
HAL Id: hal-00731016
https://hal.science/hal-00731016v1

Submitted on 12 Sep 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Traceability for Mutation Analysis in Model
Transformation

Vincent Aranega, Jean-Marie Mottu, Anne Etien, Jean-Luc Dekeyser

To cite this version:
Vincent Aranega, Jean-Marie Mottu, Anne Etien, Jean-Luc Dekeyser. Traceability for Mutation
Analysis in Model Transformation. MODELS’10, Oct 2010, Oslo, Norway. pp.259-273, �10.1007/978-
3-642-21210-9_25�. �hal-00731016�

https://hal.science/hal-00731016v1
https://hal.archives-ouvertes.fr

Traceability for Mutation Analysis in Model
Transformation

Vincent Aranega1, Jean-Marie Mottu2, Anne Etien1, and Jean-Luc Dekeyser1

1 LIFL - UMR CNRS 8022, INRIA, University of Lille 1
Lille, France

firstname.lastname@lifl.fr
2 LINA - UMR CNRS 6241, University of Nantes

Nantes, France
jean-marie.mottu@univ-nantes.fr

Abstract. Model transformation can’t be directly tested using program
techniques. Those have to be adapted to model characteristics. In this
paper we focus on one test technique: mutation analysis. This technique
aims to qualify a test data set by analyzing the execution results of
intentionally faulty program versions. If the degree of qualification is not
satisfactory, the test data set has to be improved. In the context of model,
this step is currently relatively fastidious and manually performed.
We propose an approach based on traceability mechanisms in order to
ease the test model set improvement in the mutation analysis process.
We illustrate with a benchmark the quick automatic identification of the
input model to change. A new model is then created in order to raise the
quality of the test data set.

1 Introduction

When a program written in C has not the expected behavior or is erroneous,
the programmers look for the faults in their program. Indeed, they trust in the
compiler. The C compilers have been largely tested for two major reasons. First,
a fault in a compiler may spread over lot of programs since a compiler is used
many times to justify the efforts relative to its development. Secondly, compilers
have to be trustworthy. Indeed, when the execution of a C program leads to an
unexpected behavior, the faults have to be looked for in the program and not in
the compiler. Similarly, model transformations that form the skeleton of model
based system development, and so enable to generate code from high level model
specifications, have to be largely tested and trustworthy.

Model transformations may be considered programs and tested as such. How-
ever, the data structures they manipulate (models conform to metamodels) im-
plies specific operations that do not occur in traditional programs such as navi-
gating the metamodels or filtering model elements in collections. Thus, classical
but also specific faults may appear in model transformations. For instance, the
programmer may have navigated a wrong association between two classes, thus
manipulating incorrect class instances of the expected type. The emergence of

the object paradigm has implied an evolution in the verification techniques [13].
Similarly, verification techniques have to be adapted to model transformation
specificity to make profit from the model paradigm. New issues relative to the
generation, the selection and the qualification of input model data are met.

There exist several test techniques. In this paper, we only focus on mutation
analysis. This technique relies on the following assumption: if a given test data
set can reveal the fault in voluntarily faulty programs, then this set is able to
detect involuntary faults. Mutation analysis [6] aims to qualify a test data set
for detecting faults in a program under test. For this purpose, faulty versions of
this program (called mutants) are systematically created by injecting one single
fault by version. The efficiency of a given test data set to reveal the faults in
these faulty programs is then evaluated. If the proportion of detected faulty
programs [20] is considered too low, new data tests have to be introduced [16].

Only the test data improvement step of the mutation analysis process dedi-
cated to model transformation is apprehended in this paper. Indeed, in [12], the
authors argue, with a survey of the development of mutation testing, that few
works deals with that test set improvement step. The creation of new test models
relies on a deep analysis of the existing test models and the execution of the un-
revealed faulty transformations. Currently, this work is manually performed and
fastidious; the tester deals with a large amount of information. Thus, in this pa-
per, we propose an approach to fully automate the information collection. This
automation relies on traceability mechanisms enhanced with mutation analy-
sis characteristics. An algorithm is proposed to effectively collect the required
and sufficient information. Then, the collected information is used to create new
test models. Our enhanced traceability mechanisms helps to reduce the testers
intervention to particular steps where their expertises are essential.

This paper is composed as follows. Section 2 presents mutation analysis to
qualify test data set in model transformation testing. Section 3 describes our
metamodels, foundations of our approach to improve test data set. Section 4
validates our approach with the class2table transformation. Section 5 introduces
works related to the qualification and the improvement of the test data set.
Section 6 draws some conclusions and introduces future work.

2 Mutation Analysis to Qualify Test Data Set

Assuring that a program is undoubtedly fault free is a difficult task requiring a
lot of time and expertise. However, qualifying a test data set (i.e. estimate its
pertinence and its effectiveness) is easier. If this estimation is considered too low,
the test set must be improved. In the following subsections, we briefly describe
the mutation analysis process [6], one way to qualify a given test data set. We
then explain why that software testing method has to be adapted to the model
paradigm.

2.1 Mutation Analysis Process

The mutation analysis process may be divided into four activities as sketched in
Figure 1. The preliminary step (i.e. activity (a)) corresponds to the definition of
an initial test set, that the tester wants to qualified and the creation of variants
(P1, P2,. . . , Pk) (called mutants) of the program P under test by injecting one
atomic change. In practice, each change corresponds to the application of a single
mutation operator on P . Then, P and all the mutants are successively executed
with each test data of the set that has to be qualified (i.e. activity (b)).

If the behavior of P with one of the test data differs from anyway from the
behavior of at least one of the Pi with the same test data, these mutants are said
to be killed. The faults introduced in those Pi were indeed highlighted by the
test data. In the other case, if P returns the same results as some Pj , they are
said to be live mutants. The activity (c) computes the ratio of killed mutants
also called the mutation score. If this ratio is considered too low, this means that
the test data set is not sensitive enough to highlight the faults injected in the
program. In that latter case, the test data set has to be improved (activity (d))
until it kills each mutant or it only leaves live mutants that are equivalent to
P [6]; i.e. no test data can distinguish P and these live mutants (e.g. the fault
is inserted in dead code).

The mutation analysis process is stopped when the test data set is qualified
i.e. when the mutation score reached 100 % or when it rose above a threshold
beforehand fixed.

Program

Operators

Mutation score
computation

Improve
test set

[ok]

[too
low]

Preliminary
Step Execution

Mutant

Test Test Test

MutantMutantMutant

Legend
Activity

Data Production of Data

Use of DataRepeated Activity

Sequence btw Activities

a b c

d

Fig. 1. Mutation analysis process

2.2 A largely manual process

Part of the mutation analysis process is automatic but work remains for the
tester. The mutant creation can be automated. However, usually the operators
are specific to the language used in the program to test. For each new language
the mutation operators have to be defined and implemented. The execution of P
and its associated mutants with the test data is obviously automated as well as
the comparison of the outputs. The analysis of a live mutant is manual up to now.

Indeed, on the one hand, the automatic identification of equivalent mutants is an
undecidable problem [6, 17]. On the other hand, the test data set improvement
can be difficult. The improvement of the test data set is manually performed.
Indeed, the unrevealed injected fault should be analyzed both statically and
dynamically in order to create a new test data that will kill the considered
mutant.

The purpose of this paper is to help in the automation of the test data
set improvement in case where test data are models and program is a model
transformation. But let us explore in the next subsection the specificity of model
transformation testing.

2.3 Adaptation to Model Transformation

Model transformations can be considered programs and therefore techniques
previously explained can be used. However, the complexity and the specificity
induced by the data structures (i.e. models conform to their metamodels) ma-
nipulated by the transformations imply modifications in the mutation analysis
process described in the subsection 2.1.

Each step of the mutation analysis process has to be adapted to model trans-
formations. [18] deals with the generation of test models. In [14], dedicated mu-
tation operators have been designed independently from any transformation lan-
guage. They are based on three abstract operations linked to the basic treatments
of a model transformation: the navigation of the models through the relations
between the classes, the filtering of object collections, and the creation and the
modification of the model elements. The execution of the transformation under
test T and its mutants T1, T2, . . . , Tk differs from the execution of a program but
remains common. The comparison of the output model produced by T and those
produced by the Ti can be performed using adequate tools such as EMFCom-
pare [1]. If a difference is raised by EMFCompare, the mutant is considered killed,
otherwise new test models are built to kill the (non equivalent) live mutants.

The remainder of this paper focuses on the improvement of the test set (ac-
tivity (d)) in the mutation analysis process dedicated to model transformation.
Our proposition relies on the following hypothesis: Building new test models
from scratch can be complex whereas creating a new test model could benefit
from the existing models. Thus we have developed an approach that creates new
test model by adaptation of other existing and pertinent ones.

3 Traceability, a Means to Automatically Collect
Information

Considering that creating a new test model from another one is easier than from
scratch, the issue of the test set improvement raises three questions:

– Among all the existing couples (test model, mutant), which ones are relevant
to be studied?

– What should the output model look like if the mutant was killed? i.e. what
could be the difference we want to make appear in the output model?

– How to modify the (input) test model to produce the expected output model
and thus kill the mutant?

To help the tester to answer these questions, we provide a method based on
a traceability mechanism.

3.1 Traceability for Model Transformation

According to the IEEE Glossary, Traceability allows one to establish degrees of
relationship between products of a development process, especially products bound
by a predecessor-successor or master-subordinate relationship [11]. Regarding
MDE and more specifically model transformations, the trace links elements of
different models by specifying which ones are useful to generate others.

Our traceability approach [9, 2] relies, among others, on the local trace meta-
model presented in Figure 2.

Fig. 2. Local Trace Metamodel

The local trace metamodel is built around two main concepts: Link and El-
ementRef expressing that one or more source elements are possibly bound to
target elements. Furthermore, for each link, the transformation rule producing
it is traced using the RuleRef concept. Finally, for implementation facilities, an
ElementRef has a reference to the real object in the source or target model.
As our environment is based on the Eclipse platform, models are implemented
with EMF, the reference named EObject is an import of the ECore metamodel.
The local trace metamodel and local trace models are independent of any trans-
formation language. However, the generation of the local trace model strongly
depends on the used transformation language.

For each Link instance, the involved elements of the input or output models
are clearly identified thanks to the ClassRef directly referring the EObject. A
continuity between the traceability and the transformation worlds is ensured.
Furthermore, the transformation rule that has created a link is associated to it
via the ruleRef reference. Each time a rule is called a unique new Link is created.
Thus, from a rule, the localTraceModel enables the tester to identify, for each
call (i.e. for each associated link), two sets of elements: those of the input model

and those of the output model created by the rule. In the case of a faulty rule,
these sets respectively correspond to the elements to modify and the elements
that may be different if the mutant is killed.

3.2 Mutation Matrix Metamodel

Mutation analysis results and traces information are combined to automate a
part of the test data set improvement process. Mutation analysis results are
usually gathered in a matrix. Each cell indicates if an input model has killed a
given mutant or not. A mutant is alive if none of its corresponding cells indicate
a killing. From information contained in all the cells concerning a mutant, it can
be deduced if it is alive or not.

Links between mutants, test models and their traces are managed using a
dedicated matrix at a model level. The advantages are multiple. A cell corre-
sponds to an abstraction of the execution of a mutant Ti for the test model Dk.
By associating its trace to each cell, the matrix model becomes a pivot model.
In this way a continuity is ensured between the traces, the test models and the
information gathered in the mutation matrix. The navigation is eased between
the different worlds. Moreover, the mutation matrix benefits from tools dedi-
cated to models. Thus, the mutation matrix model is automatically produced
from the results of the comparisons between the model produced by the original
transformation and the one generated by Ti.

Fig. 3. Mutation Matrix Metamodel

The mutation matrix metamodel, presented in Figure 3, is organized around
three main concepts. Mutant refers to mutants created from the original transfor-
mation. The mutants have one rule (modifiedRule attribute) modified thanks
to one mutation operator (mutationOp attribute). Model refers to input test
data.Cell corresponds to an abstraction of the couple (mutant Ti, test model
Dk). Its value (false or true) of the property isAlive specifies the state (killed
or live respectively) of the Mutant Ti regarding to the specific Model Dk. The
LocalTraceModel corresponding to the execution of Ti with Dk is thus associated
to the Cell.

The matrix model is generated during the mutation analysis process. It is
the doundation of the test model improvement process presented in the next
subsection.

3.3 Data Improvement Process Assisted by Traces

This section aims to clarify and expose the data improvement process enhanced
with our traceability mechanism. An overview of our proposition is shown before
detailing the different steps of this process.

Overview The data improvement process (activity (d) in Figure 1) is composed
of three activities as shown in Figure 4: (1) the selection of a live mutant, (2)
the identification of a relevant test model and (3) the creation of a new test
model by adaptation of the existing test model previously identified. These three
activities rely on either the mutation matrix, the trace model or both. Indeed, in
the mutation matrix, each cell corresponds to a couple (mutant, test model). The
results of the execution of the considered mutant with the model in question are
gathered in a trace model. We developed some algorithms to scan the mutation
matrix and the trace model in order to gather adequate information. In this
paper we focus on the second activity and give some exploratory ideas on the
third one.

Step 1: Selection of a Live Mutant A mutant is alive if no test model
has killed it. Live mutants can thus be easily and automatically identified by
exploring the matrix cells. Each cell relative to a mutant is scanned. If for all of
them the property isAlive is set to true, the mutant is considered alive.

Identification of
a pertinent test

model

Identification of the
involved part of the

test model

Copy of the test
model

Selection of a
live mutant

Modification of
the test model

Test model

Test model

Trace Model Operator

Matrix
Mutation

Improve test set

d

1

2 3

3a

3b

3c

Fig. 4. Test Model Improvement Process

Step 2: Identification of a Relevant test model Identifying a good candi-
date, among the test models, to kill a given live mutant is more difficult. Our
approach relies on the principle that test models for which the faulty rule of the
mutant has been called are better candidates. Indeed, the conditions to apply

this rule were satisfied. Our traceability mechanism helps us to identify these
models and for each of them to highlight the elements impacted by the faulty
rule. The algorithm 1 implements this part of the improvement process (i.e.
corresponding to step 2 and gathering information to perform step 3).

Algorithm 1 Information Recovering for a Live Mutant

1: trace← null
2: rule← null
3: modifiedRule← mutant.modifiedRule
4: modelsHandled← ∅
5: eltsHandledSrc← ∅
6: eltsHandledDest← ∅
7: for each mutant.cells do
8: trace← cell.trace
9: rule← trace.findRule(modifiedRule)

10: if rule 6= null then
11: modelsHandled + = cell.model
12: tempEltsSrc← ∅
13: tempEltsDest← ∅
14: for each rule.links do
15: tempEltsSrc + = link.srcElements
16: tempEltsDest + = link.destElements
17: end for
18: eltsHandledSrc + = tempEltsSrc
19: eltsHandledDest + = tempEltsDest
20: end if
21: end for

The first five lines correspond to the initialization of the different variables.
The trace variable stores the trace associated to the execution of the mutant
Ti for a given test model Dk. rule refers to a RuleRef in the trace model.
modifiedRule is a String initialized with the name of the modified rule as-
sociated to Ti. The modelsHandled variable is a model list containing the test
models for which the execution of the mutant requires the modified rule. The
eltsHandledSrc and eltsHandledDest variables are similar to the previous one.
They contain lists of input (respectively output) elements (one list by test model)
that are involved in the application of the faulty rule.

The algorithm then scans each cell relative to the studied mutant. The trace
corresponding to the execution of Ti on one input model Dk is stored (line
8). The trace model is navigated to check if the modified rule has been called
during the corresponding transformation. This search is performed through the
findRule method (not detailed in the algorithm). This method explores the
RulesContainer of the LocalTraceModel associated to the cell until it finds the
RuleRef instance whose name corresponds to the one of the faulty rule (i.e. the
assigned value of the modifiedRule property of the Mutant). This method returns

a RuleRef instance or null if the rule doesn’t appear in the trace. The result is
stored in the rule variable (line 9). If the content of the rule variable is null, the
analysis stops here for this cell and goes on with the next one. On the other hand,
the model Dk is stored in the modelHandled (line 10). For each link associated
to the rule, the list of the input model elements (srcElements) is stored in
the eltsHandledSrc variable using the temporary variable tempEltsSrc. The
management of the output model elements is performed from the same way.
(line 12 to 17).

For a given live mutant Ti, this algorithm provides: (1) some test models
(modelsHandled) (2) their elements (eltsHandled) involved in the application
of the faulty rule and (3) the elements of the output models created by this rule.
If the content of the modelHandled variable is empty, the faulty rule has never
been called, whatever the test model. A new model has to be created, possibly
from scratch, containing elements satisfying the application of the faulty rule. On
the other hand, if the modelHandled variable is not empty, the faulty rule has
been called at least once. However, since the mutant is alive, this rule has never
produced a result different from the one generated by the original transformation
T . A new test model is created by adapting the considered test model.

Step 3: Creation of a New Test Model During this step, a new test model
is produced using the information gathered in the previous one. The step is
composed of three sub-steps. The most important ones are the 3(a) and 3(c)
(figure 4), that modify a test model previously identified as relevant. As these
sub-steps deliberately modify a chosen test model among the existing ones, the
sub-step 3(b) copies the considered test model in order to conserve it unchanged
in the produced new test model set.

The modification of the test model requires both the previously identified
elements and the applied operator. Indeed, based on a static analysis, the tester
must understand why the mutant remains alive whereas the mutated rule has
been called on the identified elements. He then must consequently modify the
model. These two activities are currently manually performed. However, we ob-
serve that for each mutation operator, the number of situations letting the mu-
tant alive is low. We have initiated to list, for each operator, all these situations
and identify some related modifications to perform on the model to kill the mu-
tant. For each mutant, the list of the situations must be exhaustive, but for each
of these situations, only one modification enabling the tester to kill the mutant
is enough. We foresee to develop a tool that, given an operator and the identified
relevant model, will automatically detect one of these situations and perform the
modification on this model.

The RSMA mutation operator [14] is taken for the following example. It
adds a useless navigation to an existing navigation sequence while respecting the
metamodel involved in the transformation. Thus, for example, the original trans-
formation navigates the sequence self.a.b and the mutant navigates self.a.b.c.
In only three cases, the mutant may remain alive: (1) the original and the mu-
tated navigation sequence finally point to the same instance; (2) the original and

the mutated navigation sequence finally point to null ; (3) the property values
pointed by the original and the mutated navigation sequence are the same. The
way to modify the test model differs in each of these three cases. The first case
occurs when the added navigation is the same that the last one in the original
sequence. Such a situation is possible if the added navigation corresponds to a
reflexive reference in the metamodel. The mutated navigation is thus self.a.b.b
(for the original navigation sequence self.a.b). The mutant can be killed if the
original and the mutated navigation point to two different instances of the same
metaclass. A new instance (with different properties) of this metaclass must thus
be added in the test model and references consequently updated. The second case
occurs if one intermediate navigation is not set. In our example, if the a reference
points to null, neither the original navigation sequence self.a.b nor the mutated
one self.a.b.c can be fully performed, the object retrieved in both sequences is
null. The test model can be modified in order to fill in the empty references. The
third case occurs when the class recovered by the sequence self.a.b and the class
recovered by the sequence self.a.b.c both own a property with the same label
(e.g. the property name). The mutant remains alive if, in the test model, these
properties are set to the same value for the two recovered instances (of possibly
two different metaclasses). To solve this problem, the testers can modify one of
the properties changing its value.

By extending such a work on all the operators identified in [14], the cre-
ation of a new test model can be even more automated. However, the algorithm
underlying this automation will rely on the used transformation language. In or-
der to capitalize this work whatever the used transformation language it seems
inevitable to use generic definition of mutation operators. In [19] the authors
propose MuDeL, a language enabling the description of mutant operators inde-
pendently from the used language. Thus a given generic operator can be reused
with several languages. However, the MuDeL operators are dedicated to tradi-
tional programs and not to model transformations. A generic representation of
the mutation operators defined in [14], would largely benefit to the independence
of our approach to any transformation language.

4 Example

This section aims to validate our approach on a case study; the classical UML
to Relation Data Base Management Systems (RDBMS) transformation (class2-
rdbms). For the example, we used a simple version of the UML class diagram
(simpleCD) and a simple version of the class2rdbms transformation. The trans-
formation specification we adopt is the one proposed at the MTIP workshop [5].
We have implemented this transformation with Kermeta [15]. The transforma-
tion counts around 113 lines of code in 11 operations. The choice of the Kermeta
language results in the work initiated in [14]. Using the same transformation
and mutant enables us to compare and evaluate the approach proposed in this
paper.

4.1 Application of our Approach

For the experimentation, 200 mutants have been manually created (105 for the
navigation category, 75 for the filtering category and 20 for the creation cat-
egory). Initially, 16 test models have been defined. The mutants are executed.
The mutation matrix is filled based on the model comparison. Then, the muta-
tion matrix is automatically explored in order to identify the alive and the killed
mutants. The remainder of the algorithm is applied for an alive mutant. The
first alive mutant identified is the navigation/Class2RDBMS 19.kmt. Listing 1.1
represents an excerpt of this mutant. The original piece of code is marked by the
orig flag and the modified one by the mutant flag. Initially, the transformation
fills in the prefix attribute of the FKey class by concatenating a variable with the
name attribute of the Association. The mutant concatenates the same variable
with the name of the dest attribute belonging to the Association. A navigation
has been introduced in an existing sequence using the RSMA mutation operator
(Relation Sequence Modification with Addition) [14].

1 operation createColumnsForAssociation(...,
2 asso : Association, prefix : String) is
3 do
4 ...
5 var fk : FKey init FKey.new
6 //fk.prefix := prefix + asso.name // orig
7 fk.prefix := prefix + asso.dest.name // mutant
8 ...
9 end

Listing 1.1. Mutate createColumnsForAssociation rule excerpt

Thanks to the mutation matrix, the mutated rule is recovered from the mod-
ifiedRule property of the Mutant Class. For the studied mutant, the rule create-
ColumnsForAssociation is immediately identified.

The algorithm 1 identified 7 test models that have triggered the mutated
rule (the createColumnsForAssociation rule). The algorithm also provides the
elements of the identified models (the eltsHandledSrc set) involved by the
application of this rule. Moreover, the elements created in the output model
from the elements that reach the mutated rule are, also, highlighted and gath-
ered in the eltsHandledDest set. Table 1 gathers the results. For example, the
classModel04.simpleuml model triggers the mutated rule that only handles the
Customer:Association element and produces the Customer:FKey element in the
destination model.

A quick static analysis of the mutated rule indicates that the prefix is formed
using the name of the dest instead of the name of the Association directly.
Based on these information and on the algorithm results, the remainder of the
improvement test set process is manually performed. The prefix property of the
FKey is set to Customer. The same occurs for the model produced by the original
transformation. Thus, in order to kill the mutant, the model created by the
mutated transformation must provide a different value for the prefix property.
As no difference are raised, the tester can infer that in the 7 identified models,
the name of the Association is the same as the name of the element pointed by
dest. Easily, a new test model is created by modification of an existing one (for

Table 1. Test Model Elements Handled by the Modified Rule

Test Model Src. Elements Dest. Elements
(eltsHandledSrc) (eltsHandledSrc)

ClassModel02.simpleuml c:Association c:FKey

ClassModel03.simpleuml b:Association b:FKey

ClassModel04.simpleuml Customer:Association Customer:FKey

ClassModel05.simpleuml blah:Association blah:FKey

ClassModel06.simpleuml c:Association c:FKey

ClassModel07.simpleuml c:Association c:FKey
b:Association b:FKey

ClassModel08.simpleuml a:Association a:FKey
b:Association b:FKey

example: ClassModel04.simpleuml). This model is copied, then the name of the
Association is changed from Customer to CustomerAssoc.

In order to check the efficiency of the new test, the mutation analysis process
is performed once again. This time, 17 models are taken in account. The studied
mutant is henceforth killed and this same added model also killed 2 other mutants
that probably modified a rule using in the same way as the studied mutant. Once
the mutation analysis is played again with the new test model set, the process
goes on with another live mutant.

The modifications to perform on the test model to create a new one are not
so easy than the one of the above example. However, this example illustrates the
relevance and the usefulness of the information gathered thanks to our algorithm
in order to raise the quality of a test model set.

4.2 Quantitative Study

This section aims to show that our approach enables the tester to save a consid-
erable amount of time and that the execution time remains largely acceptable
whereas 3200 executions are performed and so many results analyzed. For this
purpose, we perform different benchmarks corresponding to 8, 9 and 16 test
models, respectively.

Identification of the live mutants. The number of mutants remains 200
in the three benchmarks. The only variable parameter is the number of input
model and thus the number of cells to explore for each mutant. The live mutant
identification only uses the mutation matrix that is loaded once. The loading
time is closely bound to the mutation matrix size. The loading time was short
and approximated 1 second. The mutation matrix contains around 3200 cells +
3200 traces, corresponding to a loading time of 5107ms. Then, once the mutation
matrix is loaded, the operations performed in order to identify the live mutants
are only navigations. Fortunately, this kind of operations are quite instantaneous,
and the observed execution time are lower than 1 second for each benchmark (for
the bag of 16 test models, the algorithm identified 24 live mutants in 461ms).

Execution of the algorithm 1 for one live mutant. This part aims to
measure the execution time of the algorithm that identifies the useful tests mod-

els. Three benchmarks with respectively 8, 9 and 16 test models are performed3.
The algorithm identifies three elements: potential useful models, input elements
and output elements impacted by the application of the faulty rule. In the three
cases, the algorithm identifies the 7 models in 308ms for the set of 8 and 9 test
models and 311ms for the set of 16 test models (Table 2). The fact that the ex-
ecution time is slightly different in the latter case corresponds to the scan of the
traces relative to the seven more test models (the mutation matrix is considered
already loaded). Of course, these measures depend on the test model and the
trace sizes, but they are largely inferior to the time spend to manually collect
the information. Going in details with these results also shows that the 7 more
test data added to the set are not useful for this mutant and require a more
complex modification in order to reach the mutated rule and kill the mutant.
Nevertheless, their presence in the test model set is relevant because they allow
to kill other mutants.

Table 2. Identified models for each test models set

Test set size
Number of Execution

identified models time

8 7 308ms
9 7 308ms
16 7 311ms

Our approach has to be tested with hundreds test models and the execution
time measured. However, the quantitative analysis is promising concerning the
scalability of our algorithm.

Comparison with other models Our approach has also been used with
model transformations written in QVTO [3], in the context of the Gaspard 2
framework. This framework aims to generate, from a UML model enhanced with
the profile dedicated to real time and embedded systems, programs in various
languages depending on the purpose (simulation, execution, verification ...). The
order of magnitude were approximately the same. The loading time of the matrix
was smaller (around 1 second) because of the matrix size (only 1120 cells + 1120
traces). However, the execution times of the algorithm were higher because the
models contained much more number of classes and referenced a UML profile.

Comparison with the manual process The test set improvement is a
hard and complex task for the testers. They have to perform static analysis to
identify why a mutant has not been killed. However, they may do this analysis
with test model, without leading to any relevant results. Indeed, some existing
models have to be heavily modified before killing a mutant. Manually identifying
an adequate test model from which it will be easy to create a new one killing
the mutant may be very long. For the class2table transformation, the manual
information collection can take from few minutes for some easy cases to few hours
for the most complex ones. Using our algorithm allows the testers to recover the
same piece of information in less than a minute.

3 On a DELL Precision 490/Gentoo-2.6.34

5 Related Work

There are different ways to obtain a qualified test data set. Since model trans-
formation testing has only been briefly studied, few works consider test models
qualification and improvement.

Fleurey et al. [7] propose to qualify a set of test models regarding its coverage
of the input domain. The input domain is defined with metamodels and con-
straints. The qualification is static and only based on the input domain whereas
the mutation analysis relies on a dynamic analysis of the transformation. In
case of very localized transformations, the approach developed by Fleurey et al.
produces more models than necessary.

However, in [8], they also propose an adaptation of bacteriologic algorithm
to model transformation testing. The bacteriologic algorithm [4] is designed to
automatically improve the quality of a test data set. It measures the mutation
score of each data to (1) reject useless test data, (2) keep the best test data,
(3) “combine” the latter to create new test data. Their adaptation consists in
creating new test models by covering part of the input domain still not covered.
The authors use the bacteriologic algorithm to select models whereas we propose
the mutation analysis associated to trace mechanisms.

In [10], authors study how to use traceability in test driven development
(TDD). TDD involves writing the tests prior to the development of the system.
Here, traceability can be used to help the creation of new tests considering
how the system covers the requirements. The trace links the requirement and
the code, and helps the developer to choose the next features which should be
tested, then coded. In that approach they do not consider the fault revealing
power of the test data set, but the coverage of the requirements to assist the
creation of test data.

6 Conclusion

As any other program, it is important to test model transformations. For this
purpose, test data set has to be qualified. Mutation analysis is an existing ap-
proach that has already been approved and adapted to model transformations.
In this paper, we focus on the test model set improvement step and propose a
traceability mechanism in order to ease the tester job. This mechanism com-
pletely adopts the model paradigm and relies on a local trace metamodel and a
matrix metamodel.

Our approach helps the tester to drastically reduces the field of the required
analysis to create a new model. We have shown on the RSMA operator that the
number of situations where a mutated rule is executed for a test model while
letting the mutant alive is low. The modifications to performed in those cases
are well identified. We are currently working on a generic representation of the
mutation operators in order to go towards one step further in the automation
the mutation analysis process and to remain independent from the used trans-
formation language.

References

1. EMFcompare. www.eclipse.org/emft/projects/compare.
2. V. Aranega, J.-M. Mottu, A. Etien, and J.-L. Dekeyser. Traceability mechanism

for error localization in model transformation. In ICSOFT, Bulgaria, July 2009.
3. V. Aranega, J.-M. Mottu, A. Etien, and J.-L. Dekeyser. Using traceability to en-

hance mutation analysis dedicated to model transformation. In Workshop MoD-
eVVa 2010 associated with Models2010 conference, Oslo, Norway, Oct. 2010.

4. B. Baudry, F. Fleurey, J.-M. Jézéquel, and Y. Le Traon. From genetic to bac-
teriological algorithms for mutation-based testing. STVR Journal, 15(2):73–96,
2005.

5. J. Bézivin, B. Rumpe, A. Schürr, and L. Tratt. Model transformations in practice
workshop. In Satellite Events at the MoDELS 2005 Conference, 2005.

6. R. DeMillo, R. Lipton, and F. Sayward. Hints on test data selection: Help for the
practicing programmer. Computer, 11(4):34–41, 1978.

7. F. Fleurey, B. Baudry, P.-A. Muller, and Y. Le Traon. Towards dependable model
transformations: Qualifying input test data. SoSyM Journal, 2007.

8. F. Fleurey, J. Steel, and B. Baudry. Validation in model-driven engineering: testing
model transformations. In Proceedings of MoDeVVa, pages 29–40, Nov. 2004.

9. F. Glitia, A. Etien, and C. Dumoulin. Traceability for an MDE Approach of
Embedded System Conception. In ECMDA Traceability Workshop, Germany, 2008.

10. J. H. Hayes, A. Dekhtyar, and D. S. Janzen. Towards traceable test-driven devel-
opment. In TEFSE Workshop, pages 26–30, USA, 2009. IEEE Computer Society.

11. IEEE. IEEE standard computer dictionary : a compilation of IEEE standard com-
puter glossaries. IEEE Computer Society Press, New York, NY, USA, 1991.

12. Y. Jia and M. Harman. An analysis and survey of the development of mutation
testing. IEEE Transactions of Software Engineering, To appear, 2010.

13. Y.-S. Ma, J. Offutt, and Y. R. Kwon. Mujava: an automated class mutation system.
Softw. Test. Verif. Reliab., 15(2):97–133, 2005.

14. J.-M. Mottu, B. Baudry, and Y. Le Traon. Mutation analysis testing for model
transformations. In ECMDA 06, Spain, July 2006.

15. P. Muller, F. Fleurey, and J. Jzquel. Weaving executability into objectoriented
meta-languages. In S. K. L. Briand, editor, Proceedings of MODELS/UML’2005,
volume 3713 of LNCS, pages 264–278, Montego Bay, Jamaica, Oct. 2005.

16. T. Murmane, K. Reed, T. Assoc, and V. Carlton. On the effectiveness of mutation
analysis as a black box testing technique. In Software Engineering Conference,
pages 12–20, 2001.

17. A. J. Offutt and J. Pan. Detecting equivalent mutants and the feasible path
problem. Software Testing, Verification and Reliability, 7(3):165–192, 1997.

18. S. Sen, B. Baudry, and J.-M. Mottu. On combining multi-formalism knowledge to
select models for model transformation testing. In ICST., Norway, Apr. 2008.

19. A. Sim ao, J. C. Maldonado, and R. da Silva Bigonha. A transformational language
for mutant description. Comput. Lang. Syst. Struct., 35(3):322–339, 2009.

20. J. M. Voas and K. W. Miller. The revealing power of a test case. Softw. Test.,
Verif. Reliab., 2(1):25–42, 1992.

