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Abstract
Background: Identifying gene functional modules is an important step towards elucidating gene
functions at a global scale. Clustering algorithms mostly rely on co-expression of genes, that is
group together genes having similar expression profiles.

Results: We propose to cluster genes by co-regulation rather than by co-expression. We
therefore present an inference algorithm for detecting co-regulated groups from gene
expression data and introduce a method to cluster genes given that inferred regulatory
structure. Finally, we propose to validate the clustering through a score based on the GO
enrichment of the obtained groups of genes.

Conclusion: We evaluate the methods on the stress response of S. Cerevisiae data and obtain
better scores than clustering obtained directly from gene expression.

Background
An important step in analyzing gene functions is to cluster
genes according to their expression patterns. Such clusters
can then be analyzed in several ways, for example by
assigning unannotated genes to the majority function of
each cluster's genes (see [1] for a review).

However, this approach has several limitations. On the
one hand, genes of similar expression patterns may not
necessarily have the same or similar functions; on the

other hand, genes with related functions may not show
close correlation in their expression patterns. For example,
a transcription factor can activate some genes and repress
others in the same pathway.

The principal assumption of this paper is that unsuper-
vised clustering of genes on the basis of similar regulators
(activators/inhibitors) should assemble functional co-reg-
ulated groups of genes. To compute a similarity measure
between genes as a function of inferred regulators of these
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genes, we use the output of a data mining algorithm called
LICORN [2], that infers cooperative regulation relations
from expression data only. The resulting similarity matrix
between genes is considered as the adjacency matrix of a
weighted graph. Clustering is then performed to find
functional modules of genes in the network.

To objectively evaluate clustering, we use Gene Ontology
to determine if the obtained clusters can be associated
with terms of the Biological Process ontology. The
strength of such an association is given by a p-value from
an Hypergeometric test. We compare different clusterings
by calculating a score based on the p-values which
becomes greater when the significant p-values are smaller
and more numerous.

In section Methods, we introduce our model of gene reg-
ulation and briefly describe a data mining algorithm for
inferring large-scale cooperative gene regulation. We then
propose a similarity measure for the genes based on the
inferred regulator sets and define the score of a clustering.
Finally, in section Results and discussion, we evaluate our
system on a yeast data set.

Methods
Cooperative regulation networks

Let us denote by  the set of genes with a known or puta-

tive regulation activity and  as the set of genes without

such an activity. The input of the mining method is a dis-
cretised expression matrix for genes of . Each expres-

sion value can take the value -1 (under-expressed), 0
(normal), or 1 (over-expressed). A gene regulatory net-
work (GRN) associated with a target gene g is a pair (A, I),
where  is a co-activator set, and  is a co-inhib-

itor set. The set of GRNs for all target genes can also be
seen as a bipartite graph where the top layer contains reg-
ulators, the bottom layer contains target genes, and edges
code for a regulatory interaction between regulators and
target genes, each edge being labelled with a regulatory
mode (i.e., activator or inhibitor). The regulation relations
we are interested in are combinatorial: each target gene
has a number of activators and/or inhibitors. Activators
on one side and inhibitors on the other side are aggre-
gated in our model through an extended logical AND, i.e.,
a regulator set S (activator or repressor) is over-expressed
(resp. under-expressed) if and only if all the regulators in
S are over-expressed (resp. under-expressed). Finally, we
describe in Figure 1 a discrete function called Regulatory
Program RP, which, given the combined states of activa-

tors A and inhibitors I of g in a sample s computes s(A,

I), the estimated state of g in s. The main features of our

regulation model are therefore the explicit representation
of activation and repression relationships for a given tar-
get gene, and the representation of co-operative transcrip-
tional regulation.

Learning algorithm
We have recently proposed [2] an original, scalable tech-
nique called LICORN for deriving co-operative regulations,
in which many co-regulators act together to activate or
repress a target gene. LICORN uses an original heuristic
approach to accelerate the search for an appropriate struc-
ture for the regulation network. It first computes frequent
co-regulator sets, i.e., regulator sets that frequently occur
together as over (1) or under (-1)-expressed in the discre-
tised expression matrix. This is done by using an extension
of the Apriori algorithm [3] to handle both 1 and -1 sup-
ports (The x-support of a co-regulator C in the three-val-
ued expression matrix is the set of samples that include all
the regulators of C with the state x).

From this representation, a limited subset of candidate co-
regulator sets is then associated with each gene. The learn-
ing algorithm looks for each gene for regulator sets which
have a high "overlap" with the target gene. Intuitively, the
overlap constraint checks the size of the intersection
between supports of the target gene and a given candidate
co-regulator set. A candidate activator set for a target gene



 ∪

A ⊆ I ⊆

ĝ

The regulatory programFigure 1
The regulatory program. Definition of the regulatory 
program RP, which can be interpreted as follows: i) If GRN 
contains co-activators only, (A, I) corresponds to the 

aggregated status of these co-activators. ii) If GRN contains 
co-inhibitors only, (A, I) is the inverse of the aggregated 

status of these co-inhibitors. iii) Otherwise, (A, I) depends 

on a combination of the statuses of co-activators and co-
inhibitors, as described by the matrix on the right. For exam-
ple, (A, I) = 1 when the co-activators are over-expressed 

and the co-inhibitors are not.

ĝ
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g is frequently over-expressed when g is over-expressed or
frequently under-expressed when g is under-expressed.
On the opposite, a candidate repressor set for a target gene
g is frequently over-expressed when g is under-expressed
and vice-versa. This search can be efficiently performed
because of the property of anti-monotonicity of the over-
lap constraint with respect to set inclusion. Then, once a
limited number of candidate activator and inhibitor sets
have been obtained, exhaustive search for the best gene
regulatory network can be performed. Finally, a permuta-
tion-based procedure is used for selecting statistically sig-
nificant regulation relations. We have shown in [2] that
the co-operative regulation patterns inferred by LICORN

cannot be identified by clustering or pairwise methods,
and are only partly revealed by constrained Bayesian or
decision tree-based techniques, such as those used in pre-
vious studies [4,5].

Identification of functional co-regulation modules
Partial overlap of the regulator sets for a set of target genes
can be used as an alternative measurement of the distance
between genes.

Computation of the co-regulation matrix
We design the co-regulation matrix by using a similarity
measure defined as follows: let λ ∈ [0, 1] and (g1, g2) be
two genes. The similarity between g1 and g2 is defined by

where |A| and |I| are respectively the number of activators
and inhibitors of both g1 and g2, |AI| is the number of reg-
ulators which activate one gene and inhibit the other and
|TF| is the number of transcription factors regulating at
least one of the genes. This similarity considers two genes
as being far appart (ϕ(g1, g2) = 0) if they do not share any
regulators. Two genes are considered most similar if their
set of activators and inhibitors are exactly the same (ϕ(g1,
g2) = 1). In intermediate situations, λ represents the
weight given to common regulators which have opposite
effects.

Clustering
To cluster genes from the similarity matrix, we use the
MCL algorithm [6,7]. That algorithm, based on the fluxes

φ
λ

( , ) ,g g
A I AI

TF1 2 =
+ +

Score and number of p-values for λ varying from 0 to 1Figure 2
Score and number of p-values for λ varying from 0 to 1.
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in a graph, is well suited to weighted graphs and does not
require any prior knowledge about the number of clusters.
Moreover, it does not require any initial conditions and is
therefore reproducible. The inflation parameter of the
algorithm is fixed to 1.8, as suggested in [8].

Mapping to GO-terms
To assess the functional significance of obtained clusters,
and suggest putative functions for genes with unknown
functions, we calculate the enrichment of gene ontology
(GO) [9].

To determine the over-represented GO terms in each clus-
ter, we apply the R package GOstats [10] with a p-value
cut-off of 5% and the biological process ontology. For each
cluster C, we obtain a set TC of GO terms over-represented
in C with a rate of 5% and a set of associated p-values {pt,
t ∈ TC}.

We define the score of the clustering by

where Ct is the set of genes of C associated with the GO
term t. Parameters cmin and cmax allow us to avoid clusters
that are too small, which don't have a biological meaning,

as well as too big ones, which don't have any functional
unity.

Results and discussion
As a proof of concept, we used gene expression data sets
for S. Cerevisiae. The Gasch data set [11] measures the
response of yeast to 173 stress conditions for 6152 genes.
We used a set of 237 known and putative transcription
factors.

We applied LICORN and retained only those GRNs (gene
regulatory networks) identified as significant with a 5%
FDR level (see [2] for details). 2041 GRNs (of 5703 GRNs)
were identified as significant. The structural organization
of the learned GRNs has been shown to be consistent with
recent advances [12] concerning the characterization of
topological transcriptional network features in yeast and
provide the first evidence of the relevance of inferred
GRNs.

In order to choose the parameter λ for the similarity
matrix, we computed the matrices and the associated clus-
terings for several values of λ and compared their scores
with parameters cmin = 5 and cmax = 200. Figure 2 shows
that the best one is obtained for λ = 0.1.

For λ = 0.1, the clustering gives 30 clusters among which
one is too big to be considered (407 genes) and 3 have less
than 5 genes. Table 1 gives the best GO term association

S p
Ct

Ct

t TC c C c Cmin max

( ) log( )
,

λ = −
∈≤ ≤
∑∑

Table 1: GO-enrichment of the clusters obtained for S. Cerevisiae.

Cluster Id GO BP Id p-value Cluster size Biological process

6 0022613 1.28e – 23 80 ribonucleoprotein complex biogenesis and assembly

15 0006119 3.26e – 13 18 oxidative phosphorylation

9 0042254 3.15e – 11 55 ribosome biogenesis and assembly

4 0006081 4.89e – 07 142 aldehyde metabolic process

2 0000746 5.89e – 07 155 conjugation

7 0007001 9.48e – 07 68 chromosome organization and biogenesis (sensu Eukaryota)

13 0006974 4.10e – 05 30 response to DNA damage stimulus

27 0008652 2.02e – 04 6 amino acid biosynthetic process

10 0046907 3.50e – 04 52 intracellular transport

8 0019754 7.84e – 04 66 one-carbon compound catabolic process

Table of the ten best clusters among the 59 ones obtained for λ = 0.3 ranked by their best association with a GO term. For each of them, the best 
associated GO term and the corresponding p-value are given, as well as the size of the cluster and the biological process associated to the GO 
term.
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for the 10 best of them when ranked according to their
best p-value. The biological evaluation of these clusters is
ongoing.

The cluster number 15 that appears on the second line of
Table 1 is in fact associated to 32 GO terms with a p-value
lower than 1e – 07, most of those terms being related to
phosphorylation or triphosphate metabolic process.
Moreover, five genes of that cluster belong to the 167
genes having no associated GO term, namely the genes
YLR296W, YDR215C, YBL044W, YIR040C and YPR027C.
All of them appear in the Entrez gene database but with-
out known functions.

We have finally validated our method by comparing clus-
tering performances based on other similarity matrices.
We therefore have computed from the original expression
data matrices of euclidian distance, partial correlation
[13] and mutual information [14]. To compare clustering
results with the same number of clusters, we used the hier-
archical clustering method AGNES [15] to cluster the

genes in 20, 30, 40, and 50 groups. Figure 3 shows the
scores for those three methods as well as for ours with λ =
0.1. It clearly shows that inferring the regulatory network
from LICORN preprocessing improves the score of the clus-
tering and provide more biologically relevant clusters.

Conclusion
The problem of discovering functional modules from
expression data is both biologically important and com-
putationally challenging. From a biological perspective,
identifying members of functional modules is the first
step toward understanding the regulatory network of the
cell. We provide here an alternative way for constructing
gene modules: genes are clustered in the same module if
they share many regulators, as they have been inferred by
LICORN from gene expression data. We expect this way of
clustering will discover modules that are out the scope of
classical co-expression clustering techniques. From a com-
putational perspective, one of the key challenges is deal-
ing with over-fitting as the number of data samples is so
small.

Comparison of the clustering based on LICORN with existing methodsFigure 3
Comparison of the clustering based on LICORN with existing methods. Figure of the scores obtained for hierarchi-
cal clustering into 20, 30, 40 and 50 clusters. The red circles are the scores obtained for the similarity matrix given by LICORN 
and λ = 0.1. The similarity measures which are compared to are euclidian distance, partial correlation and mutual information.
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