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We observe a N ×M matrix Yij = sij + ξij with ξij ∼ N (0, 1) i.i.d. in i, j, and sij ∈ R.
We test the null hypothesis sij = 0 for all i, j against the alternative that there exists some
submatrix of size n ×m with significant elements in the sense that sij ≥ a > 0. We propose a
test procedure and compute the asymptotical detection boundary a so that the maximal testing
risk tends to 0 as M → ∞, N → ∞, p = n/N → 0, q = m/M → 0. We prove that this
boundary is asymptotically sharp minimax under some additional constraints. Relations with
other testing problems are discussed. We propose a testing procedure which adapts to unknown
(n,m) within some given set and compute the adaptive sharp rates. The implementation of our
test procedure on synthetic data shows excellent behavior for sparse, not necessarily squared
matrices. We extend our sharp minimax results in different directions: first, to Gaussian matrices
with unknown variance, next, to matrices of random variables having a distribution from an
exponential family (non Gaussian) and, finally, to a two-sided alternative for matrices with
Gaussian elements.

Keywords: detection of sparse signal, minimax testing, minimax adaptive testing, random ma-
trices, sharp detection bounds.

1. Introduction

We observe a high-dimensional random matrix and we want to test the occurrence of
a particular submatrix of much smaller size, which has elements with expected values
larger than some threshold. We assume that the entries of the matrix are independent,
identically distributed (i.i.d.) random variables but some underlying phenomenon can
increase significantly the expected value of the random variables in the submatrix.
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The author acknowledges support from the CNRS for his visit to the University Paris-Est Marne-la-
Vallée.
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2 C. Butucea and Yu. I. Ingster

We have the observations that form an N ×M matrix Y = {Yij}i=1,...,N,j=1,...,M :

Yij = sij + σξij , i = 1, . . . , N, j = 1, . . . ,M, (1.1)

where σ > 0, {ξij} are i.i.d. random variables and sij ∈ R, for all i ∈ {1, ..., N}, j ∈
{1, ...,M}. In the first part of the paper, the errors ξij are assumed to have standard
Gaussian law and σ is assumed to be known. Without loss of generality we take σ = 1
in this case. At the end of the paper, we extend our results in different directions, as
discussed later on. We test the null hypothesis that all elements of the matrix Y are
i.i.d., standard Gaussian random variables N (0, 1) , that is

H0 : sij = 0 ∀ i = 1, . . . , N, j = 1, . . . ,M. (1.2)

The alternative under consideration will correspond to n × m-submatrices of sizes
n ∈ {1, ..., N}, m ∈ {1, ...,M} with large enough entries. Let

A ⊂ {1, . . . , N}, #(A) = n, B ⊂ {1, . . . ,M}, #(B) = m, C = A×B, (1.3)

and let Cnm be the collection of all subsets C of the form (1.3). The set Cnm corresponds
to the collection of all n×m submatrices in N×M matrix. For a > 0, which may depend
on n, m, N and M . We consider the alternative

H1 : ∃ C ∈ Cnm such that sij = 0, if (i, j) /∈ C, and sij ≥ a, if (i, j) ∈ C (1.4)

(in the Remark 2.1 below we discuss that a slightly larger alternative can be considered).
The components of the matrix Y are independent under the alternative as well. Denote by
PS the probability measure that corresponds to observations (1.1) with matrix S = {sij}
and by ES the expected value with respect to the measure PS .

Let Snm,a be the collection of all matrices S = SC that satisfy (1.4).

We discuss here only right-hand side alternatives, but, obviously, left-hand side alter-
natives can be treated the same way for variables −Yij instead of Yij .

We extend our results to three different setups and sketch the proofs of the results.
First, we consider errors having Gaussian distribution with unknown variance σ2. We also
consider other settings where the Yij ’s come from an exponential family. Finally, in the
initial case of Gaussian errors with known variance, we consider a two-sided alternative
of our test problem.

We are interested here in sparse matrices, i.e. the case when n is much smaller than
N and m is much smaller than M .

Sparsity assumptions were introduced for vectors. Estimation as well as hypothesis
testing for vectors were thoroughly studied in the literature, see for example Bickel,
Ritov and Tsybakov [5] and references therein and Donoho and Jin [6].
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Detection of a sparse submatrix 3

In the context of matrices, different sparsity assumptions can be imagined. For ex-
ample, matrix completion for low rank matrices with the nuclear norm penalization has
been studied by Koltchinskii, Lounici and Tsybakov [9]. Other results will be discussed
later on.

We study the hypothesis testing problem under a minimax setting. A test is any
measurable function of the observations, ψ = ψ({Yij}) taking values in [0, 1]. For such
a test ψ = ψ({Yij}) we denote the probability of type-I error, the probability of type-II
error under simple alternative and the maximal probability of type-II error over the set
Snm,a by

α(ψ) = E0ψ, β(ψ, S) = ES(1− ψ), βnm,a(ψ) = sup
S∈Snm,a

β(ψ, S),

respectively. Let the risk be the following sum:

γ(ψ, S) = α(ψ) + β(ψ, S), γnm,a(ψ) = sup
S∈Snm,a

γ(ψ, S) = α(ψ) + βnm,a(ψ).

We define the minimax risk at fixed level α ∈ (0, 1) as

βnm,a,α = inf
ψ:α(ψ)≤α

βnm,a(ψ).

Similarly, let the minimax testing risk be

γnm,a = inf
ψ
γnm,a(ψ).

From now on, we assume in the asymptotics that N →∞, M →∞ and n = nNM →
∞, m = mNM →∞. Other assumptions will be given later.

We suppose that a > 0 is unknown. The aim of this paper is to give asymptotically
sharp boundaries for minimax testing risk. It means that, first, we are interested in the
conditions on a = aNM which guarantee distinguishability, i.e., the fact that γnm,a → 0
and βnm,a,α → 0 for any α ∈ (0, 1). We construct a testing procedure based on a linear
statistic combined with a scan statistic. We prove the upper bounds of the minimax
testing risk of this procedure. Second, we describe conditions on a for which we have in-
distinguishability, i.e., the convergence γnm,a → 1 and βnm,a,α → 1−α for any α ∈ (0, 1).
These results are called the lower bounds. The two sets of conditions are complementary
and match in rate and constant.

Often the sizes n,m of submatrix are unknown, but we know a set KNM of couples of
indices (n,m) ∈ {1, . . . , N} × {1, . . . ,M} containing the true one. Then we consider the
”adaptive” problem for the combined alternative SNM,a =

⋃
(n,m)∈KNM Snm,anm , which

corresponds to a collection a = {anm, (n,m) ∈ KNM}. The quantities βNM,a,α, γNM,a

are defined in a similar way as above. We define a testing procedure and check that,
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4 C. Butucea and Yu. I. Ingster

if anm satisfies the conditions for distinguishability uniformly over the collection a, the
upper bounds still hold. The adaptive lower bounds hold as an easy consequence of the
minimax lower bounds.

The problem of choosing a submatrix in a Gaussian random matrix has been previously
studied by Sun and Nobel [10]. They were interested in maximal size submatrices of a
matrix with increasing size in two setups. First, they consider the case when the average
of the entries of the submatrix is larger than a given threshold and, second, when the
entries are well-fitted by a two-way ANOVA matrix in the least-squares sense (i.e., the
sum of squares of residuals is smaller than some given threshold).

The algorithm of choosing such submatrices was previously introduced in Shabalin
et al. [11], who were also interested in finding large average submatrices. This problem
is strongly motivated by the research of gene expression in microarray data. In these
large matrices it is necessary to recover biclusters, that is associations between sets of
samples (rows) and sets of variables (columns). These associations together with clinical
and biological information are ”a first step in identifying disease subtypes and gene
regulatory networks”. Many other algorithms for biclustering are discussed and compared
on real-data bases concerning breast and lung cancer studies.

Similar problems were considered in Addario-Berry et al. [1]. They use the same testing
procedures for vectors of random variables, where the alternatives may have various
combinatorial structures. In particular, they consider the example of detecting a clique
of a certain size in a graph and they compute upper and lower bounds for the Bayesian
test error. A bipartite graph of size (N,M) is a graph having edges only between the
N vertices of one set to the M vertices of a second set. A biclique is a complete bi-
partite subgraph of size (n,m), i.e. a subgraph where all n vertices from the first set are
connected to the m vertices from the second set. We consider the problem of detecting a
biclique. Our results are sharp minimax and adaptive to the size of the unknown biclique.

The plan of the paper is as follows. In Section 2.1 we give the test procedures. We
state the conditions on the detection boundary a such that distinguishability is possible.
Under mild additional assumptions we give the conditions on a so that the alternative is
indistinguishable from the null hypothesis.

In Section 2.2, we consider the adaptive setup where (n,m) is unknown but belongs to
some collection of sequences KNM . We compute the adaptive rates of testing of a slightly
modified test procedure.

In Section 3, we perform a numerical study of the procedures that attain the sharp
upper bounds. In order to compute the scan statistic a heuristic stochastic algorithm
from Shabalin et al. [11] is used. The empirical detection boundary is very close to the
one predicted by our results.

In Section 4 we give extensions of our results to Gaussian variables of unknown variance
σ2, to non Gaussian matrices with distribution in an exponential family and to two-sided
tests for Gaussian matrices, respectively.
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Detection of a sparse submatrix 5

We include in Section 4.4 comments to understand how our results compare to previ-
ously studied alternatives: subsets without structure and rectangular submatrices. The
first case can be assimilated to detection of a sparse signal in vector observations of length
N ×M , so the set of alternatives and the detection boundary are much larger than in
our case. We summarize well-known results by Ingster [7], Ingster and Suslina [8] and
Donoho and Jin [6]. The second case is the detection of rectangles in the large matrix
(connected submatrices), which constitutes a set of alternatives smaller than ours. This
case is studied in Arias-Castro et al. [4] and [2] for other geometric shapes of clusters.
In order to be self-contained we state and prove sharp upper and lower bounds, for the
rectangular clusters.

Section 5 is mainly concerned with the proof of the lower bounds stated in Sec-
tion 2.1.2. The Appendix contains the proofs of the other results of the paper.

2. Main results

We denote by n = nNM , m = mNM and a = aN,M .
Denote also p = n/N, q = m/M . From now on, we suppose that

N →∞, M →∞, n→∞, m→∞, such that p→ 0, q → 0. (2.1)

For general sequences {un}n≥1 and {vn}n≥1 of real numbers, such that vn > 0 for
n large enough, we say that the sequences are asymptotically equivalent, un ∼ vn,
if limn→∞ un/vn = 1. Moreover, we say that the sequences are asymptotically of the
same order, un � vn, if there exists two constants 0 < c ≤ C < ∞ such that
c ≤ lim infn→∞ un/vn and lim supn→∞ un/vn ≤ C.

2.1. Known size of the submatrix

In a minimax setup, we suppose that for each N, M we know n and m.
Let us consider two test procedures, one based on a linear statistic ψlinH and the other

based on a scan statistic ψmax. The final test procedure ψ∗ will reject as soon as at least
one of them rejects the null hypothesis.

2.1.1. Test procedure and its performance

The first test procedure ψlinH is based on the linear statistic

tlin =
1√
NM

∑
i,j

Yij , ψlinH = 1Itlin>H .

The second test ψmax is based on the maximal sum over all submatrices. Put

YC =
1√
nm

∑
(i,j)∈C

Yij , (2.2)
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6 C. Butucea and Yu. I. Ingster

and
tmax = max

C∈Cnm
YC , ψmax = 1Itmax>Tnm , (2.3)

where Tnm =
√

2 log(Gnm), Gnm = #(Cnm) =
(
N
n

)(
M
m

)
. The computation of this statistic

is discussed in Section 3.
The following theorem gives sufficient conditions for the detection boundary a such

that distinguishability holds. The test procedure which attains these bounds is

ψ∗ = max{ψlinH , ψmax},

for properly chosen H.

Theorem 2.1 Upper bounds. Assume (2.1) and let a be such that at least one of the
following conditions hold

a2nmpq →∞ (2.4)

or

lim inf
a2nm

2(n log(p−1) +m log(q−1))
> 1. (2.5)

Then ψ∗ with H → ∞ and such that H ≤ ca
√
nmpq, c < 1 when (2.4) holds, satisfies

γnm,a(ψ∗)→ 0.

Proof is given in Section 6.1.
Formally, the procedure has a simple structure. Nevertheless, there are difficulties for

computation of the scan statistic in the matrix case. Indeed, in the vector case, it is
enough to order increasingly all the elements and take the sum of the largest values. In
the matrix case, we have no such simple ordering. We shall discuss in the numerical study
below the empirical algorithm used to compute the scan statistic.

Let us also note that this procedure assumes that n and m are known. An adaptive
version of the scan test will be given in the next section.

2.1.2. Lower bounds

In this Section we obtain matching lower bounds that apply to all tests under additional
assumptions on the matrix and submatrix sizes. We discuss these assumptions after the
theorem.

Theorem 2.2 Lower bounds. Assume (2.1) and

log log(p−1)

log(q−1)
→ 0,

log log(q−1)

log(p−1)
→ 0. (2.6)

Moreover, assume that
n log(p−1) � m log(q−1), (2.7)
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Detection of a sparse submatrix 7

and that the following two conditions are satisfied:

a2nmpq → 0 (2.8)

and

lim sup
a2nm

2(n log(p−1) +m log(q−1))
< 1. (2.9)

Then the distinguishability is impossible, i.e., γnm,a → 1 and βnm,a,α → 1 − α for any
α ∈ (0, 1).

Proof is given in Section 5.
These results for the upper and the lower bounds can be interpreted as follows. Under

the conditions (2.1), (2.6) and (2.7), a sharp detection boundary a∗ is defined via the
relations

(a∗)2nmpq � 1, (a∗)2nm ∼ 2(n log(p−1) +m log(q−1)), (2.10)

in the problem with known (n,m). Note that the detection boundary can be written as

a∗ = min

{
1

√
nmpq

,

√
2(n log(p−1) +m log(q−1))

nm

}
.

The additional assumptions (2.6) and (2.7) appearing in the previous lower bounds are
satisfied, for example, in the case where n ∼ cm, for some 0 < c < ∞, and for N ∼ nA

and M ∼ mB for A and B larger than 1. In this case, the detection boundary is of the
form:

a∗ � n−2+(A+B)/2 if A+B ≤ 3,

a∗ ∼
√

2D log(n)

n
if A+B > 3, where D = (A− 1)c+B − 1.

The particular case when A = B > 1, c = 1 is the case of asymptotically squared
matrices and submatrices, and we get

a∗ � n−2+A if A ≤ 3/2,

a∗ ∼ 2

√
(A− 1) log(n)

n
if A > 3/2.

Remark 2.1 We can state the alternative hypothesis in a more general form:

H1 : ∃C ∈ Cnm such that sij = 0, if (i, j) 6∈ C, and
∑

(i,j)∈C

sij ≥ anm.

Indeed, our probabilities of error depend on the elements of the submatrix C only through
the sum of its elements. Therefore, the previous test procedure will attain the same rates
and the same lower bound techniques will give the previous results for this more general
test problem.
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8 C. Butucea and Yu. I. Ingster

2.2. Adaptation to the size of the submatrix

If the size (n,m) of the submatrix C with significantly large elements under the alterna-
tive (1.4) is unknown, we suppose that it belongs to the set KNM , for each N and M .
The alternative hypothesis can be written

H1(KNM ) : ∃(n,m) ∈ KNM , ∃ C ∈ Cnm such that

sij = 0, if (i, j) /∈ C, and sij ≥ anm, if (i, j) ∈ C

Additionnally, we suppose that the sequence of sets {KNM}N,M is such that

sup
(n,m)∈KNM

(
1

n
+

1

m
+
n

N
+
m

M

)
→ 0,

as N, M →∞.
This implies that

sup
(n,m)∈KNM

(
log(N)

n log(p−1)
+

log(M)

m log(q−1)

)
→ 0, as N, M →∞. (2.11)

The set KNM contains sizes of submatrices that we have to explore in order to test in an
adaptive way. Therefore, previous assumption insure, on the one hand, that p → 0 and
q → 0 uniformly over (n,m) ∈ KNM as N, M → ∞ and, on the other hand, that the
least size of the submatrices still grows to infinity with N and M .

The adaptive test procedure is ψ∗NM = max{ψlinH , ψmaxNM }, where ψlinH is the linear
statistic defined in Section 2.1 and ψmaxNM is a modified version of ψmax defined as follows.
Indeed, the linear statistic is free of n and m, but the scan statistic is not and, therefore,
normalization will occur for each possible (n,m). Set

Vnm =
√

2 log(NMGnm), tNM,max = max
(n,m)∈KNM

max
C∈Cnm

YC/Vnm, ψmaxNM = 1ItNM,max>1.

The adaptive test will reject the null hypothesis as soon as at least one between the
linear test or the scan tests associated to each (n,m) ∈ KNM rejects.

Theorem 2.3 Assume (2.1) and let the set KNM be such that condition (2.11) holds.
Upper bounds. Let a = aNM = {anm, (n,m) ∈ KNM} be detection boundaries such

that at least one of the following conditions hold

min
(n,m)∈KNM

a2
nmnmpq →∞. (2.12)

or

lim inf min
(n,m)∈KNM

a2
nmnm

2(n log(p−1) +m log(q−1))
> 1. (2.13)

Then, ψ∗NM with H → ∞ such that H ≤ cmin(n,m)∈KNM anm
√
nmpq for some 0 <

c < 1 when (2.12) holds, is such that γNM,a(ψ∗NM )→ 0.
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Detection of a sparse submatrix 9

Proof is given in Section 6.2.
The previous theorem actually shows that the test procedure is adaptive to the size

(n,m) of the submatrix as far as the assumptions hold uniformly. Indeed, the linear
procedure is free of the size of the submatrix and the scan statistic adapts to (n,m)
without any loss in the rate.

The lower bounds in the adaptive setup are an obvious consequence of Theorem 2.2.
Let us state the adaptive lower bounds: Suppose that for each N , M there exists (n∗,m∗)
in the collection KNM such that

log log(N/n∗)

log(M/m∗)
→ 0,

log log(M/m∗)

log(N/n∗)
→ 0

and that n∗ log(N/n∗) � m∗ log(M/m∗), as N → ∞ and M → ∞. Let a = aNM =
{anm, (n,m) ∈ KNM} be such that

a2
n∗m∗n

∗m∗p∗q∗ → 0

and

lim sup
a2
n∗m∗n

∗m∗

2(n∗ log(p∗−1) +m∗ log(q∗−1))
< 1.

Then γNM,a → 1 and βNM,a,α → 1− α for any α ∈ (0, 1).

3. Simulations

We have implemented the testing procedure ψ∗ = max{ψlinH , ψmax} on synthetic data.
While the linear procedure is rather obvious, the computation of the statistic tmax =
maxC∈Cnm YC is done by using the heuristic algorithm introduced and studied empirically
by Shabalin et al. [11]. This algorithm is also implemented and studied by Sun and
Nobel [10] with good empirical results.

Let us briefly recall this algorithm: we choose randomly a set of n rows out of N .
Then, we sum in every column the elements of the previously selected rows. We select
now the columns corresponding to the m largest sums obtained in this way. We sum,
next, in every row the elements belonging to the selected columns and select the rows
corresponding to the n largest sums. We repeat the algorithm until the sum of elements
Yij of the selected submatrix does not increase anymore. As the procedure can stop at a
local maximum, we repeat the procedure K times, where K is large (in our simulation
K = 10000). We take the maximum value of the outputs. This replication is needed to
enforce that with high probability the output approaches the global maximum.

We have simulated matrices of size N×M of i.i.d. standard Gaussian random variables
for N = M = 200 and N = M = 500.
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10 C. Butucea and Yu. I. Ingster

We calibrated the test statistics ψlinH and ψmax in such a way that the type-I error
occurs with probability α(ψ∗) ≤ 1%. This calibration is done by using the Gaussian
quantile H = 2.3262 for ψlinH and the empirical quantile (out of 100 samples) for ψmax.

Then, we have added the value a > 0 to the elements of the upper left submatrix of
size n×m. From resulting observations, we compute ψ∗ = max{ψlinH , ψmax}. We repeat
the test L = 100 times and average the values of the test procedure ψ∗. Denote by ψ̄∗

this average and note that 1− ψ̄∗ estimates the probability of type-II error.
We plot the estimated second-type error probabilities for different values of a in the

neighborhood of the detection boundary predicted by our theorems, for different values
of n and m. The results in Figure 1 correspond to N = M = 200, while in Figure 2 to
N = M = 500.

Figure 1. Estimated second-type error probability for fixed α = 1%, detection boundary a∗, N = M =
200; for n = m = 5, a∗ = 1.7179 (left), for n = m = 10, a∗ = 1.1943 (right).

Figures 1 and 2 show that the empirical detection boundary is very close to a∗ which
is predicted by out theoretical results. Indeed, the second-type error probability is close
to 0.5 at some point close to a∗. The plots also show very fast decay of this probability on
a small vicinity of a∗. This means that the test is very powerfull for values of a slightly
larger than the detection boundary a∗. Note also that, for fixed N and M , a∗ decreases
to 0 as n and m increase.

4. Extensions

We extend our results in different directions. First, we consider matrices of i.i.d. random
variables having Gaussian law with unknown variance σ, next, random variables having
a distribution belonging to the exponential family (not necessarily Gaussian) and, finally,
test problem with two-sided alternative for the Gaussian matrices.

4.1. Extension to Gaussian variables with unknown variance

Sharp results in Theorems 2.1 and 2.2 still hold if the random variables Yij have unknown
variance σ, under a mild additional assumption. We sketch here the test procedure and
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Detection of a sparse submatrix 11

Figure 2. Estimated second-type error probability for fixed α = 1%, detection boundary a∗, N = M =
500; for n = m = 5, a∗ = 1.9194 (upper left), for n = 5, m = 10, a∗ = 1.5767 (upper right), for n = 15,
m = 20, a∗ = 0.8831 (lower left), for n = m = 20, a∗ = 0.8024 (lower right)
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12 C. Butucea and Yu. I. Ingster

proof of the upper bounds.
We estimate the unknown variance σ2 of our data by σ̂2, where

σ̂2 =
1

NM

∑
i,j

Y 2
ij .

This estimator is unbiased under the null hypothesis, but biased under the alternative.
We replace Yij by Yij/σ̂ and slightly enlarge Tnm in the test procedure ψ∗. We denote

by t̂lin = tlin/σ̂, t̂max = tmax/σ̂ and put

ψ̂∗ = max{1It̂lin>H , 1It̂max>Tnm,δ},

for Tnm,δ =
√

(2 + δ) log(
(
N
n

)(
M
m

)
) and some δ > 0 small enough. Recall that Tnm =√

2 log(
(
N
n

)(
M
m

)
).

Theorem 4.1 Assume (2.1). We suppose that alternatives under consideration are such
that

τG :=
max(i,j)∈C sij∑

(i,j)∈C sij
= o(1). (4.1)

If the quantity a is such that one of the following conditions hold

a

σ

√
nmpq →∞ or lim inf

a
√
nm√

2σ(n log(p−1) +m log(q−1))
> 1 (4.2)

then ψ̂∗, with H → ∞ such that H2 < o(a2nmpq/σ2 + τ−1
G ) when a

√
nmpq/σ → ∞, is

such that γnm,a(ψ∗)→ 0.

Proof is given in Section 6.7.
Assumption (4.1) translates the fact that alternatives do not contain too ”prominent”

values sij . This holds when max(i,j)∈C sij = o(σ
√
NM) and a

√
nmpq/σ → ∞. The

assumption ensures that the estimator of the unknown variance converges fast enough in
order to detect the signal with the same rates as in the case of known variance. Moreover
one can slightly modify the proof and check that the condition (4.2) can be replaced by
the condition max(i,j)∈C sij = o(σ

√
NM) when a

√
nmpq/σ = O(1) as well.

4.2. Extension to general law from an exponential family

In many applications, we do not have Gaussian observations. Instead, we have ob-
servations Xij , i.i.d. with probability density gθij from an exponential family, for all
i = 1, ..., N, and j = 1, ...,M . We explain here how to use the previous testing proce-
dures in order to deal with such setups and check that results similar to the case of
Gaussian variables hold in this case. The exponential model will behave like a Gaussian
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Detection of a sparse submatrix 13

model when the number of data is large, by asymptotic equivalence. We expect that the
optimal detection boundary is the one for the Gaussian model properly rescaled.

We assume that the laws belong to an exponential family in the general form

gθ(x) = eη(θ)·T (x)−C(θ)h(x), θ ∈ Θ, (4.3)

for the dominating measure µ, where η is supposed 2 times continuously differentiable
and strictly increasing on Θ, i.e. η′(θ) > 0.

We consider a point θ0 interior to Θ and test, based on Xij ’s, the null hypothesis
H0 : θij = θ0, for all i = 1, ..., N, j = 1, ...,M, against the alternative

H1 : ∃C ∈ Cnm such that θij = θ0 if (i, j) 6∈ C and θij − θ0 ≥ d if (i, j) ∈ C. (4.4)

In order to build the test procedure as previously, we will rescale the observations as
follows. First, put the exponential model in the canonical form, then change variables
to Yij = (T (Xij)−m0)/σ0, with m0 = Eθ0(T (X)) and σ0 =

√
V arθ0(T (X)) computed

under the null hypothesis. Let us denote the common density of Yij ’s by

fs(y) = es·y−A(s)h(y),

where s = η(θ)σ0 and A(s) = B(s/σ0) − sm0/σ0 and B(η(θ)) = C(θ). Here, we have
A′(s0) = 0, A′′(s0) = 1 and

A(s0 + a)−A(s0) ∼ a2

2
and A′(s0 + a) ∼ a, as a→ 0. (4.5)

In this way, the original problem corresponds to testing, based on Yij ’s, the null hypothesis
H0 : sij = s0, for all i = 1, ..., N, j = 1, ...,M, against the alternative

H1 : ∃C ∈ Cnm such that sij = s0 if (i, j) 6∈ C and sij − s0 ≥ a if (i, j) ∈ C.

We have the following results for exponential models.

Theorem 4.2 Assume (2.1). We suppose that

log(p−1)

m
+

log(q−1)

n
→ 0. (4.6)

Upper bounds. If a is such that one of the following conditions hold

A′(s0 + a)
√
nmpq →∞ or lim inf

A′(s0 + a)
√
nm√

2(n log(p−1) +m log(q−1))
> 1

then ψ∗, with H → ∞ such that H ≤ cA′(s0 + a)
√
nmpq for some 0 < c < 1 and with

Tnm replaced by Tnm,δ for some δ > 0 small enough, is such that γnm,a(ψ∗)→ 0.
Lower bounds. Assume, moreover, that conditions (2.6) and (2.7) hold. If a is such

that the conditions (2.8) and (2.9) are satisfied, then γnm,a → 1 and βnm,a,α → 1 − α
for any α ∈ (0, 1).
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14 C. Butucea and Yu. I. Ingster

Proof of the upper bounds is given in Section 6.8.
The proof of the lower bounds uses the relation (4.5) and follows exactly the same

lines as the proof of Theorem 2.2 in Section 5 except that we have to consider T 2
kl ∼

(2 + δ)(k log(p−1) + l log(q−1)) for some small δ > 0 instead of thresholds in (5.3). 2

Under the assumption (4.6), the detection boundary a∗ → 0. Therefore,

A′(s0 + a∗) ∼ a∗ ∼ (η(θ)− η(θ0))σ0 ∼ η′(θ0)σ0d∗,

as d∗ → 0. It is well known that the Fisher information at θ0 in model (4.3) is
I(θ0) = (σ0η′(θ0))2. In this way, we deduce the sharp asymptotic detection boundary for
alternative (4.4) from Theorem 4.2: d∗ = a∗/

√
I(θ0).

Examples of such calculations for most popular probability distributions in the expo-
nential family are given in Table 1.

Probability law η m0 σ0
√
I(θ0) = σ0η′(θ0)

Poisson(θ), θ > 0 log(θ) θ0
√
θ0 (θ0)−1/2

Ber(θ), 0 < θ < 1) log( θ
1−θ ) θ0

√
θ0(1− θ0) (θ0(1− θ0))−1/2

Exp(θ), θ > 0 −θ−1 θ0 θ0 (θ0)−1

N(0, θ2), θ > 0 − 1
2θ2

(θ0)2 2(θ0)2 2(θ0)−1

Table 1. Examples of calculations for testing in general exponential families

4.3. Extension to two-sided alternative

Let us consider model (1.1) and the same null hypothesis (1.2), against the two-sided
alternative:

H1 : ∃C ∈ Cnm such that sij = 0, if (i, j) 6∈ C and |sij | ≥ a, if (i, j) ∈ C.

Let us consider the following test procedures

zlin =
1√

2NM

∑
i,j

(Y 2
ij − 1) and ψzlin = 1Izlin>H

and

zmax = max
C∈Cnm

ZC , where ZC =
1√

2nm

∑
(i,j)∈C

(Y 2
ij − 1), and ψzmax = 1Izmax>Tnm,δ ,

for some δ > 0 small enough.

Theorem 4.3 Assume (2.1). We suppose that (4.6) holds.
Upper bounds. If a is such that one of the following conditions hold

a2√nmpq →∞ or lim inf
a2
√
nm

2
√
n log(p−1) +m log(q−1)

> 1
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Detection of a sparse submatrix 15

then ψz = max{ψzlin, ψzmax} with H →∞ such that H ≤ ca2/2
√
nmpq for some 0 < c <

1, is such that γnm,a(ψz)→ 0.
Lower bounds. Assume, moreover, that conditions (2.6) and (2.7) hold. If a is such

that the following two conditions are satisfied:

a2√nmpq → 0 and lim sup
a2
√
nm

2
√
n log(p−1) +m log(q−1)

< 1,

then γnm,a → 1 and βnm,a,α → 1− α for any α ∈ (0, 1).

Proof is given in Section 6.9.

4.4. Related testing problems

Let us consider again the model (1.1) and the null hypothesis (1.2). We shall see how
our alternative which locates signal in submatrices of the large matrix compares to other
alternatives. We consider first the alternatives where the signal is located anywhere (no
structure: larger alternative) and then where the signal is located in block-submatrices
(smaller alternative).

4.4.1. Subsets without structure

Let Dk consists of all subsets D ⊂ {1, . . . , N}× {1, . . . ,M} of cardinality #(D) = k and
let k = nm. Let us consider the alternative

H1 : ∃ D ∈ Dnm such that sij = 0 if (i, j) /∈ D, and sij ≥ a if (i, j) ∈ D (4.7)

(we do not suppose that the set D is of product structure). Clearly we can consider the
matrix {Yij} as a vector of dimension P = NM , and the problem is well studied as
P →∞, see Ingster [7], Ingster and Suslina [8], Donoho and Jin [6].

The results are as follows. Let k = P 1−β , β ∈ (0, 1). First, let β ≤ 1/2 which cor-
responds to k2 = O(P ), i.e. (nm)2 = O(NM). Then the detection boundary is deter-
mined by the first condition in (2.10). It means that distinguishability is impossible when
a2nmpq → 0. On the other hand, if a2nmpq →∞, then distinguishability is provided by
the tests of the type ψlinH .

Let β ∈ (1/2, 1). Then the detection boundary is determined by the relation

a∗ ∼ ϕ(β)
√

log(P ) = ϕ(β)
√

log(NM),

where

ϕ(β) =

{√
2β − 1, 1/2 < β ≤ 3/4,√
2(1−

√
1− β), 3/4 < β < 1,

β = 1− log(nm)

log(NM)
.

This means that, if lim sup a/(ϕ(β)
√

log(NM)) < 1, then distinguishability is impossible,

and if lim inf a/(ϕ(β)
√

log(NM)) > 1, then distinguishability is provided by the ”high
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16 C. Butucea and Yu. I. Ingster

criticism” tests ψHC = 1I{LHC>H} based on statistics

L(t) =

∑
i,j(1I{Yij>t} − Φ(−t))√
NMΦ(t)Φ(−t)

, LHC = max
t0<t

L(t), t0 > 0,

with H =
√
c log log(NM), c > 2.

4.4.2. Block-structured submatrices

Let Enm consist of all rectangles of size n×m, i.e., of the sets Ekl = {k+ 1, . . . k+ n} ×
{l + 1, . . . l +m}, 0 ≤ k ≤ N − n, 0 ≤ l ≤M −m, and the alternative is of the form

H1 : ∃ E ∈ Enm such that sij = 0 if (i, j) /∈ E, and sij ≥ a if (i, j) ∈ E. (4.8)

Similar problems were studied recently in Arias-Castro et al. [4] and [2] for other related
geometrically-shaped clusters. Note that Arias-Castro et al. [4] also deals with detection
of rectangular shapes in a square matrix.

The detection boundary for (4.8) is determined by

a∗ ∼
√

2(log(p−1) + log(q−1))

nm
.

Let us consider the test ψZ based on the scan statistic over a particular set of possible
rectangles, which is a suitable ”grid” on Enm constructed as follows.

Take ηnm = η > 0. Put nk = (k − 1)nη, k = 1, ...,K, ml = (l − 1)mη, l = 1, ..., L,
where K,L are such that N − n(1 + η) ≤ nK ≤ N − n, M −m(1 + η) ≤ mL ≤M −m,
which yield K ∼ N/(ηn), L ∼M/(ηm). Put

Zkl =
1√
nm

∑
(i,j)∈Enkml

Yij , Z = max
1≤k≤K, 1≤l≤L

Zkl, ψZ = 1I
Z>
√

2 log(KL)
.

In this construction, we scan over a number K×L of rectangles which is much smaller
than the cardinality of Enm (for technical reasons) and which is also much larger than
the set of non overlapping rectangles (this set would not be large enough).

Theorem 4.4 Assume (2.1). Then
Upper bounds. Let

lim inf
a2nm

2(log(p−1) + log(q−1))
> 1,

and η = ηnm is taken in such way that η → 0, nη →∞, mη →∞, | log(η)| = o(| log(pq)|).
Then γnm,a(ψZ)→ 0 for the test procedure ψZ previously described.

Lower bounds. Let

lim sup
a2nm

2(log(p−1) + log(q−1))
< 1.

Then γnm,a → 1, βnm,a,α → 1− α for any α ∈ (0, 1).
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Proof is given in Appendix, Section 6.10.

Note that, the separation rates, i.e., the asymptotics of a that provide distinguisha-
bility for the alternative (1.4), are intermediate between the fast separation rates for the
alternative (4.8) and the slow rates for the alternative without structure (4.7).

Let us consider the particular case of squared matrices (N = M) and squared subma-
trices (n = m) such that n = N1−β for some β ∈ (0, 1). The sharp asymptotic rates of
the detection boundaries can be compared in Table 2.

Rates No structure (4.7) Submatrix (1.4) Block structure (4.8)

β ∈ (0, 1
3

] N−(1−2β)

N−(1−2β)

β ∈ ( 1
3
, 1
2

] N−(1−β)√4β log(N)

N−(1−β)/2√4β log(N)

β ∈ ( 1
2
, 1) ϕ(β)

√
2 log(N)

Table 2. Table of sharp asymptotic rates of the detection boundary a∗ for squared matrices and
n = N1−β

5. Proof of Theorem 2.2

In the first part, we give the proof of the theorem and the other parts of this section are
dedicated to proofs of intermediate results. More lemmas are in the Appendix.

We prove the lower bounds by first reducing the minimax testing error to a Bayesian
testing risk with uniform prior over the set of parameters. Typically, one studies the
likelihood ratio under the prior with respect to the law P0 under the null hypothesis and
proves that it tends to 1 in quadratic mean (under P0). Nevertheless, this does not work
as the covariance of the likelihood ratio is too large. Therefore, we truncate the likelihood
ratio in a convenient way.

5.1. Prior and truncated likelihood ratio

Let SC = {sij} be the matrix such that sij = 0, (i, j) /∈ C, sij = a, (i, j) ∈ C. Let us
consider the prior on the set of matrices:

π = G−1
nm

∑
C∈Cnm

δSC , Gnm = #(Cnm),

and let Pπ be the mixture of likelihoods Pπ = G−1
nm

∑
C∈Cnm PSC . Let us consider the

likelihood ratio

Lπ(Y ) =
dPπ
dP0

(Y ) = G−1
nm

∑
C∈Cnm

dPSC
dP0

(Y ) = G−1
nm

∑
C∈Cnm

exp(−b2/2 + bYC),
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18 C. Butucea and Yu. I. Ingster

here and below we set b2
∆
= a2nm, and, for submatrix C of the size n×m, the statistics YC

are defined by (2.2). Since π(Snm) = 1, in order to obtain indistinguishability: γnm,a →
1, βnm,a,α → 1− α, ∀ α ∈ (0, 1), it suffices to show

Lπ(Y )→ 1 in P0 − probability. (5.1)

Indeed,

γnm,a = inf
ψ∈[0,1]

sup
S∈Snm,a

(α(ψ) + β(ψ, S))

≥ inf
ψ∈[0,1]

1

Gnm

∑
S∈Snm,a

(
E0(ψ(Y )) + E0

[
(1− ψ(Y ))

dPSC
dP0

(Y )

])
≥ inf

ψ∈[0,1]
(E0(ψ(Y )) + E0 [(1− ψ(Y ))Lπ(Y )])

≥ E0(ψ∗(Y )) + E0 [(1− ψ∗(Y ))Lπ(Y )] ,

where ψ∗(Y ) = 1ILπ(Y )>1 is the likelihood ratio test. Therefore (5.1) implies by Fatou’s
lemma that

lim inf γnm,a ≥ E0 [lim inf (ψ∗(Y ) + (1− ψ∗(Y ))Lπ(Y ))] ,

i.e. γnm,a → 1. It is easy to deduce that βnm,a,α → 1− α.

Let us replace the statistics Lπ(Y ) by their truncated version

L̃π(Y ) = G−1
nm

∑
C∈Cnm

dPSC
dP0

(Y )1IΓC ,

where the events ΓC are determined as follows. Set

Tkl =
√

2(log(Gkl) + log(nm))→∞.

Take small δ1 > 0 (which will be specified later) and set k0 = δ1n, l0 = δ1m. Let
Ckl,C = {V ∈ Ckl : V ⊂ C} be the sub-matrices of C ∈ Cnm which are in Ckl . Then we
set

ΓC =
⋂

k0≤k≤n, l0≤l≤m

⋂
V ∈Ckl,C

{YV ≤ Tkl}. (5.2)

By (6.1), under conditions on k, l in (5.2) (and similarly to the equivalent of T 2
nm) we

have
T 2
kl ∼ 2(k log(p−1) + l log(q−1)). (5.3)

Indeed, when looking at second-order moments of the likelihood ratio Lπ(Y ) a large
contribution comes from overlapping submatrices C1 and C2 inducing correlated random
variables YC1

and YC2
. Our idea is to truncate YV , for submatrices V of size close to (k, l),

at its expected maximal value in order to reduce the contribution of these correlations.
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Proposition 5.1 Set Γnm =
⋂
C∈Cnm ΓC . Then, under the assumptions of Theorem 2.2,

P0(Γnm)→ 1.

Proof is given in Appendix, Section 6.3.

Proposition 5.1 yields

P0

(
Lπ(Y ) = L̃π(Y )

)
→ 1,

and in place of (5.1) it suffices to check that

L̃π(Y )→ 1 in P0 − probability. (5.4)

In order to get (5.4) it suffices to verify two relations:

Proposition 5.2 Under the assumptions of Theorem 2.2, we have

E0(L̃π)→ 1.

Proof is given in Appendix, Section 6.4.

Proposition 5.3 Under the assumptions of Theorem 2.2, we have

E0(L̃2
π) ≤ 1 + o(1).

Propositions 5.2 and 5.3 imply that

E0(L̃π − 1)2 =
(
E0(L̃2

π)− 1
)
− 2

(
E0(L̃π)− 1

)
≤ o(1)

which ends the proof of the theorem.
The remaining part of this section is devoted to obtaining the proposition 5.3.

5.2. Proof of Proposition 5.3

We deal with the second order moment of the truncated likelihood ratio. We have

E0(L̃2
π) = G−2

nm

∑
C1∈Cnm,C2∈Cnm

E0

(
exp(−b2 + b(YC1

+ YC2
))1I{ΓC1

∩ΓC2
}

)
. (5.5)

We note that the expected value in the previous sum does not depend on C1 and C2 but
merely on the size of their common submatrix. Let C1 = A1×B1, C2 = A2×B2 and set

k = #(A1 ∩A2), l = #(B1 ∩B2), V = (A1 ∩A2)× (B1 ∩B2).

Under this notation, we put

g(k, l) = E0

(
exp(−b2 + b(YC1

+ YC2
))1I{ΓC1

∩ΓC2
}

)
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20 C. Butucea and Yu. I. Ingster

and see that we can rewrite (5.5) as follows:

E0(L̃2
π) =

n∑
k=0

m∑
l=0

#((C1, C2) ∈ C2
nm : size(V ) = (k, l))

G2
nm

g(k, l).

Notation Set z2
kl = a2kl, ρkl = kl/nm and recall that b2 = a2nm. Note that it means

also that b2 = z2
mn and that z2

kl = b2ρkl.

Lemma 5.1 The following inequalities hold true.
(1) We have

g(k, l) ≤ E0

(
exp(−b2 + b(YC1

+ YC2
))
)

= exp(z2
kl)

∆
= g1(k, l). (5.6)

(2) Let b ≥ Tnm/(1 + ρkl). Then

g(k, l) ≤ E0

(
exp(−b2 + b(YC1 + YC2))1I{YC1

≤Tnm, YC2
≤Tnm}

)
≤ exp

(
−(Tnm − b)2 +

ρklT
2
nm

1 + ρkl

)
∆
= g2(k, l). (5.7)

(3) Let k ≥ δ1n, l ≥ δ1m, and Tkl ≤ 2zkl. Then

g(k, l) ≤ E0

(
exp(−b2 + b(YC1

+ YC2
))1I{YV ≤Tkl}

)
= exp(T 2

kl/2− (Tkl − zkl)2)
∆
= g3(k, l). (5.8)

Proof of Lemma 5.1 is given in Appendix, Section 6.5.

5.2.1. From hypergeometric to binomial distributions

Observe that the right-hand side of (5.5) is the expectation of g(X1, X2) over
X1, X2 which are independent and having hypergeometric distributions HG1 =
HG(N,n, n), HG2 = HG(M,m,m) respectively, i.e.,

E0(L̃2
π) =

n∑
k=0

m∑
l=0

(
N
n

)(
n
k

)(
N−n
n−k

)
·
(
M
m

)(
m
l

)(
M−m
m−l

)(
N
n

)2 · (Mm)2 g(k, l) = EHG1×HG2
g(X1, X2). (5.9)

Let us compare random variables X having hypergeometric distributions HG =
HG(N,n, n) and binomial distribution Bin = Bin(n, p̃), p̃ = n/(N − n).

Lemma 5.2 Under binomial distribution, X is stochastically larger, than under hyper-
geometric distributions, i.e. for any x ∈ R,

PHG(X ≥ x) ≤ PBin(X ≥ x).

This yields, for any non-decreasing function g,

EHG(g(X)) ≤ EBin(g(X)).
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Proof. The first claim corresponds to Lemma 3 in Arias-Castro et al. [3]. The second
claim follows from the Abel’s transform of the series for the expectation. 2

Let Pn,p(k) = PBin(X = k), for some integer k, where X has binomial Bin(n, p)
distribution, and similarly PN,n,n(k) = PHG(X = k) for hypergeometric distributions
HG(N,n, n) of X.

Lemma 5.3 Let n → ∞, p → 0, p > 0, k ≥ n/r(p) where r(p) ≥ 1 for p > 0 small
enough, and log(r(p)) = o(log(p−1)). Then

log(Pn,p(k)) ≤ k log(p)(1 + o(1))

log(PN,n,n(k)) ≤ k log(p)(1 + o(1)).

Proof is given in Appendix, Section 6.6

5.2.2. Evaluation of the expectation

Take any small δ > 0. The detection boundary a satisfies assumption (2.9), where the
worst-case is when the limit is close to 1. It suffices, therefore, to consider the case

b2 = a2nm ∼ (2− δ)(n log(p−1) +m log(q−1)). (5.10)

This implies

a2 � log(p−1)

m
+

log(q−1)

n
. (5.11)

In order to evaluate the right-hand side of (5.9), let us firstly divide the expectation
into two parts EHG1×HG2

(g(X1, X2)) = E1 + E2, where

E1 = EHG1×HG2
(g(X1, X2)1IX1a2<1), E2 = EHG1×HG2

(g(X1, X2)1IX1a2≥1).

Recall that we denote p̃ = n/(N −n), q̃ = m/(M −m) and the binomial distributions
Bin1 = Bin(n, p̃) and Bin2 = Bin(m, q̃).

We would like to show that E1 ≤ 1 + o(1) and E2 = o(1), so we keep in mind from
now on that N, M are sufficiently large.

Evaluation of E1

It follows from (5.11) and (2.7) that X1 = O(n/ log(q−1)) under a2X1 < 1. By (5.6)
we have

E1 ≤ EHG1×HG2
(exp(a2X1X2)1IX1a2<1) = EHG1

(
EHG2

(
exp(a2X1X2)

)
1IX1a2<1

)
,

In view of Lemma 5.2, the expected value of a non-decreasing function of X2 having
hypergeometric distribution HG2 is less than the same expected value under the binomial
Bin2 = Bin(m, q̃), q̃ = m/(M −m),

EHG2

(
exp(a2X1X2)

)
≤ EBin2

(
exp(a2X1X2)

)
= (1 + q̃(ea

2X1 − 1))m

≤ exp(mq̃(ea
2X1 − 1)),
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Observe that, for some B > 0 under constraint X1a
2 ≤ 1,

exp(mq̃(ea
2X1 − 1)) ≤ exp(Bmqa2X1)

Taking the expectation over X1 we get similarly

E1 ≤ EHG1
(exp(Bmqa2X1))

≤ EBin1
(exp(Bmqa2X1)) = (1 + p̃(eBmq̃a

2

− 1))n

≤ exp(np̃(eBmqa
2

− 1)).

By (5.11) and (2.7), we have a2m � log(p−1). By condition (2.6), we have q log(p−1) =

o(1), which yields mqa2 = o(1). Thus, np̃(eBmqa
2 − 1) ∼ Bnpmqa2 = o(1) by the

condition (2.8), and we get

E1 ≤ exp(o(1)) = 1 + o(1).

Evaluation of E2

In order to evaluate E2, we use the assumption (2.7) and write

a2 � log(p−1)/m � log(q−1)/n

instead of (5.11). Therefore, we can take δ1 > 0 small enough such that δ1a
2m ≤

log(p−1)/2 and δ1a
2n ≤ log(q−1)/2 for N, M, n and m large enough.

Divide E2 into two parts E2 = E21 + E22, where

E21 = EHG1×HG2
(g(X1, X2)1IX1a2≥1, X2/m<δ1),

E22 = EHG1×HG2
(g(X1, X2)1IX1a2≥1, X2/m≥δ1).

Evaluation of E21

By applying Lemma 5.3 with log r(p)
∆
= log(log(q−1)), which is o(log(p−1)) by (2.6),

and since PM,m,m(l) ≤ 1, we get

E21 ≤
∑

n≥k>a−2, 0≤l≤δ1m

exp(a2kl)PN,n,n(k)PM,m,m(l)

≤
∑

n≥k>a−2, 0≤l≤δ1m

exp
(
k
(
a2l − log(p−1)(1 + o(1))

))
.

Observe that under the constraints in the sum,

a2l ≤ δ1a2m ≤ log(p−1)(1/2 + o(1)),

which yields in the previous exponential

k
(
a2l − log(p−1)(1 + o(1))

)
≤ −k log(p−1)(1/2 + o(1))

≤ −a−2 log(p−1)(1/2 + o(1)) � m.
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Therefore we have E21 ≤ nm exp(−Bm) = o(1) for some B > 0 by condition (2.6).

Evaluation of E22

In order to evaluate the item E22 we divide it in two parts as well: E22 = I1 + I2,

I1 = EHG1×HG2
(g(X1, X2)1IX1a2≥1, X1/n<δ1, X2/m≥δ1),

I2 = EHG1×HG2
(g(X1, X2)1IX1/n≥δ1, X2/m≥δ1).

The evaluation of I1 is similar to the evaluation of E21 and we get I1 = o(1).

Evaluation of I2

Let us divide the set H = {(k, l) : k/n ≥ δ1, l/m ≥ δ1}, appearing in I2, into two
parts:

H1 =
{

(k, l) ∈ H : k log(p−1) + l log(q−1) ≥ 2ρkl(n log(p−1) +m log(q−1))
}
,

H2 =
{

(k, l) ∈ H : k log(p−1) + l log(q−1) < 2ρkl(n log(p−1) +m log(q−1))
}

This yields the division of I2 into I2 = I12 + I22. Observe that ρkl ≥ δ2
1 for (k, l) ∈ H.

Let us consider I12. Recalling (5.7), observe that we can take δ > 0 small enough
in (5.10) such that t = Tnm − b(1 + ρkl) < 0. Applying (5.7) and Lemma 5.3 for
PN,n,n(k), PM,m,m(l), we get

I12 ≤
∑

(k,l)∈H1

exp

(
−(Tnm − b)2 +

T 2
nmρkl

1 + ρkl
− k log(p−1)− l log(q−1) + o(T 2

nm)

)
.

Note that for δ > 0 small enough in (5.10) one can take δ2 = δ2(δ) > 0 such that
(Tnm − b)2 ≥ δ2T 2

nm for the first item in the exponent. Denote

A = An,p = n log(p−1); B = Bm,q = m log(q−1)

and T 2
nm = 2 log(Gnm) ∼ 2(A+B) by (6.1). Observe that 2(A+B)ρkl ≤ A k

n +B l
m for

(k, l) ∈ H1.
The following terms in the power of the exponential above can be bounded on the set

H1 as follows

T 2
nmρkl

1 + ρkl
− k log(p−1)− l log(q−1) =

2(A+B)ρkl
1 + ρkl

− (A
k

n
+B

l

m
) + o(T 2

nm)

≤ (
1

1 + ρkl
− 1)(A

k

n
+B

l

m
) + o(T 2

nm) ≤ o(T 2
nm).

Therefore
I12 ≤ 2nm exp(−(δ2 + o(1))T 2

nm) = o(1).

Consider now the item I22. Recalling (5.3), (5.10) and z2
kl = ρkla

2
nm observe that

the constraint in H2 corresponds to T 2
kl < 2z2

kl(1 + o(1)). This implies T 2
kl < 4z2

kl and
Tkl − 2zkl < 0 for N,M large enough.
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Applying (5.8) and Lemma 5.3 for PN,n,n(k), PM,m,m(l), we similarly get

I22 ≤
∑

(k,l)∈H2

exp
(
T 2
kl/2− (Tkl − zkl)2 − (k log(p−1) + l log(q−1))(1 + o(1))

)
.

Since k log(p−1) + l log(q−1) ∼ T 2
kl/2, the power in the exponent is of the form

−(Tkl − zkl)2 + o(T 2
kl).

Under (5.10) we can see that (Tkl−zkl)2 ≥ δ2T 2
kl for some δ2 > 0 and N,M large enough.

In fact, recalling A > 0, B > 0, k/n ∈ (δ1, 1], l/m ∈ (δ1, 1] before we have

T 2
kl − z2

kl = 2(A
k

n
+B

l

m
)− (2− δ)ρkl(A+B) + o(T 2

kl)

= δ(A+B)ρkl + 2A
k

n
(1− k

n
) + 2B

l

m
(1− l

m
) + o(T 2

kl)

≥ δ(A+B)ρkl + o(T 2
kl) ∼ δz2

kl.

Since Tkl � Tnm for (k, l) ∈ H, these yield I22 = o(1).
Proposition 5.3 follows. 2

6. Appendix

6.1. Proof of Theorem 2.1

It is easy to see that α(ψ∗) ≤ α(ψlinH ) + α(ψmax) and that βnm,a(ψ∗) ≤
min{βnm,a(ψlinH ), βnm,a(ψmax)}. Therefore, we study the two test procedures separately.

We have, for any real number H,

α(ψlinH ) = Φ(−H), βnm,a(ψlinH ) ≤ Φ(H − a√nmpq),

where Φ denotes the cumulative distribution function of a standard Gaussian random
variable. Indeed, observe that the statistic tlin is standard Gaussian under P0 which
yields the relation for α(ψlinH ). Also tlin ∼ N (hSC , 1) under PSC -probability, SC ∈ Snm,a,
where

hSC =
1√
NM

∑
(i,j)∈C

sij ≥
anm√
NM

= a
√
mnpq.

This yields the relation β(ψlinH , S) ≤ Φ(H − a
√
mnpq), ∀ S ∈ Snm,a and the same

inequality for βnm,a(ψlinH ).
As a consequence, if H → ∞ then α(ψlinH ) = Φ(−H) → 0 and if (2.4) holds and

H ≤ ca√nmpq,
βnm,a(ψlinH ) ≤ Φ((c− 1)a

√
nmpq)→ 0,
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for c < 1. Thus γnm,a(ψlinH )→ 0.

Now, we prove that, α(ψmax)→ 0 and βnm,a(ψmax) ≤ Φ(Tnm − a
√
nm), under (2.1).

It is not hard to check that under (2.1),

log(Gnm) ∼ (n log(p−1) +m log(q−1)). (6.1)

Observe that YC ∼ N (0, 1) under P0 and, since Gnm →∞ and Φ(−T ) � exp(−T 2/2)/T
as T →∞, we get

α(ψmax) = P0(tmax > Tnm) ≤
∑

C∈Cnm

P0(YC > Tnm) = GnmΦ(−Tnm)→ 0.

Let SC ∈ Snm,a. Then YC ∼ N (gSC , 1) under PSC -probability with

gSC = (nm)−1/2
∑

(i,j)∈C

sij ≥ a
√
nm.

Observe that

β(ψmax, SC) = PSC (tmax ≤ Tnm) ≤ PSC (YC ≤ Tnm) = Φ(Tnm − gSC )

≤ Φ(Tnm − a
√
nm).

Thus, under (2.5),

a
√
nm− Tnm = Tnm

(
a
√
nm(1 + o(1))√

2(n log(p−1) +m log(q−1))
− 1

)
→∞

and this implies that γnm,a(ψmax)→ 0. 2

6.2. Proof of Theorem 2.3

Note that the test ψlinH does not depend on n,m. Therefore for distinguishability in the
adaptive problem it is sufficient to assume (2.12) (which is a uniform version of (2.4)).
We have γNM,a(ψlinH )→ 0.

For the test ψmaxNM we obtain similarly to the nonadaptive case, that

α(ψmaxNM ) = P0(tNM,max > 1) ≤
∑
n,m

∑
C∈Cnm

P0(YC > Hnm) =
∑
n,m

∑
C∈Cnm

Φ(−Hnm)

�
∑
n,m

∑
C∈Cnm

1

NMGnm
√

log(NMGnm)
= O

(
1√

log(NM)

)
→ 0.

Moreover,

β(ψmaxNM , SC) = PSC (tNM,max ≤ 1) ≤ PSC (YC ≤ Vnm) = Φ(Vnm − gSC )

≤ Φ(Vnm − anm
√
nm)
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and we deduce that

βnm,a(ψmaxNM ) ≤ Φ( max
(n,m)∈KNM

(Vnm − anm
√
nm)).

By (6.1), we have

min
(n,m)∈KNM

(anm
√
nm− Vnm)

= min
(n,m)∈KNM

Tnm

(
anm
√
nm(1 + o(1))√

2(n log(p−1) +m log(q−1))
−

√
1 +

log(NM)

n log(p−1) +m log(q−1)

)

which goes to infinity under (2.11) and (2.13). Thus, we have γNM,a(ψmaxNM )→ 0. 2

6.3. Proof of Proposition 5.1

It suffices to check that P0(Γcnm)→ 0, where Ac states for the complement of the event
A. We have

Γcnm =
⋃

C∈Cnm

⋃
k0≤k≤n, l0≤l≤m

⋃
V ∈Ckl,C

{YV > Tkl} =
⋃

k0≤k≤n, l0≤l≤m

⋃
V ∈Ckl

{YV > Tkl}.

Since YV ∼ N (0, 1) under P0, we have, by definition of Tkl and using the asymptotics

Φ(−x) ∼ e−x2/2/
√

2πx, x→∞,

P0(Γcnm) ≤
∑

k0≤k≤n, l0≤l≤m

∑
V ∈Ckl

Φ(−Tkl) =
∑

k0≤k≤n, l0≤l≤m

GklΦ(−Tkl)

≤
∑

k0≤k≤n, l0≤l≤m

1 + o(1)

nmTkl
√

2π
→ 0.

Proposition 5.1 follows. 2

6.4. Proof of Proposition 5.2

In view of symmetry in C, it suffices to check that, for any fixed C ∈ Cnm,

E0

(
dPSC
dP0

1IΓC

)
= PSC (ΓC)→ 1,

or, equivalently, PSC (ΓcC) → 0. Set z2
kl = a2kl. Since YV ∼ N (zkl, 1) under PSC for

V ∈ Ckl,C , we have

PSC (ΓcC) ≤
∑

k0≤k≤n, l0≤l≤m

∑
V ∈Ckl,C

Φ(zkl − Tkl) =
∑

k0≤k≤n, l0≤l≤m

Gmnkl Φ(zkl − Tkl),
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where Gmnkl = #(Ckl,C) =
(
n
k

)(
m
l

)
. Under assumptions (2.6) and (2.9) there exists δ > 0

such that
b2 = a2nm < (2− δ)(n log(p−1) +m log(q−1)). (6.2)

Let us show that under (6.2) one has z2
kl < T 2

kl(1− δ/2 + o(1)). In fact, since δ1n ≤ k ≤
n, δ1m ≤ l ≤ m, and by (5.3), we have

z2
kl = a2kl ≤ (2− δ)(k(l/m) log(p−1) + l(k/n) log(q−1))

≤ (2− δ)(k log(p−1) + l log(q−1)) ∼ (1− δ/2)T 2
kl. (6.3)

Thus we get, for some δ2 > 0,

Φ(zkl − Tkl) ≤ exp(−δ2T 2
kl).

Observe now that, under constraints on δ1n ≤ k ≤ n, δ1m ≤ l ≤ m we have log(Gnmkl ) =
O(n+m). This follows from evaluations similar to the proof of (6.1). On the other hand,
we have T 2

kl ∼ 2(k log(p−1) + l log(q−1)) � (n + m) under the same constraints. This
yields ∑

k0≤k≤n, l0≤l≤m

Gmnkl Φ(zkl − Tkl) ≤
∑

k0≤k≤n, l0≤l≤m

exp(O(n+m)− δ2T 2
kl)→ 0.

Proposition 5.2 follows. 2

6.5. Proof of Lemma 5.1

The first inequalities in (5.6)-(5.8) are evident, and we will prove the second ones. The
proofs are based on the well known relation: if X ∼ N (0, 1), then

E(exp(τX)) = exp(τ2/2), ∀ τ ∈ R. (6.4)

Let V1 = C1 \ C2, V2 = C2 \ C1, V = C1 ∩ C2, and observe that the sets V1, V2, V are
disjoint, C1 = V1 ∪ V, C2 = V2 ∪ V and #(V1) = #(V2) = nm− kl, #(V ) = kl.

Let 0 < kl < nm. Let us write the statistics YC1 , YC2 in a more convenient form

YC1 =
√

1− ρkl YV1
+
√
ρkl YV , YC2

=
√

1− ρkl YV2
+
√
ρkl YV ,

where as above, for U ⊂ {1, ..., N} × {1, ...,M}, #(U) > 0 we set

YU =
1√

#(U)

∑
(i,j)∈U

Yij .

Observe that YV1
, YV2

, YV are standard Gaussian and independent under P0.
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Recall that b = a
√
nm and put c = b

√
1− ρkl. It is obvious that b2 = c2 + z2

kl.
Moreover, by applying (6.4), we get

E0

(
exp(−b2 + b(YC1

+ YC2
)
)

= E0

(
exp(−c2/2 + cYV1)

)
· E0

(
exp(−c2/2 + cYV2)

)
· E0

(
exp(−z2

kl + 2zklYV )
)

= exp(z2
kl).

If kl = 0 or kl = nm, we can prove this in a similar way. Lemma 5.1 (5.6) follows.
In order to get the second inequality, observe that, for 0 < kl < nm and for any h ≥ 0,

E0

(
exp(−b2 + b(YC1

+ YC2
)1IYC1

≤Tnm, YC2
≤Tnm

)
≤ e−b

2+2TnmhE0

(
exp((b− h)(YC1 + YC2) + h(YC1 + YC2 − 2Tnm)1IYC1

≤Tnm,YC2
≤Tnm

)
≤ e−b

2+2TnmhE0 (exp((b− h)(YC1 + YC2)))

= e−b
2+2TnmhE0

(
exp((b− h)(1− ρkl)1/2(YV1

+ YV2
) + 2(b− h)ρ

1/2
kl YV )

)
= exp(−b2 + 2Tnmh+ (b− h)2(1− ρkl) + 2(b− h)2ρkl)

= exp(−b2 + 2Tnmh+ (b− h)2(1 + ρkl)).

Taking h = b−Tnm/(1 + ρkl), we get the second inequality. If kl = 0 or kl = nm, we can
prove this in a similar way. Lemma 5.1 (5.7) follows.

In order to get the third inequality, for 0 < kl < nm and for h ≥ 0, we have

E0

(
exp(−b2 + b(YC1 + YC2)1IYV ≤Tkl

)
= E0

(
exp(−c2/2 + cYV1)

)
· E0

(
exp(−c2/2 + cYV2)

)
· E0

(
e−z

2
kl exp(2zklYV )1IYV ≤Tkl

)
≤ e−z

2
kl+TklhE0 (exp ((2zkl − h)YV + h(YV − Tkl)) 1IYV ≤Tkl)

≤ e−z
2
kl+TklhE0 (exp((2zkl − h)YV )) = exp(−z2

kl + Tklh+ (2zkl − h)2/2).

Taking h = 2zkl − Tkl, we get the third inequality. If kl = nm, we can prove this in a
similar way. Lemma 5.1 (5.8) follows. 2

6.6. Proof of Lemma 5.3

Recalling Pn,p(k) =
(
n
k

)
pk(1− p)n−k. Using well known inequality

(
n
k

)
≤ (ne/k)k, we get

log(Pn,p(k)) ≤ k
(

log(p) + log(n/k) + 1
)
.

Since n/k ≤ r(p) we see that 0 ≤ log(n/k) ≤ log(r(p)) = o(log(p−1)) under the assump-
tion on r(p). This implies the first relation of Lemma 5.3.

In view of Lemma 5.2, we have

PN,n,n(k) ≤ PHG(Z ≥ k) ≤ PBin(Z ≥ k) ∼ Pn,p(k).

Lemma 5.3 follows. 2
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6.7. Proof of Theorem 4.1

Let us see that E0(σ̂2) = σ2 and that Var0(σ̂2) = 2σ4/(NM). Denote by

OB =

{∣∣∣∣ σ̂2

σ2
− 1

∣∣∣∣ ≤ B√
NM

}
,

with B →∞ such that B/
√
NM → 0. Then, P0((OB)c) ≤ 2B−2 = o(1).

It is easy to see that P0(t̂lin > H) ≤ P0(tlin/σ > Hσ̂/σ,OB) + P0((OB)c) =
P0(tlin/σ > H̃) + o(1) = o(1), as H̃2 = H2(1−B/

√
NM)→∞.

Similarly, for t̂max, we put Tnm,δ = Tnm
√

1 + δ/2 = and T̃ 2
nm = T 2

nm,δ(1 − B
√
NM)

and then P0(t̂max > Tnm,δ) ≤ P0(tmax/σ > T̃nm) + P0((OB)c) = o(1), for our choice of

Tnm,δ. These imply α(ψ̂∗)→ 0.
Under the alternative, let us see that

β(ψ̂∗, S) ≤ min{PS(t̂lin ≤ H), PS(t̂max ≤ Tnm,δ)},

and it suffices to check that either PS(t̂lin ≤ H)→ 0 or PS(t̂max ≤ Tnm,δ)→ 0. We can
decompose

σ̂2 =
σ2

NM

 ∑
(i,j) 6∈C

ξ2
ij +

∑
(i,j)∈C

(sij + ξij)
2


=

σ2

NM

∑
(i,j)

ξ2
ij + 2

∑
(i,j)∈C

sij
σ
ξij +

∑
(i,j)∈C

s2
ij

σ2

 .

We get

ES(σ̂2) = σ2(1 +G), VarS(σ̂2) =
2σ4

NM
(1 + 2G), where G =

1

σ2NM

∑
(i,j)∈C

s2
ij .

Denote by R := B
√

2
NM (1 + 2G) with B →∞ such that B = o(

√
NM), and by

OSB =

{∣∣∣∣ σ̂2

σ2
− 1−G

∣∣∣∣ ≤ R} .
Then PS((OSB)c) ≤ B−2 = o(1) and R = o(1 +G). Recalling

ES(tlin/σ) = (NM)−1/2
∑

(i,j)∈C

sij/σ ≥ a
√
nmpq/σ,

we see that

G ≤
max(i,j)∈C sij∑

(i,j)∈C sij

(∑
(i,j)∈C sij

)2

σ2NM
= τG (ES(tlin/σ))

2
.
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This implies
1 +G+R ≤ (1 + τG(ES(tlin/σ))2)(1 + o(1)). (6.5)

Let ES(tlin/σ) → ∞, which holds when a
√
nmpq/σ → ∞. By our choice of H, (4.1)

and (6.5) we have H
√

1 +G+R = o(ES(tlin/σ)). Applying the Chebyshev inequality
and since VarS(tlin/σ) = 1, we have

PS(t̂lin ≤ H) ≤ PS(tlin/σ ≤ Hσ̂/σ,OSB) + PS((OSB)c)

≤ PS(tlin/σ ≤ H
√

1 +G+R) + o(1)

≤ PS(ES(tlin/σ)− tlin/σ ≤ ES(tlin/σ)−H
√

1 +G+R) + o(1)

≤ (ES(tlin/σ)−H
√

1 +G+R)−2 + o(1) = o(1).

This proves that PS(t̂lin ≤ H)→ 0 if ES(tlin/σ)→∞.
If ES(tlin/σ) = O(1) (this is possible when a

√
nmpq/σ = O(1) only), we have√

1 +G+R = 1 + o(1) by (4.1) and (6.5). Therefore

PS(t̂max ≤ Tnm,δ) ≤ PS(tmax ≤ Tnm,δσ̂/σ,OSB) + PS((OSB)c)

≤ PS(tmax ≤ Tnm,δ
√

1 +G+R) + o(1) = o(1),

for our choice of Tnm,δ and by the second assumption (4.2) (compare with the proof of

Theorem 2.1). These implies βnm,a(ψ̂∗)→ 0. Thus γnm,a(ψ̂∗)→ 0. 2

6.8. Proof of the upper bound of Theorem 4.2

It follows the same lines as that of Theorem 2.1. We use Markov inequality and bound
from above exponential moments of our test statistics (as they are not having Gaussian
distribution in this case).

We use repeatedly the well known facts that, A′(s0) = 0 and A′′(s0) = 1 for centered
and reduced random variable at s0. Moreover,

Es[e
uY ] = eA(s+u)−A(s),

for any s and u such that s ans s+ u are interior points of the parameter space. For the
statistic tlin, we have

α(ψlinH ) = Ps0(tlinH > H2) ≤ e−H
2

Es0 [etlinH ]

≤ e−H
2

Π(i,j)Es0 [eYijH/
√
NM ]

≤ exp((A(s0 +
H√
NM

)−A(s0))NM −H2).

For H → ∞ as in our theorem H/
√
NM → 0, then we get A(s0 + H√

NM
) − A(s0) =

H2

2NM (1 + o(1)) and α(ψlinH ) ≤ ce−H2/2(1−o(1)) → 0, for some constant c > 0.
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Under the alternative,

β(ψlinH , S) = PS [−tlin +H ≥ 0] ≤ eHES [e−tlin ]

≤ eHΠ(i,j)6∈CEs0 [e−Yij/
√
NM ]Π(i,j)∈CEsij [e

−Yij/
√
NM ]

≤ e
H+(NM−nm)

(
A(s0− 1√

NM
)−A(s0)

)
Π(i,j)∈Ce

A(sij− 1√
NM

)−A(sij).

On the one hand, A(s0 − 1√
NM

) − A(s0) ∼ − 1
2NM . On the other hand, it is easy to

check that A′′(s) ≥ 0. Thus, A is a convex function and A′ is increasing. This implies
A(sij − 1√

NM
) − A(sij) ≤ − 1√

NM
A′(sij) which is less or equal than − 1√

NM
A′(s0 + a)

under the alternative. Finally,

β(ψlinH , S) ≤ exp(H − 1

2
(1− pq)−A′(s0 + a)

nm√
NM

)

≤ c exp(H −A′(s0 + a)
√
nmpq)→ 0

under our assumption.
For the statistic tmax,

α(ψmax) = Ps0(tmax > Tnm,δ) ≤
∑
C

Ps0(tmaxTnm,δ > T 2
nm,δ)

≤
∑
C

e−T
2
nm,δEs0 [eYCTnm,δ ] ≤

∑
C

e−T
2
nm,δEs0 [e

∑
(i,j)∈C Yij

Tnm,δ√
nm ]

≤ Gnme
−T 2

nm,δe

(
A(s0+

Tnm,δ√
nm

)−A(s0)
)
×nm

.

As Tnm,δ/
√
nm �

(
log(p−1)/m+ log(q−1)/n

)1/2 → 0, we have A(s0 + Tnm,δ/
√
nm) −

A(s0) � T 2
nm,δ/(2nm) and this gives

α(ψmax) ≤ Gnme−
T2
nm,δ
2 (1−o(1)) → 0.

For the second-type error,

β(ψmax, S) ≤ PS [−YC + Tnm,δ ≥ 0] ≤ eTnm,δES [e−YC ]

≤ exp(Tnm,δ) ·Π(i,j)∈CEsij [e
−Yij/

√
nm]

≤ exp

Tnm,δ +
∑

(i,j)∈C

[A(sij −
1√
nm

)−A(sij)]


≤ exp

(
Tnm,δ − nmA′(s0 + a)

1√
nm

)
→ 0,

by the choice of δ > 0 small enough. 2
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6.9. Proof of Theorem 4.3

6.9.1. Proof of the upper bounds

We have, under the null hypothesis, zlin
√

2NM has a χ2 distribution with E0(zlin) = 0
and V ar0(zlin) = 1. This implies that P0(zlin > H)→ 0 as H →∞.

For zmax we will use the moment generating function of the χ2 distribution. We have

P0(zmax > Tnm,δ) ≤
∑
C

P0(ZC > Tnm,δ) ≤ GnmP0(Tnm,δZC > T 2
nm,δ)

≤ Gnme
−T 2

nm,δE0(eTnm,δZC )

≤ Gnme
−T 2

nm,δ−Tnm,δ
√

nm
2 (1− 2Tnm,δ√

2nm
)−nm/2

≤ Gnme
−
T2
nm,δ
2 (1+o(1)) = o(1),

by the choice of Tnm,δ in our theorem. Indeed, 2T 2
nm,δ/(nm) = O(a4)→ 0, by assumption

(4.6).
Again, β(ψz, S) ≤ min{PS(zlin ≤ H), PS(zmax ≤ Tnm,δ)}. Under the alternative,

S = SC and zlin has mean ES(zlin) = λ/
√
NM and variance V arS(zlin) = 1+2λ/(NM),

where λ =
∑
C s

2
ij . We have,

λ√
2NM

≥ a2nm√
2NM

≥ a2

√
2

√
nmpq.

Therefore, if a2√nmpq →∞, we have

PS(zlin ≤ H) ≤ V arS(zlin)

(ES(zlin)−H)2
=

1 + 2λ/(NM)

(1− c)2λ2/(2NM)

≤ 2

(1− c)2a4nmpq
+

4

(1− c)2a2nm
= o(1).

Under the alternative,

PS(zmax ≤ Tnm,δ) ≤ eTnm,δESC [e−ZC ] ≤ eTnm,δ+
√
nm/2ESC [exp

(
t
∑
C

Y 2
ij

)
],

where t = −1/
√

2nm < 1/2. Therefore,

ESC

[
exp

(
t
∑
C

Y 2
ij

)]
= exp

(
λt

1− 2t
− nm

2
log(1− 2t)

)

≤ exp

(
− λ√

2nm

1

1 +
√

2/(nm)
− nm

2
(

√
2

nm
− 1

nm
)

)

≤ exp

(
−a

2
√
nm√
2

1

1 +
√

2/(nm)
−
√
nm

2
+

1

2

)
.
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In conclusion, if lim inf a4nm/(4(n log(p−1) +m log(q−1))) > 1 we have

PSC (zmax ≤ Tnm,δ) ≤
√
e exp

(
Tnm,δ −

a2
√
nm√
2

1

1 +
√

2/(nm)

)
→ 0.

6.9.2. Proof of the lower bounds

We follow the lines of the proof of Theorem 2.2. The prior on the set of matrices is
π = G−1

nm

∑
C∈Cnm πC , where, under πC , the matrix S = SC has sij = 0 with probability

1 for all (i, j) 6∈ C and sij is either a and −a with probability 1/2, for all (i, j) ∈ C.
Let PSC denote the likelihood of the random variables in Y when S = SC and Pπ

denote the mixture of likelihoods Pπ = G−1
nm

∑
C∈Cnm PSC . Therefore, the likelihood ratio

Lπ(Y ) is

Lπ(Y ) =
dPπ
dP0

(Y ) =
1

Gnm

∑
C∈Cnm

dPπC
dP0

(Y )

=
1

Gnm

∑
C∈Cnm

Π(i,j)∈Ce
−a2/2 cosh(aYij)

=
1

Gnm

∑
C∈Cnm

e−a
2nm/2 exp

 ∑
(i,j)∈C

log(cosh(aYij))

 .

Note that E0[cosh(aYij)] = ea
2/2 and that E0[cosh2(aYij)] = (1 + e2a2)/2. We can re-

produce the proof of Theorem 2.2 with a2 replaced by a4/2. For example, in (5.6) we
have

g(k, l) = E0[exp(−a2nm+
∑
C1

log(cosh(aYij)) +
∑
C2

log(cosh(aYij)))1IΓC1
∩ΓC2

].

We can show, as in the proof of (5.6), that

g(k, l) ≤ e−a
2nmE0[exp(

∑
V1∪V2

log(cosh(aYij)) + 2
∑
V

log(cosh(aYij)))]

≤ e−a
2nme2 a

2

2 (nm−kl)Ekl0 [cosh2(aY )] ≤ e−a
2kl

(
1 + e2a2

2

)kl
= (cosh(a2))kl ≤ e a

4

2 kl,

where V1, V2 and V are defined in the proof of Lemma 5.1.
The relations (5.7) and (5.8) could be replaced by the following:

g(k, l) ≤ exp

(
−(Tnm − b)2 +

ρklT
2
nm

1 + ρkl
+ o(T 2

nm)

)
, (6.6)

g(k, l) ≤ exp
(
T 2
kl/2− (Tkl − zkl)2 + o(T 2

kl)
)
, (6.7)
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where b2 = nma4/2, z2
kl = b2ρkl, under the same constraints. The inspection of the

proofs of (5.7) and (5.8) shows that, in order to prove (6.6) and (6.7), one could use the
following relation in place of (6.4):

E0[eτ(log(cosh(aY ))− a22 + a4

4 )] = exp

(
τ2a4

4
+ o(a4)

)
, (6.8)

for a→ 0 and τ ∈ R+, τ = O(1).
In order to prove (6.8), we can split the expected value over the events {τa2Y 2 > δ2}

and {τa2Y 2 ≤ δ2} respectively, for some small enough δ > 0 such that δ/a
√
τ →∞ (we

choose δ = (τa2)1/4). Firstly, we use the inequality cosh(x) ≤ ex2/2 and get

E0[eτ log(cosh(aY )) · 1Iτa2Y 2>δ2 ] ≤ E0[eτa
2Y 2/2 · 1Iτa2Y 2>δ2 ]

≤ 2

∫ ∞
δ/a
√
τ

e−(1−τa2)y2/2 dy√
2π

≤
√

2

π

δ/(a
√
τ)

1− τa2
exp(−1− τa2

2

δ2

τa2
) = o(τ2a4).

Secondly, on the event {τa2Y 2 ≤ δ2} we use the Taylor expansions log(cosh(x)) =
x2/2−x4/12(1+o(1)), ex = 1+x+x2/2(1+o(1)), x = o(1). Denote U = log(cosh(aY ))−
E0(log(cosh(aY ))). We have

E0(log(cosh(aY ))) =
a2

2
− a4

4
(1 + o(1)), Var0(U) =

a4

2
(1 + o(1)), (6.9)

and, since τU = o(1),

E0

[
eτU · 1Iτa2Y 2≤δ2

]
= E0

[
(1 + τU +

τ2U2

2
(1 + o(1))) · 1Iτa2Y 2≤δ2

]
= 1 +

τ2Var0(U)

2
(1 + o(1))

− E0

[
(1 + τU +

τ2U2

2
(1 + o(1))) · 1Iτa2Y 2>δ2

]
.

The last expected value is o(τ2a4) and this gives

E0[eτ log(cosh(aY )) · 1Iτa2Y 2≤δ2 ] = eτE0[log cosh(aY )]+ τ2a4

4 (1+o(1)).

Together with the first relation in (6.9), this ends the proof of (6.8). 2

6.10. Proof of Theorem 4.4

6.10.1. Proof of the lower bounds

Let K = [N/n], L = [M/m] and consider only non over-lapping rectangles

Rkl = {(i, j) : n(k − 1) + 1 ≤ i ≤ nk, m(l − 1) + 1 ≤ j ≤ ml}, 1 ≤ k ≤ K, 1 ≤ l ≤ L.
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Let Skl be the matrix with the elements sij = 0 if (i, j) /∈ Rkl and sij = a if (i, j) ∈ Rkl.
Consider the prior

π =
1

KL

K∑
k=1

L∑
l=1

δSkl .

By construction, π({Skl, k, l}) = 1. The likelihood ratio is of the form

L(Y ) =
dPπ
dP0

(Y ) =
1

KL

K∑
k=1

L∑
l=1

dPSkl
dP0

(Y ) =
1

KL

K∑
k=1

L∑
l=1

exp(−b2/2 + bZkl),

where

Zkl =
1√
nm

∑
(i,j)∈Rkl

Yij , b2 = nma2.

Note that Zkl ∼ N (0, 1) under P0 and are independent in k, l. It is sufficient to check
that L(Y )→ 1 in P0-probability. Let us consider the truncated likelihood ratio

L̃(Y ) =
1

KL

K∑
k=1

L∑
l=1

exp(−b2/2 + bZkl)1IZkl<TKL ,

where we set
TKL =

√
2 log(KL) ∼

√
2(log(p−1) + log(q−1)).

Since

P0(L 6= L̃) ≤
K∑
k=1

L∑
l=1

P0(Zkl ≥ TKL)→ 0,

it suffices to check that L̃(Y )→ 1 in P0-probability.
Observe now that TKL− b→∞ under the assumptions of Theorem, and it suffices to

consider the case b > cTkl for some c ∈ (1/2, 1). We have

E0(L̃(Y )) =
1

KL

K∑
k=1

L∑
l=1

E0(exp(−b2/2 + bZkl)1IZkl<TKL) = Φ(TKL − b)→ 1,

Var0(L̃(Y )) =
1

(KL)2

K∑
k=1

L∑
l=1

Var0(exp(−b2/2 + bZkl)1IZkl<TKL)

≤ 1

(KL)2

K∑
k=1

L∑
l=1

E0(exp(−b2 + 2bZkl)1IZkl<TKL)

=
1

KL
exp(b2)Φ(TKL − 2b) ≤ exp(b2 − (TKL − 2b)2/2− T 2

KL/2)

= exp(−(TKL − b)2)→ 0.

Theorem 4.4 (1) follows. 2
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6.10.2. Proof of the upper bounds

Set TKL =
√

2 log(KL) and observe that, by the choice of η and since pq → 0, we have

TKL =
√

2 log(NM/nm)− 4 log(η) + o(1)

=
(
2 log

(
(pq)−1

))1/2 (
1 + (log (η) + o(1)) / log

(
(pq)−1

))1/2
∼

√
2(log(p−1) + log(q−1)).

For type I errors, we have

α(ψZ) ≤
K∑
k=1

L∑
l=1

P0(Zkl > TKL) = KLΦ(−TKL)→ 0.

Let the alternative SE correspond to the matrix with entry a > 0 at positions in
E = Ek∗l∗ and 0 elsewhere. As previously, E = Ek∗l∗ , 0 ≤ k∗ ≤ N −n, 0 ≤ l∗ ≤M −m
consists of (i, j) such that k∗ < i ≤ k∗ + n, l∗ < i ≤ l∗ + m. By construction, we can
take k, l, 1 ≤ k ≤ K, 1 ≤ l ≤ L such that |nk−k∗| ≤ nη, |ml− l∗| ≤ mη. Therefore, the
matrix Ek∗l∗ will overlap with the matrix Enkml from our test procedure significantly:

ñ = # ({k∗ + 1, ..., k∗ + n} ∩ {nk + 1, .., nk + n}) ≥ n(1− η),

m̃ = # ({l∗ + 1, ..., l∗ +m} ∩ {ml + 1, ..,ml +m}) ≥ m(1− η).

Observe that
β(ψZ , SE) ≤ PSE (Zkl ≤ TKL).

Moreover, Zkl ∼ N (b̃, 1) under PSE where we recall that b = a
√
nm and we put

b̃ =
añm̃√
nm
≥ b(1− η)2 ∼ b.

This yields
β(ψZ , SE) ≤ Φ(TKL − b(1 + o(1)))→ 0

under assumptions of theorem. Theorem 4.4 (2) follows.
2
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