], [4] may offer a practical

and efficient alternative to the best known iterative decoders,

i.e. binary (or non-binary) LDPC and Turbo-Codes for very

short frames. Cortex codes were initially proposed by Carlach

in [3]. They are systematic rate-1/2 self-dual block codes

with large minimum distance. A Cortex encoder combines

a very short mother code with a sequence of permutations

to produce the parity bits. If the mother code is self-dual,

the resulting Cortex code inherits from this self-dual property

[4]. Therefore, the (N = 2K,K) parity check matrix of a

Cortex code can be written as H = [P, I], where I is the
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Fig. 1. Architecture of a Cortex encoder with N=24 built from (8,4,4)
Hamming codes

K × K identity matrix and P a dense K × K sub-matrix

satisfying P × P ′ = I (P ′ denotes the transpose matrix of

P ). In particular, if X = (x1, x2, · · · , xK)′ is the information

vector and R = (r1, r2, · · · , rK)′ the redundancy vector, then

R = P.X and X = P ′.R.

Figure 1 shows an example of a three stage Cortex en-

coder (24,12,8) also known as the Golay code. The code is

based on extended (8,4,4) Hamming codes and interleavers as

components. One can note that, thanks to the simple network

structure, the calculation of R from X (or X from R) requires

only 7 × 9 = 63 2-input XOR operations (7 XOR for each

extended Hamming code).

Efficient decoding of Cortex codes is a new challenge

recently taken in [5], [6], [7], [8] and can be still developed to

meet the performance of Maximum-Likelihood (ML) decoding

at reasonable cost.

The remainder of the paper is organized as follows: Section

II presents the construction of Cortex Codes and gives a

reviews of the existing Cortex decoders. Section III depicts

the proposed decoder architecture. Section IV first shows

synthesis results and BER measurement for the Golay code,

then, a stopping criteria is presented with results in terms of

throughput increase.

II. CORTEX CODE DECODER

This section presents a brief state-of-the-art of Cortex code

decoding. We particularly focus on the method presented in

[7]. Then, we propose to modify this architecture in order to

improve the decoder performance.

A. ML decoding

Let us consider a (N ,K) binary linear code C and let

C = (c1, c2, · · · , cN ) be a codeword of C. For BPSK

transmission, the codeword C is mapped into the bipolar

sequence Y = (y1, y2, · · · , yN ) with yi = (−1)ci ∈ {±1}.

After transmission, the received sequence at the output of



the sampler in the demodulator is Z = (z1, z2, · · · , zN) with

zi = yi + wi, where for 1 ≤ i ≤ N , wi’s are statistically

independent Gaussian random variables with zero mean and

variance σ2 = N0/2. The Log-Likelihood Ratio (LLR) associ-

ated to the binary symbol ci is thus LLR(ci) =
2zi
σ2 . Assuming

that the codewords are equally probable, the ML decoding is

reduced to:

Ĉ = arg min
C∈C

{P (Z/C)} (1)

Equation (1) can be transformed into:

Ĉ = arg min
C∈C

{

N∑

i=1

|zi|δ(ci, zi)} (2)

where |zi| is the absolute value of zi and δ(ci, zi) equals to

0 if the hard decision HD(zi) on zi gives ci (no transmission

error) and equals to 1 otherwise (transmission error).

Going back to the auto-dual code, we can separate the

function cost due to the K received LLRs of informa-

tion (LX(i)i=1..K) and K received LLRs of redundancy

(LR(i)i=1..K). Let CX = (X,R = P.X) be a codeword, then

the distance D(CX) between CX and the received LLRs is

defined as: D(CX) = D(X) +D(P.X), where:

D(X) =

K∑

i=1

|LX(i)|δ(xi, sign(LX(i))) (3)

D(P.X) = D(R) =

K∑

i=1

|LR(i)|δ(ri, sign(LR(i))) (4)

To reduce the complexity of the ML decoding (testing

the 2K codewords), sub-optimal decoding methods have been

proposed. The first family of sub-optimal algorithms is based

on the exchange of information between processing nodes,

such as the Belief Propagation (BP) algorithm. The second

family exploits the reliability of the received symbols to search

for the most likely codeword in a reduced set of codewords.

B. Iterative algorithm

BP decoding is a soft-input soft-output decoding algorithm

relying on the exchange of soft information along the edges

of a graph defined by the parity check matrix [9]. The BP

algorithm is known to closely approximate the performance

of optimal Maximum A Posteriori (MAP) decoding at reduced

complexity for codes with sparse parity-check matrices. How-

ever, it works poorly with Cortex codes because their parity-

check matrices are not sparse.

Different techniques are then investigated. The first one

consists in an analog Cortex decoder that replaces the discrete

iterations with a continuous processing [5] and shows better

performance than LDPC-like decoder. The second strategy

uses a stochastic processing [6] to compute BP, leading to

a decoding performance at 0.8 dB from the ML decoding for

the (32,16,8) Cortex code.

C. Reduced search algorithms

Reduced search algorithms are based on the reduction of the

space of search from C to a subset CZ of codewords that could

be close to the received vector Z . Several strategies could be

applied: For example, modification of the value of the least

reliable bits of the received codeword and perform a decoding

algorithm to search for a codeword (the so called Chase’s

algorithm [10]). Another method [11] performs modifications

only on the information bits and generates a codeword by

encoding the modified information bits. In [7] and [8], the

authors exploit the auto-duality of Cortex codes to create two

lists of codewords: the first list is generated from the least

reliable information bits X and the second one from the least

reliable redundant bits R. This method is very efficient since

it adds diversity in the search of candidate codewords, leading

to a very good decoding performance.

Since the error pattern generation is symmetrical for infor-

mation and parity bits, the former only is presented. In [7],

[8], the error patterns are generated by determining the first λ
bits of smallest reliability and by testing exhaustively the 2λ

possible error patterns among these λ bits (typical values of

λ are 3, 4 or 5).

Note that the generated list of codewords is not optimal,

since other pattern errors containing other bits can lead to

information vectors X of smaller distances (see eq. 2). For ex-

ample, if |LX | = {|LX(i)|}i=1..5 = {0.35, 0.2, 0.1, 0.35, 0.3}
and λ = 3, the 8 pattern errors imply only the bits

{x3, x2, x5}, with a maximum cost of 0.6 for the error pattern

”01101”. However, the error patterns ”10000” and ”00010”,

which both lead to a cost of 0.35, are never tested.

In this paper, we propose to overcome this problem by

generating the entire list of candidates with the first ρ smallest

distances.

D. Word generator based on minimum distance

The idea is to generate the complete list of codewords

sorted by increasing distance. By this way, we guarantee

the generation of the good candidate. Also, we consider the

possibility to stop the decoding process when it becomes

useless (stopping criterion).

For the candidate codewords generation, different tech-

niques have already been proposed [12] [13]. In [13] a systolic

architecture generates binary vectors for Non-Binary LDPC

Decoders. This architecture can be efficiently used as a code-

word generator since it produces the codewords in increasing

order (in terms of distance). This means that the ρ first half

words generated are the closest to the received half word.

III. DECODER ARCHITECTURE

This Section describes the word generator architecture and

its integration in the global decoder architecture.

A. Word generator architecture

The systolic architecture is based on K Processing Elements

(PEs) that are serially connected. After propagating through

the K PEs, every cycle, the word generator provides a new
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Fig. 3. Fixed point simulation results for N = 24, 32, 40, 48 and 56

word Xup(l) (or Rup(l)) and its associated increasing distance

D(Xup)(l) for l = 1 . . . ρ, i.e. l ≤ l′ ⇒ D(Xup)(l) ≤
D(Xup)(l′). The architecture of the word generator is de-

scribed in [13].

B. Pipelined architecture

Figure 2 shows the decoder architecture which is pipelined

for high throughput. The enable signal Enin is used on rising

edge to indicate the start of the decoding of a new word.

At the start of the decoding process, K LLRs are loaded in

parallel at the two word generator entities. The falling edge

indicates the end of the decoding of the current word. When

the enable signal is forced to zero, a new word is fetched. The

enable signal is propagated through the decoder so that the

different elements are reset (FIFO, Memory) in one cycle for

the decoding of the next word. During the distance calculation,

the distance already computed in the word generator is added

to the distance of the other half of the codeword. For reducing

the complexity, the distance computation can be performed by

adding only the channel LLRs of erroneous bits [10]. These

LLRs are read from a FIFO to deal with the word generator

delay.

IV. APPLICATION CASE

The Cortex decoder has been simulated and implemented

on an FPGA platform for validation purposes.

A. Simulation results

Fig. 3 illustrates the BER performances of fixed point

decoders for N = 24, 32, 40 and 56 bits. Thanks to hardware

emulation on FPGA [14], very low BER values are obtained.

The curve in dash line illustrates simulation with a com-

bination of the λ = 4 minimal LLRs as in [7]. The number

of words generated with the two methods are equal but the

performance is improved with the minimum-distance-based

word generation. Note that the number of generated words

increase exponentially with N .

XQ5VLX85 REG LUT logic LUT RAM

decoder 4650 5730 562

Word generator 1611 2450 248
PE1 154 236 16
PE11 156 243 36

Encoder 25 73 0

Distance 325 242 33

min 120 20 1

TABLE I
SYNTHESIS RESULTS FOR CORTEX (24,12,8) DECODER

N= 24 32 40 48 56

BER 1.10−4 5.10−5 2.10−5 1.10−5 7.10−7

ρ 16 64 128 512 2048

Ldec 61 121 192 594 2142

Mb/s 225 75 47 12 4

TABLE II
PERFORMANCE AND AIR THROUGHPUT FOR N = 24, 32, 40, 48 AND 56

B. Synthesis

Table I shows the synthesis results of the implementation of

the Cortex (24,12,8) decoder on an FPGA platform containing

a Xilinx Virtex 5 XQ5VLX85. Note that the Word generator,

Encoder and Distance entities are instantiated two times in

the implementation. Most of the complexity of the decoder

resides in the word generator. The maximum frequency, after

place and route, is 300MHz. For comparison, the decoder

implemented in [7] on a Virtex 5 FPGA requires 2905 slice

registers and 1114 slice LUTs.

C. Air throughput without stopping criteria

Table II shows the performance in terms of BER at

Eb/N0 = 5 dB for N = 24, 32, 40, 48 and 56. The table

also shows the number of words generated to reach a BER

at 0.1 dB from the ML decoding. The decoding latency is

expressed as Ldec = 3(K − 1) + log2(K) + 8 + ρ. For

high frequency, each PE is pipelined in 3 cycles. The word

generator latency corresponds to the term 3(K− 1). The term

log2(K) corresponds to the distance calculation and the term 8
corresponds to the number of pipeline steps in the architecture.

Finally, ρ represents the number of tested codewords. For

comparison, the decoding latency in [7] is 80 cycles but

maximum frequency is 72 MHz. Thanks to pipelining, the air

throughput is given by K×Fclk/ρ. The air throughput is 225

Mb/s for N = 24 and 75 Mb/s for N = 32. For comparison,

air throughput in [7] is 36 Mb/s for N = 32, with a latency

of 61 cycles.

The increasing ρ value leads to a throughput reduction down

to 4 Mb/s for N = 56. For N > 32, a stopping criterion should

be used to reduce the average number of generated words and

thus increase the throughput.

D. Optimal stopping criteria

Figure 4 illustrates the average number of generated code-

words before the ML codeword is found. Simulation results are



Fig. 2. Code Cortex decoder architecture
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Fig. 4. Average number of generated words before a ML codeword as a
function of the signal-to-noise ratio

based on a ”genius” stopping criterion, i.e., the decoding stops

as soon as one of the two word generators provides the ML

codeword. For N = 56, at Eb/N0 = 5 dB, a ML codeword is

found in average after testing 9 words instead of 2048 (thus a

99.5% computation time saving is obtained).

In practice, the optimal stopping strategy is to stop the

decoding process when no better codeword can be found. Let

Dm(l) be the minimum distance found after testing the first

l codewords. If D(Xup(l)) +D(Rup(l)) > Dm(l) (stopping

criteria), then the decoding process can stop, since the next

generated codewords lead to a distance greater than Dm(l).

proof by contradiction: Let us assume that a better codeword

can be found for a value l′ > l. This codeword can be either

CX(l) (hypotheses H1) or CR(l) (hypotheses H2). Let us

consider first hypotheses H1. We have:

D(Xup(l′)) +D(P.Xup(l′)) < Dm(l) (5)
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According to the stopping criterion:

D(Xup(l′))+D(P.Xup(l′)) < D(Xup(l))+D(Rup(l)) (6)

Since D(Xup(l′)) ≥ D(Xup(l)), then

D(P.Xup(l′)) < D(Rup(l)) (7)

This inequality implies that R = P.Xup(l′) has already

been tested for a value q ≤ l and thus, that Dm(l) ≤
D(CX(l′)), which is in contradiction with the initial hypothe-

sis H1. In the case of hypotheses H2, symmetrical arguments

lead also to a contradiction, which achieves the proof.

Figure 5 illustrates the evolution of the distances as a

function of l for N=40 and Eb/No = 3. In this simulation,

the stopping criterion stop the decoding process after 19

generated codewords while the ML codeword is found after

12 codewords.

Fig. 6 shows the average number of words before the

stopping criterion detect that a ML codeword has been found.

The main advantage of the proposed stopping criterion resides
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N= 24 32 40 48 56

ρ 16 64 128 512 2048

E[ρ] 1.5 2 3 5 9

Ldec 47 59 73 87 103

Mb/s 76 81 82 82 81

TABLE III
AIR THROUGHPUT FOR N = 24,32,40,48 AND 56

in its implementation simplicity and the absence of BER

performance loss.

Table III shows the air throughput performance at Eb/No =
5 dB for N = 24, 32, 40, 48 and 56. The latency of decoding is

given by Ldec = 3(K−1)+log2(K)+8+E[ρ], where E[ρ] is

the average number of words. Because of the stopping criteria,

the decoding of two consecutive words cannot be pipelined.

The air throughput is replaced by K × Fclk/Ldec Mb/s.

Note that for N = 24, the air throughput is reduced

compared to the pipelined implementation without stopping

criterion (Table II) for which the air throughput reaches 225
Mb/s. For N = 40, 48 and 56, the stopping criteria allows to

keep the air throughput above 80 Mb/s.

V. CONCLUSION

In this paper we consider the design of efficient Cortex

code decoders. An existing soft-decision decoding algorithm

which exploite the code structure to achieve ML performance

is improved. We add a word generator to the architecture and

an optimal stopping criterion. We showed that the proposed

decoder architecture provides performance very close to ML

decoding for a fraction of the ML decoding complexity. The

implemented pipelined architecture achieves a throughput of

225Mb/s with N = 24 bits. The implementation of a simple

stopping criterion provides an efficient solution for N > 32.

Future work will be dedicated to optimize the hardware

implementation of the decoder (in terms of area and frequency)

as well as the stopping criterion.
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