Frédéric Rodriguez
email: frederic.rodriguez@univ-tlse3.fr

CSVM Ecosystem Using CSVM format in various scientific fields

Keywords: RAW Data, Tabular Data, CSV, Metadata, Data exchange, Dataflow, Canonical format, Python language, web-publishing framework, Chemistry, Bioinformatics, Enzyme science, Structural Biology, Environmental Sciences, Open Format, Open Data

The CSVM format is derived from CSV format and allows the storage of tabular like data with a limited but extensible amount of metadata. This approach could help computer scientists because all information needed to uses subsequently the data is included in the CSVM file and is particularly well suited for handling RAW data in a lot of scientific fields and to be used as a canonical format. The use of CSVM has shown that it greatly facilitates: the data management independently of using databases; the data exchange; the integration of RAW data in dataflows or calculation pipes; the search for best practices in RAW data management. The efficiency of this format is closely related to its plasticity: a generic frame is given for all kind of data and the CSVM parsers don't make any interpretation of data types. This task is done by the application layer, so it is possible to use same format and same parser codes for a lot of purposes. In this document some implementation of CSVM format for ten years and in different laboratories are presented. Some programming examples are also shown: a Python toolkit for using the format, manipulating and querying is available. A first specification of this format (CSVM-1) is now defined, as well as some derivatives such as CSVM dictionaries used for data interchange. CSVM is an Open Format and could be used as a support for Open Data and long term conservation of RAW or unpublished data.

The basics: table, file, annotations and a programming sample

This CSVM sample is relative to the field of medicinal chemistry, courtesy from Pascal Hoffmann and coll 1 2 . This is the case of a collection of 80 molecular files (af01.mdl, af02.mdl, …, af80.mdl) in a directory. Each file stores the molecular 2D coordinates (formula) for a given compound, using a given format (here MDL Molfile format 3). We wanted to store a table of these molecules, including the molecule's number (ID), an identifier (ident), the chemist related to the compound synthesis (lab), an amount (vrac) available of the compound, another compound identifier (rprod), the related laboratory notebook identifier (rlab), the molecular file itself (molfile) including a relative and the compound formula (smi) written in another format (here SMILES 5 chemical format) and included in a cell of the table: Then we wanted to write the table: i) as a CSV derived file for data and ii) with a block for metadata: This is what we call a CSVM file (CSV with Metadata). In this case the field separator is a TAB (red arrows) but the CSVM specification allows any character. The data block is the same than shown in Figure 2 but it is followed by rows beginning with # character and defining a metadata block.

Using flat CSVM files (CSVM-1 specification) the # rows are considered as metadata rows if the # is immediately followed by a known keyword (TITLE, HEADER, TYPE, WIDTH, META). If the keyword is not recognized by the CSVM parser, the row is not processed. This is also possible to use this property in order to extinct some data rows in the CSVM without deleting them; and to annotate the file adding rows for remarks. The following CSVM illustrates these two cases outside the metadata block (rows 5, 6, 7). The blank lines are not taken in account by the CSVM parser, so they could be used to make the table more readable for humans. As a result, in Figure 4 the compound with ID=3 will not be included in data structure stored in computer's memory. The metadata block is used to embed the minimal canonical information about the table:

 The #TITLE row is for information (one ASCII line) about the table.

 The #HEADER row stores for column titles.  The #TYPE row stores for the data types for columns. CSVM lets you define your data types, only fuzzy and very minimal data types are provided: TEXT (textual data), NUMERIC (columns of integer or float values), BOOLEAN (0/1, Y/N, Yes/No you can define your own code).  The #WIDTH row is used to store a value significant of column's width.  The #META row is used to store other/not defined information.

The CSVM parser don't use the information stored in metadata block: all the information is read as strings and returned as a data structure depending on the programming language used. Metadata is not interpreted at the parser level and it is a choice. Using this approach makes it possible to add all data types for #TYPE keywords, this is the reason of the reduced number of predefined types in CSVM specification. The data type recognition is done only when the data structure is available in memory: this step is uncoupled from the parser step. A side result is that the same parser can be used for all data types. In the case of Python language, a Class (a csvm_ptr object) is returned with some methods (i.e. csvm_ptr_dump for display the data structure on standard output). The following code (Code 1) shows the contents of the corresponding data structure. These lines are extracted from a Python toolkit (Pybuild) that support CSVM files. The following Python code (Code 2) shows how 1) to load a CSVM file (using the TAB "\t" as delimiter) with the function csvm_ptr_read_extended_csvm, 2) to display the Class and 3) to free the memory. The corresponding output is shown in Figure 5, the result of csvm_ptr_dump method shows the metadata block (pink text, the order of metadata rows is #WDITH, #TEXT, #HEADER) followed by data rows (all cells are surrounded by brackets). Please notice that the previous annotated CSVM file is used: the row with [03] value in first column {number} is missing.

Advanced: combining with databases

CSVM is obviously not a substitute for databases, but it is possible to use a CSVM table for storing simple database schema and database tables. The following sample shows this kind of approach in the case of a chemical inventory. These files were generated after analysis (SQL requests) of a relational database system (Hughes Technologies mQSL) and prior to be converted and injected in another RDBMS (MySQL or PostgreSQL).

Database tables and schema -Chemical inventory

A simple chemical database of two tables and a relation between the column of indice=3 (from 0 to n-1) in table 'assoc' to column of indice=0 in table 'user'. Note that the schema contains heterogeneous data in columns (data from keyword TABLES, or FOREIGN) so all columns titles are set to the same word 'DATA', courtesy from Anne Laure Leomant 6 and Nathalie Gouardères. The database tables are a particular case of CSVM file. Database systems have specific data types (i.e. REAL, INTEGER, SMALLINT …) depending on the records used in tables that are more precise than the generic CSVM type (NUMERIC in this case). But the CSVM approach allows the use of database types in metadata #TYPE row. Also in row #WIDTH it is possible to store the dimension of database fields when it is needed by database type. The following example shows the last 3 lines of CSVM file assoc.csvm corresponding to the 'assoc' table included in of the previous schema:

Indexes, collection of files, documents …

Initially CSVM was used primarily for indexing purposes: file's catalog (filenames/paths and some metadata about the files) rather than as a substitute for spreadsheets tables. The following figure shows this kind of use: the result for a recursive directory list. Notice that the last column is filled by the date of creation of files, but the column name is pending (the #HEADER value is a blank) before saving data in a CSVM file. This is a very interesting feature of CSVM approach related to RAW data: in some circumstances the name of a column is not yet defined but the data must be stored anyway.

Software pipes -Molecular calculations

CSVM can be useful for launching calculations, you can store in the CSVM the operations to do, including launching external programs, store intermediate results (or index filenames) and complete or add columns from step to steps. Eventually a software component using a CSVM parser can generate from these tables, information (files, parameters) needed by job schedulers/batch processors. Very often calculations are applied to data files, so this is a particular case of indexing. The interest of CSVM space is that all steps (defining files, parameters, results) could be made easily and in the same data format (ready for use by spreadsheets or scientific data analysis and graphic software).

In the next section, a complete example will be shown (case of Enzyme kinetics After calculation, the log files generated by X-SCORE were parsed, converted in CSVM tables, and the tables were indexed (extraction of score values). Then, the score values were aggregated with the upper table (addition of columns). All the process is driven by the table of Figure 9 that contains all information needed for calculation and collection of results. In this case the first column ('IND') is used for store indices of rows but it can be used in key/values scheme, as it was done in the following sample: The first column labeled 'KW' stores keyword that drives contents of next columns, and the last column ('SCORE') is present and ready to store score values. The CSVM file is used to store parameters/results of calculations (rows 7-25) as well as configuration options of X-SCORE (rows 2-6). This case shows that in the same format space we can store configurations, parameters, results …

From indexes to collections: files, information and dataflows

The concept was then used for indexes and for tabular data in the same or different collections. For a same catalog, the two next samples show differences (files vs. tables) on indexed contents: i) the case of a publishing chain (for standard files) and ii) the case of a collection of sparse environmental data (for CSVM files). These two examples are issued from scientific works in the field of environmental sciences, but making collections of RAW/processed objects is a general problem in all sciences.

A publishing chain

The process starts from a set of documents (books, articles, reports, various documents) about a particular place (Malause) known as a sedimentation zone in a river (Garonne, France). Courtesy from Philippe Vervier, Sarah Gimet 12 and Gerome Beyries 13 . This grey information (because all documents are not indexed in bibliographic systems) was digitized (PDF to ASCII text) and contents were extracted (text filters), normalized and saved in Open Office documents (using a common template). This new collection of documents was then used as a primary data source by software components: converted in XML (XML DocBook 14), HTML 15 and analyzed using a custom XML parser. Pertinent fields of information found in documents (year, title, abstract …) were extracted and saved in a CSVM file. Courtesy from Jean-Olivier Butron 16 .

The following figure shows a Perl CSVM parser that displays CSVM data in a grid widget. The column 'DONNEES' contains links to the corresponding HTML documents (URL|Name of URL), 'ANNEE' stands for year, 'TITLE' for title and 'RESUME' for abstract. In this case the CSVM file corresponds to the index of this collection and embeds information extracted from documents. At the CSVM level: this is data; at indexed files (XML files converted in HTML files) level: this is metadata. All the different tasks were processed automatically without data input 'at hand' by an operator.

A lot of conversion between files (Raw text, HTML, XML, XML-Docbook, HTML) were also configured and driven by CSVM files. The following figure shows a CSVM file used to drive changes in the CSVM index itself (each row is a filter applied to the index). The first column is used to store the type of filter using a keyword. The keyword STR is used to specify a string replacement of the value stored in second column by the value stored by the third column. More complex filters that 'STR' exist and need to use fully the 10 columns. Then the CSVM index was integrated with a JavaScript framework in order to provide a view of the collection dedicated to end users. Buttons at the top of dynamic table are used to sort data of CSVM index by a given column. When the publishing chain works, all to do is to write the CSVM file and to process the chain. Edition of the CSVM index can be done, manually (text editor), using a GUI, automatically by an indexer component). In this case the documents were stored in HTML (after processing) or native (hyperlink to the corresponding file or image) formats.

The following figure shows final results for this kind of publishing chain: 14-A) the case of small organic molecules (ligands, inhibitors) interacting with some enzymes (GlcCerase, beta-glucosidase) and 14-B) the case of enzymes itself (HAT). Courtesy from Marjorie Catala 19 ; Casimir Blonski, Christian Lherbet and Cecile Baudoin-Dehoux 20 21 .

The previous figure (14-A) shows the case of a chemical collection (small organic molecules). The collection mixes images ('IMG' column), some information (TYPE, NOM), 2D (SKETCH) and native 3D (MOL) structures and action buttons (VIEW) launching an external viewer 22 embedded (HTML layer) in a floating window. In the case of Figure 14-B, the interface of the molecular collection (macromolecules) is multimodal and could launch local/hyperlinks ('FILE'/'LINK' columns), PyMol 23 generated images ('IMAGE') of structure, a viewer ('JMOL') as other information. From a CSVM point of view (RAW data) the samples of Figure 13-14-15 are of the same complexity despite the kind of objects displayed. All is taken in account by a different JavaScript framework: the CSVM data were converted in JavaScript tables and were processed by dedicated JavaScript components. The Following Code shows the contents of this kind of JavaScript table and the first row for the molecular structure displayed in the case of Figure 14-A:

Code 3. -A JavaScript table descending from a CSVM file.
// GXMLPARSER interface, download these data before, // and use GXMLDISPLAY for use whith browsers function jmol(mol,button) { var src = "<INPUT onclick=" + '"' + "loadwindow('jmol.html',250,287,'" + mol + "');" + '"' + "type=button value='" + button + "'>"; return(src); } var flags_array = new Array ("TYPE", "SECTOR", "IMG", "NAME", "SKETCH", "MOL", "VIEW"); var flags_n=7; var getf_array = new Array ("TYPE", "IMG", "NAME", "SKETCH", "MOL", "VIEW"); var getf_n=6; var data_c=7;

It is easy to transform a CSVM file in another tabular data (i.e. JavaScript, CSV, XML tables) format because all that is needed to do the transformation is embedded in the CSVM file itself.

The corresponding index CSVM files can be edited manually by users (as they were using spreadsheet tables) or automatically generated, but the CSVM mechanism has the advantage of providing a lot of features for further processing and transformations.

Environmental tabular data

This sample shows a way to dig inside files when the indexed files are also CSVM files. An index was also created but each entry was linked to a CSVM file rather than a text document (Open Office, XML, HTML, PDF …) or a data source (data file, image, hyperlinks). In this case, the CSVM data (table of measurements, not index) were written manually using a standard spreadsheet. Courtesy from Magali Gerino, Maya Lauriol, Sabine Sauvage 24 and Gerome Beyries 25 .

As in previous case, end users can download corresponding CSVM files using an hyperlink in index display, but also they can view (after another CSVM conversion in JavaScript tables of each leaf files) directly inside these files using another JavaScript framework 26 , as shown by the following figure: In this table the #WIDTH information is used for column's widths and #TYPE values are injected as column's names in the JavaScript tables.

CSVM can be used as well as for index and for tables. This approach has a great potential for complex processing of files because one parser and one format are used independently of tabular objects and information. A modified version of Dieter Bunger's (http://www.infovation.de) Cross Browser Dynamic HTML Tables codehttp://www.insidedhtml.com/tips/databinding/ts06/paper/dhtml_table.htm.

Working with RAW tables

Typically a case encountered in collaborative projects, in which the aggregation of RAW data from different scientific fields (and different data types by definition) is expected. The CSVM concept makes easy to compute intersection or union of tables which could be often useful. These operations are possible even if the tables cover the 1) same, 2) a common core, and 3) different sets of data. In Python CSVM toolkit the union or intersection of CSVM tables use csvm_ptr() objects :

print "\n*** Test completely different CSVM files" c1 = csvm_ptr() c1 = csvm_ptr_read_extended_csvm(c1,"test/test1.csvm","\t") c2 = csvm_ptr() c2 = csvm_ptr_read_extended_csvm(c2,"test/test2.csvm","\t")

The two CSVM files were loaded in two csvm_ptr() objects c1 and c2, now the intersection of the two tables can take place, the result is a new csvm_ptr() named r :

print "=> Compute INTERSECTION" r = csvm_ptr_intersect(c1, c2) if (r != None):
r.csvm_ptr_dump(0,0) r.csvm_ptr_clear() else:

print "No data found"

The union of tables is coded as same, and after operation all data structures are destroyed 27 .

print "\n=> compute UNION" r = csvm_ptr_union(c1, c2) r.csvm_ptr_dump(0,0) r.csvm_ptr_clear() c1.csvm_ptr_clear() c2.csvm_ptr_clear() print "\n*** Test csvmutil done."

Notice that after (and sometimes before) union of tables with different (names and types) columns, the RAW data can be sparse, typically a big number of columns, without data for some (or nearly all) rows. If same columns are found in c1 and c2 tables, the union mechanism preserves data because data blocks (rows) are added successively and not interleaved.

For an attentive reader, just remark something on Figure 13: the presence of a file named pinguicula_vulgaris. This file contains information about a carnivorous plant (butterworts) which seems not to be included in the same category than the others (bibliographic digests about stations around Malause: malause_biblio): this is the result of union of tables from different CSVM files.

In the case of pinguicula a year was not extracted or assigned from data file, and the resulting cell in final CSVM file is marked by the empty character ('-' in this case), the CSVM puinguicula branch has not this column. The last column is an excerpt of the [abstract/beginning of the text] found in files. The pingucula type CSVM files have not this kind f information. But, the text recognized as title (not filename) inside the document was assigned to a particular column. This column was later and prior to union of tables set as equivalent to the 'RESUME' column of malause_biblio branch. So this column is filled in the resulting CSVM file that was processed in the dataflow. Another mechanism was also used: adding 28 a column 'FLORAISON' (flowering date) not found in the malause_biblio branch and obviously found in pinguicula branch.

This shows how it is possible to manipulate and aggregate RAW data easily in CSVM space without any data modeling 27 Directly taken from the build.parsers.csvm.csvmutil Python module (unitary test) of the CSVM toolkit.

28

Python CSVM toolkit makes it possible using one line of code.

From collections to calculations: the case of time series

The case of enzyme kinetics is interesting because the CSVM format can be used in different ways: to store i) data (time series); ii) parameters for calculation (modeling, curve fitting); iii) results (best fit, residuals, parameter's values) and sometimes iv) the model itself. These steps can be found in a lot of other scientific fields (i.e. Physics, Chemistry) in which modeling is used as a core technique. Enzyme kinetics measurements or calculations are typical of that we call short time series (less than 5000 rows, typical: 10 to 1000). This kind of data-island is widely found in a lot of biological, biochemical, chemical measurements, courtesy from Sabine Gavalda 29 30 and Casimir Blonski. This example, taken from real laboratory work, is typical for large sets of kinetics, a set of 800 files (RAW data) were collected and processed 31 without using any database system.

A canonical format

The This primary CSVM file can be generated de novo by users or acquisition system, but it can also result from another data format specific of a method or an apparatus. This was the case for this sample and the original format is shown in the following figure: -- This example show one interest of the CSVM format: to be used as a canonical data format for RAW tabular data. This permits to use data independently of the data source and in a better way than pure CSV files that cannot embed metadata and annotations. In the CSVM file shown in Figure 16-A, the amount of information seems to be low: the values of inhibitor concentration (#HEADER field) are tagged as A1, A2, … Set-14 which is not very explicit if the enzymologist wants to reuse the data later. In this case, the main information is the number of file: 150403 (date of experiment) stored in #TITLE field, this record number give access to another file with contains full information about experimental conditions. This approach was used because we were not sure, at this time, if it was pertinent to store all parameters of the experiment with the data in the same CSVM file. It was possible to use the #META field for that, in another way the insertion of annotations in the CSVM table could be used 32 . Notice also that some of the last rows of this file are not filled with data. This is normal, all kinetics are not recorded with same duration (but with same time origin and intervals). The CSVM convention lets you to mark these empty positions by a particular character (in this case '-') or not.

X Y X Y X Y X Y -

Data extraction from RAW values

Very often calculation programs cannot handle multi-column files (not only CSVM) but uses a two-column file: time and a variation of a given quantity (here the product of reaction, for a particular value of inhibitor concentration). The following figure shows this kind of file with: a number of experimental points in the first row, followed by two columns using spaces as delimiters, one for time, the other for a biochemical quantity, and at last a block (rows beginning by a # character) for some metadata. print "*** Extract columns on the value of headers" print "-> the column named 'fichier_mol' in strict mode (equal)" ls = csvm_ptr_getcol(c, 'fichier_mol', 1) print "found %d column in CSVM stream" % (ls[0]) print ls[1] print "-> the columns in which string 'no_' is found (include)" ls = csvm_ptr_getcol(c, 'no_', 0) print "found %d columns in CSVM stream" % (ls[0])

32

And easy to do: if the first character of a row is a # not followed by a reserved keyword (TITLE, META, HEADER, TYPE or WIDTH) the row is not read by parsers and is available to store annotations, this kind of annotation provides a high level of information (but not immediately available for processing) for the related table.

For large sets it is also possible to make queries based on all parts of CSVM (metadata and data) following the columns or rows. The following output shows on a simple string (green) matrix (the data block of a CSVM Python class) how to make a search or a combined search (AND, OR) on columns or rows: The results (red) of each tested functions (blue) are enclosed in brackets at right of lines. In strict mode the search string (or the list of search strings) must be found as a plain value of a cell, if not strict (in mode), the search string can be also a substring of a cell value.

With this minimal toolkit it is easy to extract columns or rows and to make files at a given format usable by software that cannot handle multi-column CSVM files. CSVM files and processors can simplify greatly the handling of complex dataflows.

Mixed time series and information

In this case, two column curves were extracted from the CSVM file (the primary data source) shown in Figure 16-A. Each extracted two-column files is formerly a curve [P]=f(t) and it can be used for calculation (curve fit). But what about for the results ? In the following sample, not only the results of minimization (data, model key, residuals) were stored in one CSVM file but also all parameters used for calculation (initial values, solution, confidence intervals …) by adding new columns at right of data.

The following output is a typical result after a calculation. The four first columns code for time series: column 1 for time ('X0'), column 2 for product [P] concentration ('Y0'), column 3 for curve fit using model C23 ('Y0 CALC') and column 4 for residuals ('RES') between experimental (Y0) and calculated (Y0 CALC) data.

Combine different layers of data and calculations

This kind of file is considered a secondary data source, and these files could be aggregated to do other calculations. But, in fact, the most frequent use of secondary data is to pick some results inside (typically a solution value for a given parameter to be optimized). In this case, the value (PSOL=0.5151757) of an apparent kinetic constant k (PNUM=1, PNAME=k) was extracted, and stored in a new CSVM file: the tertiary data source. More precisely, this file was used to store the variation of k value (secondary data) with concentrations of [S] or [I] (substrate and inhibitor) stored in the primary data source (CSVM file shown in Figure 16). An example of tertiary data source is given in the Figure 19 : The tertiary data source was then used to make other calculations in order to compute an inhibition constant (K I or K I *) significant of the affinity of a given inhibitor relative to this enzyme and that is used to rank the efficiency of different inhibitors.

The details of equations used in this software pipe are given in Annex-1 with the same color conventions than in this section.

Data driven parallelism

This previous sample shows how CSVM could be used to follow closely data parallelism, the Figure 19 generalize this kind of concept:

Secondary calculations

Indexes and results

Final report

The files in set j1 are native files (apparatus or other formats). These files (e4, e7 …) are converted to the canonical format in order to create a CSVM data space (e1, e2, e3 … e8). For each file of this space the n data sets (two-column sets time vs. quantity) are extracted, and n suitable files for calculation (CSVM or not depending on the software used) are created (i.e. m1 or m5 squares).

After calculation the results are stored in n CSVM files mixing original data and results (i.e. e4.1, e4.2, e4.3 … for columns m1, m2, m3 … of file e4). Some data inside these files are then extracted and aggregated inside a new data source i1. This source can be used as a report or for a new calculation run. In this case a new file can be created or columns can be added to i1 that gives a modified i1.1 All calculations are independent and could be attributed to a pool of nodes/threads depending on the parallel model used. We can use CSVM as support for a data driven parallelism and it could be possible to implement an abstraction layer upon CSVM to make operations such as: split, scatter/bcast, reduce … (typically MPI-like operations on data at different calculation steps) in order to implement a model of high throughput enzymology.

From calculations to reports

In the previous sections we have shown that CSVM is well suited to support publication chains. This also the case here, the final (i.e. i1.1) or intermediate reports (i1) can be used as input for a new dataflow (calculation or data exposition). The following figure shows a proof of concept for a report layer at the level i1 that includes a JavaScript framework and software components for extracting data (i.e. make graphs) from the CSVM files.

Including models in the scheme

Calculations uses a phenomenological model for data fitting, now what about the model itself ? The following sample shows how a model could be stored33 in a CSVM table. The chosen model is very used in enzyme kinetics: a variation of Michaelis-Menten mechanism that is converted as an EDO system and stored with all needed parameters for numerical integration inside a CSVM table using a key/values scheme.

A model taken from enzymology :

Converted in a EDO system :

The corresponding CSVM file shown in the following figure includes other equations (mass conservation, enzyme conservation), values for rate constants and molar concentrations, integration algorithm used (in this case RK4 stands for Runge-Kutta 4) and its parameters, other non-numerical data … This is a proposal for coding the model in order to ensure genericity (a same formalism is usable for all models) and to keep human readable data (a formalism closely related to EDO system). Perhaps it is not the best solution for presenting data closely from the syntax and calling arguments of the numerical function used to make numerical integration. But in two cases, the CSVM file will be easily parsed independently of model's complexity, and a one problem will be eliminated.

Similar examples could be found in chemistry, environmental sciences, etc. In these cases, CSVM shows that it is possible to store in the same format, the data and intermediate data, the results, the models. This is useful in a lot of experimental sciences because the development effort for computer scientists is reduced and they can focus on the problem itself.

Limit the number of data formats you use!

We have spoken about the use of CSVM as a canonical format for RAW data conversion and intermediate results. Extending the concept to other kind of data is fairly immediate. In this section some samples taken from structural bioinformatics are given.

Map of molecular interactions

The previous section has shown that CSVM can be used to store results of calculations. This ensures that these results could be used by another program or could be aggregated to larger dataset without any modifications. This is also true for non-time dependant data, here is a case for a map of molar interaction between a ligand (COA standing for Coenzyme A) and the water (HOH) or amino acid residues (LYS, ARG, ALA, SER, …) of an enzyme (1KRU PDB structure), courtesy from Vincent Mariaule 34 .

A software pipe generates a custom 2D map of interaction using different programs: LIGPLOT 35 package and related programs 36 37 , the results of different calculations are filtered, extracted, converted and aggregated in the final CSVM file. The d and a acronyms stands for donor and acceptor (hydrogen interactions), the columns RESSEQ are used to store the residue number in the protein sequence or in the crystallographic structure. The columns ATYPE store the atom types implied in interactions. The formalism is closely related to the Protein Data Bank 38 (PDB) formalism. The last column is the distance between the two atoms found by row.

Is structural data (a PDB 39 file) or sequence data could be stored in CSVM files ? Definitely yes, but the interest could be limited because a lot of file formats exists and are widely used. In the case of a PDB file, the coordinates PDB block is immediately transposable, in the case of CSVM the use of delimiters permits to add new columns in any order and to add useful annotations. For the header PDB block using CSVM could simplify the metadata organization because CSVM is not restricted to a particular number of columns or characters per row. Sometimes, for intermediate results in calculations or protein coordinate normalization we had used CSVM for coordinate block.

BLOSSUM and PAM matrixes

- - - - -1 -3 -3 -3 -1 -3 -3 -4 -3 4 - - - - - - - - - - -1 -2 -3 -4 -1 -2 -3 -4 -3 2 4 - - - - - - - - - -1 2 0 -1 -3 1 1 -2 -1 -3 -2 5 - - - - - - - - -1 -1 -2 -3 -1 0 -2 -3 -2 1 2 -1 5 - - - - - - - -2 -3 -3 -3 -2 -3 -3 -3 -1 0 0 -3 0 6 - - - - - - -1 -2 -2 -1 -3 -1 -1 -2 -2 -3 -3 -1 -2 -4 7 - - - - - 1 -1 1 0 -1 0 0 0 -1 -2 -2 0 -1 -2 -1 4 - - - - 0 -1 0 -1 -1 -1 -1 -2 -2 -1 -1 -1 -1 -2 -1 1 5 - - - -3 -3 -4 -4 -2 -2 -3 -2 -2 -3 -2 -3 -1 1 -4 -3 -2 11 - - -2 -2 -2 -3 -2 -1 -2 -3 2 -1 -1 -2 -1 3 -3 -2 -2 2 7 - 0 -3 -3 -3 -1 -2 -2 -3 -3 3 1 -2 1 -1 -2 -2 0 -3 -1 4 #TITLE BLOSSUM62 #HEADER A R N D C Q E G H I ... #

PDB hetero compound dictionary and variations

The following figure shows the bottom of the PDB's databank hetero dictionary 42 encoded in CSVM. This file of about 2000 rows, is used to store PDB and chemical component identifier correspondences. The ' §' could be used and the corresponding string with 3 values in INPDB column becomes '2wtv §2wtw §2x81'.

The CSVM parser split the file according to the main delimiter (generally a TAB) and the application program, read CSVM matrix cells and split them knowing the secondary (or ternary) delimiter, if multiple values are expectable inside.

The CSVM formalism allows to send a signal through the parser about that (multiple values in cells). The #META row could be used with a specific keyword inside (the signal and the secondary delimiter), in example: '#META MULTIPLE_VALUES_IN_CELLS[§] …' or '#META CODE104 CODE108 …' etc. This signal can be interpreted (post-parsing) by the application layer. As usual we don't define in CSVM specification this kind of mechanism; the interest of CSVM is precisely to provide architecture for data and metadata but without any normalization. In this sample the #META field is used to store the download location, and a release date (using another delimiter the '|' character). The CSVM format let the user free from defining characters used as primary or secondary delimiters, both for data or metadata block, the parser knows only column delimiter, others separators are used by application.

Real case: how to merge CSVM tables

The previous file (Figure 25) is very close from original file (the dictionary released by the PDB): only a metadata block has been added. This is also the case for the next file (Figure 26): another dictionary taken from the PDB listing the same hetero compounds with the same 3 letter code (column HETNAME) and two other columns for a chemical formula written in SMILES format (SMI column) and a chemical name (MOLNAME): Even if the only modifications were to add a metadata block, this enables complex operations such as the merging of the files from Figure 25 and of Figure 26. This can be done with a few lines of code and functions from the Python CSVM toolkit. This example is given in the following and will be used to illustrate some subtleties related to the manipulation of RAW data sets.

.. C(CNC(=N)N)C(C(C(=O)O)N)O ZZU (2s,3s)-hydroxyarginine c1ccc(c(c1)[N+](=O)[O-])S(=O)(=O)n2ccc3c2cc(cn3)C(=O)N ZZY 1-[(2-nitrophenyl)sulfonyl]-1h-pyrrolo[3,2- b]pyridine-6-carboxamide C1C(NC2=C(N1)N=C(NC2=O)N)C=O ZZZ 6-formyltetrahydropterin
print "c2: added %d hetnames" % (hetcount) print "c1: %d hetnames not found" % (len(notfound))

The following script output shows that all HETNAME values of c1 have been checked, and the summation of added and not found gives the good value of 15071 (number of rows for c2 data block):

c2: added 12107 hetnames c1: 2964 hetnames not found

Now it is possible to make an (optional) dump of the modified c2, to save a new CSVM file and to clean data structures in memory:

#c2.csvm_ptr_dump(0,0) s = csvm_ptr_make_csvm(c2,"\n","\t") file_str2file("result.csvm", s) c1.csvm_ptr_clear() c2.csvm_ptr_clear() del(col[1])

The following table shows a part of the resulting CSVM file. The files taken for the programming example are more recent than the two used for previous figures. If a comparison is done with the file of Figure 25 we see obviously than 3 new compounds (ZZV, ZZW, ZZX) have been added:

SMI HETNAME MOLNAME INPDB

C(CNC(=N)N)C(C(C(=O)O)N)O ZZU (2s,3s)-hydroxyarginine 2wbp 2wbq CN(c1c2cccnc2c(c3c1CN(C3=O)Cc4cc c(cc4)F)O)S(=O)(=O)C ZZV n-[7-(4-fluorobenzyl)-9-hydroxy-8-oxo-7,8-dihydro-6h- pyrrolo[3,4-g]quinolin-5-yl]-n- methylmethanesulfonamide 3oyd c1ccc2c(c1)c3cc(ncc3n2Cc4ccc(cc4)F)C(=O)NO ZZW 9-(4-fluorobenzyl)-n-hydroxy-9h-beta-carboline-3- carboxamide 3oyc CCN1CC(n2c3c(c(c2C1=O)O)C(=O)N(N =C3C(=O)NC)Cc4ccc(c(c4)Cl)F)C ZZX (6s)-2-(3-chloro-4-fluorobenzyl)-8-ethyl-10-hydroxy- n,6-dimethyl-1,9-dioxo-1,2,6,7,8,9- hexahydropyrazino[1',2':1,5]pyrrolo[2,3-d]pyridazine- 4-carboxamide 3oyb 3oyj 3oyl 3oyn c1ccc(c(c1)[N+](=O)[O-])S(=O)(=O)n2ccc3c2cc(cn3)C(=O)N ZZY 1-[(2-nitrophenyl)sulfonyl]-1h-pyrrolo[3,2- b]pyridine-6-carboxamide 2wd1 C1C(NC2=C(N1)N=C(NC2=O)N)C=O ZZZ 6-formyltetrahydropterin 2cfi
The next sample 44 is the output (using the csvm_ptr_dump method) of the first 5 rows of c2 and it shows some compounds not found in c1. This is the case of compounds [000] and [005], the corresponding rows (indices 0 and 5) have the last field empty (no value between brackets). This sample demonstrates that it is possible to make an operation that mixes the intersection and union (Section 4.3) of RAW tables in a simple manner. Nevertheless this is a very favorable situation because all columns of c1 have the same number of rows, no duplicates are found in HETNAME column of c1 and c2, no blank values inserted between values … if it is not the case, the algorithm must be modified.

[COC(=O)O][000][methyl hydrogen carbonate][] 1 [COc1cc(cc(c1OC)OC)C(C(=O)N2CCCCC2C(=O)OC(CCCc3ccccc3)CCCc4cccnc4)(F)F][001][1-[2,2-difluoro-2- (3

Conclusion

This document is based on about ten years of CSVM usage in laboratory and does not cover all samples we have encountered. The examples of using CSVM are now numerous and all seem to demonstrate the plasticity of this format. This feature was essential to implement a SFMD (Single Format -Multiple Data) paradigm for tabular data. This format was also found to operate very well with tabular like data (data that can be organized in a table, but are not inherently tabular) such as multiple key/values groups in the same data block. The use of CSVM as a canonical format is of a great interest in a lot of processes involving manipulation of tables: files conversion, normalization of data and data types, intermediate files in software pipes, automatic processing of big tables with sparse or heterogeneous data. CSVM is also a suitable format for gathering scientific objects and for exposition of data through a web framework, without any database system.

A generalized application could be the long term storage of RAW data. We have defined in this case the concept of 'data museum'. The data is stored with a minimal annotation but enough to ensure its reuse some time (month, years and more) after. This kind annotation is nearly the same as the tags on drawers (that contains minerals or fossils samples) of a collection. It provides a view on data, enough to enable a research of a sample by a specialist of the domain. It is not suitable in this case to embed data in a database system, because these data islands are too heterogeneous to be taken in account by a given system (that is not guaranteed to be functional for a long duration). In the same way, to focus efforts on RAW data is very important because, very often, all RAW data is not integrated exhaustively in databases. Later, these 'not used' data could be requested for future studies, but at this time these data will be lost. This risk is particularly encountered in environmental sciences (loss of 'zero time'). The use of CSVM in the short term could be also useful. Typically RAW data managers in laboratories cannot, in the same time, organize data collection; curate data and build a database. Perhaps in a lot of cases, a better approach could be to store CSVM files, and at demand to build (a RDBMS or another system) a specific view of the data space (particularly in order to respond to a scientific question). In this case, the CSVM files could give all information needed by IT teams to build the database, independently of the work of RAW data managers. A well curated flat database is often better (from a scientific point of view) than any RDBMS. The evolution of JavaScript frameworks and search engines shows also than a collection of CSVM files could be exposed using a web interface with non negligible search capabilities. So, CSVM could be useful to resolve the gap between people which wait a new database to store data, and people which wait data to model and build the same database (the use of AGILE techniques is not ever enough to solve this problem). CSVM could also give support in the case of not published scientific data, because the CSVM format provides a way to store these tables (perhaps 80 per cent of data in a lot of experimental sciences) and allow a normalization effort, without too much complexity for the scientific community. Clearly, the research of funds in order to build databases for never (perhaps) used data could be a harder work than storing data in an adequate format. Beyond of scientific use, this approach could be interesting in the Open Data. In this case, some questions are common with long term storage and unpublished data fields.

Specific References

CSVM as a derivative of CSV is an Open file Format. The CSVM-1 specification and use of CSVM dictionaries are covered in the two following documents:

 G. Beyries, F. Rodriguez (2012) Technical Report: CSVM format for scientific tabular datahttp://fr.arxiv.org/abs/1207. 5711 [arXiv:1207.5711v1].  F. Rodriguez (2012) Technical report: CSVM dictionarieshttp://fr.arxiv.org/abs/ 1208.1934[arXiv:1208.1934v1 .1934v1].

A CSVM toolkit (Python programming language, Open Source: CeCILL free software license agreement) is available from the corresponding author of this manuscript.

The analytic equations of [P]=f(t) for each case of mixture show an apparent constant k that can be computed by a direct fit of the progress curves (two column curves extracted from primary data). After calculation, this apparent constant found in secondary CSVM files and its value stored in key PSOL of the first key block (PNUM=1). Knowing that the K M constant (characteristic of the Enzyme-Substrate affinity) is determined using another way (kinetics without inhibitor in the mixture) it is possible to compute the variation of k on , k off and K I * using a linearization. Another curve fitting is done that uses the generated curves k=f([I]) stored in tertiary CSVM files and computed as a secondary calculation layer:

Figure 1 .

 1 Figure 1. -A view 4 of the molecule's collection.

Figure 2 .

 2 Figure 2. -A view of the collection written in a table, only rows [1..10] and [78..80] are shown.

Figure 3 .

 3).

Figure 4 .

 4 Figure 4. -A tagged (remarks) CSVM file.

 self.SOURCE = "" # path/file name of readed CSVM file self.CSV = "" # CSVM or CSV depending of file contents self.TITLE_N = 0 #Titles of CSVM file (let for future, only one string used today) self.TITLE = "" # Title of CSVM file self.HEADER_N = 0 # Number of data columns titles self.HEADER = [] # List of data column titles self.TYPE_N = 0 # Number of data columns types (= self.HEADER_N) self.TYPE = [] # List of data column types self.WIDTH_N = 0 # Number of data columns widths (= self.HEADER_N) self.WIDTH = [] # List of data column widths self.DATA_R = 0 # Number of data rows self.DATA_C = 0 # Number of data columns (= self.HEADER_N) self.DATA = [] # String matrix containing data self.META = "" # Meta string

Figure 5 .

 5 Figure 5. -Console output corresponding to Code 1 example, only 11 first data rows and 5 last data rows are displayed.

Figure 10 .

 10 Figure 10. -Calculation and parameters driven by a CSVM table, columns PHI and PSI are used for angle values.

Figure 11

 11 Figure 11. -A simple viewer (wxGrid widget 17) parsing a CSVM file (a collection of documents).

Figure 12 .

 12 Figure 12. -Some rows of a CSVM files filled with rules for a text filter.

Figure 13 .

 13 Figure 13. -Same data (as shown in Figure 10) parsed using a JavaScript list component and displayed as item list (bibliographic style) rather than columns. Data are sorted by year (ANNEE) and displayed in the order (ANNEE, DONNEES, FLORAISON, TITRE, RESUME).

Figure 14 -

 14 Figure 14-A. -Chemical collection of ligands taken from the Protein Data Bank 18 .

 19 M. Catala -Etude structurale et arrimage moléculaire (Docking) in silico de prodrogues dans la ß-glucocérébrosidase. Rapport M1BBT (2006) Université Paul Sabatier. 20 S. Gau, F. Rodriguez, C. Lherbet, C. Menendez, M. Baltas. Approches interdisciplinaires pour la conception rationnelle d'inhibiteurs. RECOB 13, Aussois (2010). 21 New potent bisubstrate inhibitors of histone acetyltransferase p300: design, synthesis and biological evaluation. F.H.A. Kwie, M. Briet, D. Soupaya, P. Hoffmann, M. Maturano, F. Rodriguez, C. Blonski, C. Lherbet, C. Baudoin-Dehoux. Chem Biol Drug Des. (2011) 77:1, 86-92. 22 JMOL: An open-source Java viewer for chemical structures in 3S -http://jmol.sourceforge.net/ 23 PyMol -http://www.pymol.org/

Figure 15

 15 Figure 15. -A dynamic view of a CSVM file after its conversion (JavaScript table, columns at right not shown).

 24M. Gerino & coll. Bilan et dynamique de la matière organique et des contaminants au sein d'une discontinuité ex de la retenue de Malause. Restitution des travaux scientifiques du projet de recherche ECOBAG P2 (2006).

 25G. Beyries, F. Rodriguez. Quels outils informatiques pour les collections de données ? Restitution du Programme ECOBAG P1, Agen (2004).

 26

Figure 16

 16 Figure 16-B. -Original format issued from a spectrophotometer..

 29 S. Gavalda. L'Enolase de Trypanosoma brucei : Synthèse et étude du mode d'action d'inhibiteurs. Thèse de doctorat de l'Université Paul Sabatier Toulouse III (2005).

 30 S. Gavalda, F. Rodriguez, G. Beyries, C. Blonski. Software design and components for enzymology,. 21ème CBSO, Ax-Les-Thermes (2006). 31 S. Gavalda, F. Rodriguez, G. Beyries, C. Blonski .Méthodes et composants logiciels pour l'interface chimie-biologie. RECOB11 Aussois (2006).

Figure 20 .

 20 Figure 20. -Data parallelism in the case of this Enzyme kinetics processing.

Figure 21 .

 21 Figure 21. -Output of a publishing chain using aggregated data from calculations.

 . Etude structurale des histones acétyl transférases. Rapport M1 BBT, Université Paul Sabatier Toulouse III (2008).

 . Wallace, R.A. Laskowski, J.M. Thornton. LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. Protein Eng. (1995) 8:2, 127-134. 36 HBPLUS: Hydrogen Bond Calculation Program -I.K. McDonald, J.M. Thornton. Satisfying Hydrogen Bonding Potential in Proteins (1994) JMB 238, 777-793. 37 NACCESS: Solvent accessible area calculations -S. Hubbard, J. Thornton (1992). 38 RCSB Protein Data Bank -http://www.rcsb.org/pdb/ 39

Figure 25 .

 25 Figure 25. -PDB and chemical component identifier (column HETNAME) correspondences encoded in a CSVM file.

Figure 26 .

 26 Figure 26. -Last rows of a SMILES data file including PDB chemical component identifier (column HETNAME).

.

 ,4,5-trimethoxy-phenyl)-acetyl]-piperidine-2-carboxylic acid 4-phenyl-1-(3-pyridin-3-yl-propyl)butyl ester][1j4r] 2 [CCC(C)C(C(=O)NC(CC(C)C)C(=O)O)NC(=O)C(Cc1ccccc1)CC(=O)NO][002][n-[(2r)-2-benzyl-4-(hydroxyamino)-4-oxobutanoyl]-l-isoleucyl-l-leucine][2fv9] 44The rows of the data block (grey and gray background, black or yellow foreground) are wrapped. The row indices (yellow) at left and INPDB values (yellow) at right, compound names (HETNAME, yellow) in the middle of the row.

Secondary calculation layer sample 1 /

 1 vst = f([I]) et k=f([I]) Secondary calculation layer sample Vmax/v0 = f([I]) ou v0/(Vmax -v0) =f([I])

 Code 1. -Beginning of Python CSVM Class code. Follows CSVM specs (v:1.x) for contents of data structure. Standard column types are NUMERIC,TEXT,DATE,BOOLEAN. Some of us, use also INTEGER, FLOAT for numeric types. Some of us, use also NODE, LINK, IMAGE for web data embedded in CSVM files. WIDTHs (10,50 if not set) are for Javascript tables and can be omitted.

	class csvm_ptr:
	"""

*** 1.01/080304/fred """ def __init__(self):

 Figure 6. -Example of database schema encoded in a CSVM file.

	DB	192.168.10.17	anonymous		-	Chemb
	TABLE	user		chemb\user.csvm	0	-
	TABLE	assoc		chemb\assoc.csvm	0	-
	FOREIGN assoc		3			user	0
	#TITLE	Database import schema	
	#HEADER	KEYWORD TEXT	TEXT	TEXT	TEXT
	#WIDTH	10	10		10	10	10
	#META	april/25/2008 15:42:45	

 Figure 8. -Example of using a CSVM table for a file catalog (this output is a dump of a CSVM Python class).

	DUMP: CSVM info {
	SOURCE	
	CSV CSVM
	META	[]
	TITLE_N 1
	TITLE	
	HEADER_N	3
	TYPE_N 3
	WIDTH_N 3
	0	50 TEXT	{DIR}
	1	50 TEXT	{FILE}
	2	50 TEXT	{-}
	DATA_R 118
	DATA_C 3
		118 3
	0	[c:\Python26\Lib\site-packages\build][args.py][18:jun:2009]
	1	[c:\Python26\Lib\site-packages\build][date.py][19:oct:2006]
	2	[c:\Python26\Lib\site-packages\build][dir.py][06:may:2010]
	...		
	115 [c:\Python26\Lib\site-packages\build_depot\numerix_dist][__init__.py][16:apr:2008]
	116 [c:\Python26\Lib\site-packages\build_struct][strpdb.py][26:mar:2007]
	117 [c:\Python26\Lib\site-packages\build_struct][__init__.py][31:oct:2006]
	}		
	done	

 corresponding data is a molar (or equivalent measurements: i.e. values of optical densities taken with a spectrophotometer) concentration ([S] decreasing or [P] increasing of a Substrate (P) or a Product (P) depending from time (the first column tagged 'Time (s)'). Each column at right of time, is an evolution of [P] for a particular molar concentration of an Inhibitor, giving a table of [P] = f(t,[I]) which can be modeled later to give parameters of an underlying kinetic model. A typical example is given in the following figure with the first column devoted to time base and the others at right to different experiments (increase of Product corresponding to a particular value of inhibitor concentration).

	0.000	-0.0001 -0.0007	0.0015	-0.0002	0.0003	0.0010		-0.0013	-0.0017 0.0008	0.0009	-0.0017	0.0002	0.0010	-0.0004
	0.010	0.0001	-0.0013	0.0004	-0.0004	-0.0011	-0.0000040	-0.0014	-0.0015 0.0001	0.0006	-0.0018	0.0005	0.0004	-0.0010
	0.020	0.0001	-0.0009	0.0014	-0.0003	-0.0004	0.0005		-0.0013	-0.0014 -0.0004	0.0021	-0.0025	-0.0003	0.0008	-0.0003
	...														
	6.970	0.4313	0.4479	-	-	-	-		-		-	-		-		-	-	-	-
	6.980	0.4324	0.4470	-	-	-	-		-		-	-		-		-	-	-	-
	6.990	0.4328	0.4484	-	-	-	-		-		-	-		-		-	-	-	-
	#TITLE csvm\sab150403.csvm (CSVM) from [reports\sab150403.txt]								
	#HEADER Time (s)	A1	A2	A3	A4	A5	A6		A7		Set-8	Set-9	Set-10	Set-11	Set-12	Set-13	Set-14
	#TYPE	NUMERIC	NUMERIC NUMERIC NUMERIC NUMERIC NUMERIC NUMERIC	NUMERIC NUMERIC NUMERIC NUMERIC NUMERIC NUMERIC NUMERIC NUMERIC
	#WIDTH 50													

Figure 16-A. -A partial view of kinetics CSVM data, a lot of rows are not shown (marked by '…' characters).

 Figure 17. -A two-column data file specific of a given software.

	691	
	0	0
	0.05	0.67669
	0.1	1.42857
	0.15	2.18045
	0.2	2.85714
	...	
	34.383	281.50376
	34.433	281.8797
	34.483	282.25564
	# LPZ file . lpz\0234-1.lpz
	# Npts 691
	...	
	# Colx no .. 0
	# Header x . Time
	# Coly no .. 1
	# Header y . B
	...	

In this case, we need to use software components to extract columns from the primary CSVM file, make this kind of dataset: {Time (s); A1}, {Time (s); A2} ... {Time(s); Set-14} and save it using the corresponding format. With CSVM it is easy to split the multi-column file (one time column, i=1..n columns [P] i) into n CSVM files (each on with time and [P] i). Column extractors are included in Python toolkit, a Python list is returned, depending on a search string applied on #HEADER values: Code 4. -Simple CSVM column extractor in Python language.

 Code 5. -Example of using a CSVM table for a file catalog (this output is a dump of a CSVM Python class).

	*** Test EQ column queries samples
	uses matrix : [['PDB', '3.24', 'AB4'], ['-', '1.0', '46'], ['PDB', '1.01', '4']]
	query_col_eq(matrix, '4', 2, 1) => strict : rows [2]
	query_col_eq(matrix, '4', 2, 0) => inc : rows [0, 1, 2]
	query_col_eqs(matrix, 'PDB -', 'and', ' ', 0) => strict/and : rows []
	query_col_eqs(matrix, 'PDB -', 'or', ' ', 0) => strict/or : rows [0, 2, 1]
	query_col_eqs(matrix, '4 46', 'and', ' ', 2) => strict/and : rows []
	query_col_eqsv(matrix, ['4','46'], 'or', 2) => strict/or : rows [2, 1]
	query_col_eqsv(matrix, ['4','46'], 'or', 2, 0) => inc/or : rows [0, 1, 2]
	*** Test NOT.EQ column queries samples
	uses matrix : [['PDB', '3.24', 'AB4'], ['-', '1.0', '46'], ['PDB', '1.01', '4']]
	query_col_not_eq(matrix, '4', 2) => strict : rows [0, 1]
	query_col_not_eq(matrix, '4', 0, 0) => inc : rows [0, 1, 2]
	query_col_not_eqs(matrix, '4 LIG', 'or', ' ', 0, 0) => inc : rows [0, 1, 2]
	query_col_not_eqs(matrix, 'B 6', 'and', ' ', 2, 0) => inc : rows [2]
	*** Test EQ row queries samples
	get the first row of matrix : ['PDB', '3.24', 'AB4']
	query_row_eq(row, '4') => strict : columns []
	query_row_eq(row, '4', 0) => inc : columns [1, 2]
	query_row_eqsv(row, ['4','PDB'], 'or', 0) => inc/or : columns [1, 2, 0]

*** Test NOT.EQ row queries samples get the first row of matrix : ['PDB', '3.24', 'AB4'] query_row_not_eq(row, 'PDB') => strict : columns [1, 2] query_row_not_eqs(row, 'B 4', 'and', ' ', 0) => inc/and : columns [] query_row_not_eqs(row, 'B 4', 'or', ' ', 0) => inc/or : columns [1, 0] query_row_not_eqs(row, 'LIG -', 'or', ' ', 0) => inc/or : columns [0,

1, 2]

 Figure 19. -Aggregated results in a CSVM file and used as a new data source in the next calculation layer. Some columns are not shown and are marked by '…' symbols.

	A020304 0234-1.LPZ	Model C23	691	3	1	186.8595 .5211507 1 k ...
	A020304 0234-10.LPZ Model C23	686	3	1	224.6174 .5734709 1 k ...
	A020304 0234-11.LPZ Model C23	691	3	1	1373.348 1.41285	1 k ...
	A020304 0234-12.LPZ Model C23	690	3	1	152.6696 .4714091 1 k ...
	A020304 0234-13.LPZ Model C23	684	3	1	509.5747 .8650284 1 k ...
	...										
	TB310304 3134-8.LPZ	Model C23	623	3	1	516.7548 .9129487 1 k ...
	TB310304 3134-9.LPZ	Model C23	649	3	1	682.8931 1.028159 1 k ...
	#TITLE	Results in [model_c23\][CSV]					
	#HEADER LFILE PROG NPTS NPAR	NVAL F	ET	PNUM	PNAME ...
	#TYPE	UNDEF UNDEF UNDEF UNDEF UNDEF UNDEF UNDEF UNDEF UNDEF ...
	#WIDTH	50	50	50	50	50	50	50	50	50	...

 Figure 22. -EDO system and parameters stored in a CSVM file (human readable form).

	ALGO	rk4	-				-	-	EDO solver
	TIME	0	1				0.0000001	0.01	Seconds
	SPEC	S	1.0e-3				-	-	Substrat (M, publi= 10.10-6)
	SPEC	P	0.0				-	-	Product (M)
	SPEC	ES	0.0				-	-	Enzyme-substrat complex (M)
	SPEC	E	1.0e-006				-	-	Free Enzyme (M, publi= 45.5 10-12 M)
	RATE	k1	2.0e+005				-	-	ct. ES formation (M-1.s-1)
	RATE	k-1	1.1e+003				-	-	ct. ES disparition (s-1)
	RATE	k2	900				-	-	ct. P formation (s-1)
	# Theoric KM of 10.10-3 M				
	PATH	S	<k -1>.ES -<k1>.E.S		-	-	dS/dt
	PATH	P	<k2>.ES				-	-	dP/dt
	PATH	ES	<k1>.E.S -<k -1>.ES -<k2>.ES	-	-	dES/dt
	PATH	E	-<k1>.E.S + <k -1>.ES + <k2>.ES	-	-	dE/dt
	MONI	Cm	S+P+ES+E				-	-	Matter conservation
	MONI	Etotal E+ES				-	-	Enzyme conservation
	#TITLE	Prob 3.3 of Shuler and Kargi S>>E	
	#HEADER	KEY	UNDEF	UNDEF	UNDEF	UNDEF	UNDEF
	#TYPE	TEXT	TEXT	TEXT	TEXT	TEXT	TEXT
	#WIDTH	50	50	50	50	50	50

 Figure 23. -A 2 D interaction map stored as a CSVM table.

	1KRU	1KRU	LYS	195	N	d	HOH	2053	O	a	2.83
	1KRU	1KRU	COA	204	S1P	d	IPT	207	O6	a	3.14
	1KRU	1KRU	HOH	2053	O	d	COA	204	O4A	a	2.92
	1KRU	1KRU	COA	204	OAP	d	COA	204	N7A	a	2.52
	1KRU	1KRU	ARG	183	NH2	d	COA	204	O5A	a	3.09
	1KRU	1KRU	ARG	183	NE	d	COA	204	O5A	a	3.22
	1KRU	1KRU	COA	204	N6A	d	ALA	160	O	a	2.95
	1KRU	1KRU	ALA	160	N	d	COA	204	O9P	a	3.16
	1KRU	1KRU	SER	142	N	d	COA	204	O5P	a	2.81
	1KRU	1KRU	IPT	207	C6	-		COA	204	S1P	-	3.60
	1KRU	1KRU	COA	204	C2A	-		VAL	177	CG1	-	3.84
	1KRU	1KRU	COA	204	S1P	-		HIS	115	CD2	-	3.48
	1KRU	1KRU	COA	204	C6A	-		ALA	175	CB	-	3.89
	1KRU	1KRU	COA	204	C7P	-		TRP	139	CH2	-	3.76
	1KRU	1KRU	COA	204	CEP	-		TRP	139	CH2	-	3.65
	1KRU	1KRU	COA	204	CEP	-		TRP	139	CZ3	-	3.60
	1KRU	1KRU	COA	204	C6P	-		TRP	139	CZ2	-	3.74
	1KRU	1KRU	COA	204	C7P	-		TRP	139	CZ2	-	3.57
	1KRU	1KRU	COA	204	C3P	-		ALA	105	CB	-	3.45
	#TITLE	Ligplot summary!ligplot2csvm.py (v:1.04)!1KRU				
	#HEADER	PDB	CHAIN	RESNAME RESSEQ		ATYPE	FROM	RESNAME	RESSEQ	ATYPE	TO	DIST
	#TYPE	TEXT TEXT	TEXT	INTEGER	TEXT	TEXT	TEXT		INTEGER	TEXT	TEXT	FLOAT
	#WIDTH	10	10	10	10		10	10	10		10	10	10	10

 For people working in genomics or proteomics, BLOSUM or PAM substitution matrixes 40 are well known objects. The next figure shows a CSVM version of a BLOSSUM 62 matrix. For readability, some columns of the metadata block are missing (and marked by '…' characters at right). The order of amino acid names (1-letter code in #HEADER) is the same in columns (left to right) and rows (top to bottom), data taken from Hiroto Saigo 41 .

	Figure 24. -A Blossum 62 matrix encoded in a CSVM table.

 So, the first column is for the chemical compound PDB code(3 chars) and the column 2 is for a list (values separated by a space) of PDB entries (4 chars) in which the compound is found. The CSVM format is not locked to tabular data of a given number of columns, formerly the following table is constituted of two columns (HETNAME, INPDB) but in the second column, the values could be single (last lines shown) or multiple (first line with 3 values: 2wtv, 2wtw, 2x81). It is possible to make 3 columns to store these values, but if the average amount of values by line is near 1, you will have a lot of unused columns needed by lines in which the number of values is high. This is precisely the case in this example; and it is better to define lines with two columns and to use a secondary delimiter in the INPDB column. Here a ' ' (space) character is used, but another could be used, the best in this case is a character 43 not found in current scientific data.

	In example, the chemical component encoded with name ZZM (1-propan-2-yl-3-(2-pyridin-3-
	ylethynyl)pyrazolo[4,5-e]pyrimidin-4-amine) is found in PDB structure 2WXM (phosphoinositide-3-OH
	kinase). 40 Substitution matrix (Wikipedia) -http://en.wikipedia.org/wiki/Substitution_matrix 41 Akutsu Laboratory -http://sunflower.kuicr.kyoto-u.ac.jp/index.html.en 42 Ligand Expo Downloads -http://ligand-expo.rcsb.org/ld-download.html 43

Table 1 .

 1 -Result of table merging (only the 6 last rows are shown).

 Figure 27. -Dump of the CSVM class corresponding to the Table.1 (only the 6 first rows of data block are shown).

	DUMP: CSVM info {
	SOURCE result.csvm CSV CSVM
	META	[http://ligand-expo.rcsb.org/ld-download.html]
	TITLE_N TITLE Components-smiles-oe.smi with INPDB field added 1
	HEADER_N	4
	TYPE_N 4 WIDTH_N	4
	0 10 TEXT	{SMI}
	1 10 TEXT 2 10 TEXT	{HETNAME} {MOLNAME}
	3 10 TEXT	{INPDB}
	DATA_R 15071 DATA_C 4
	15071	4
	0	

wxWidgets Cross-Platform GUI Library -http://www.wxwidgets.org/

Stored and parsed. We have used this approach for simulation, not for modeling because we use mainly analytical solutions rather than numerical solutions in our work.

--------1 5 --

-----------------2 0 6 -------------

Acknowledgments

I am grateful to Professor Pierre Tisnès (SPCMIB, UMR5068 CNRS/Université Paul Sabatier) and Dr Philippe Vervier (CESAC, GIS ECOBAG, Acceptables Avenirs, ECOLAB UMR 5245 CNRS/Université Paul Sabatier) for supporting the earlier phases of this work. I am grateful to Dr Michel Baltas (SPCMIB, UMR 5068 CNRS/Université Paul Sabatier) for supporting this work. I would like to thank the CNRS, the "Université Paul Sabatier" and GIS ECOBAG for their financial support.

I thank Dr Jean Louis Tichadou (Université Paul Sabatier); Professor Magali Gerino (ECOLAB, UMR 5245 CNRS/Université Paul Sabatier); Dr Philippe Vervier and members of their respective teams for advices and helpful discussions about this work.

DATA DATA DATA DATA #TYPE TEXT

After importation of some modules of the Python toolkit, the first step is to create a csvm_ptr Python class c1 and to read the first CSVM file (Figure 25). The same process is done for the second file (Figure 26). But before, a row INPDB is added in the second csvm_ptr class c2, at the right of the data block:

Annex-1

In this scheme the use of CSVM files makes easy the mapping of manual processing to automatic processing. The equations 45 46 corresponding to these kinetic mechanisms (slow binding) are studied from the 60's and the enzymatic parameters can be resumed in the following way: This is a particularity of slow binding mechanisms compared to more classic inhibition scheme found in enzyme kinetics science.