INFINITE ANTI - UNIFORM SOURCES WITH GEOMETRIC DISTRIBUTION

Daniela Tarniceriu, Valeriu Munteanu, Gheorghe Zaharia

- To cite this version:

Daniela Tarniceriu, Valeriu Munteanu, Gheorghe Zaharia. INFINITE ANTI - UNIFORM SOURCES WITH GEOMETRIC DISTRIBUTION. Bulletin of I.P.I., 2012, 58 (3), pp.35-45. 10.1016/b.ipi.2012.09.012 . hal-00730893

HAL Id: hal-00730893

https://hal.science/hal-00730893

Submitted on 11 Sep 2012

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

BULETINUL INSTITUTULUI POLITEHNIC DIN IAŞI
Publicat de
Universitatea Tehnică „Gheorghe Asachi" din Iaşi
Tomul LVII (LXI), Fasc. 1, 2011
Secția
ELECTROTEHNICĂ, ENERGETICĂ, ELECTRONICĂ

INFINITE ANTI - UNIFORM SOURCES WITH GEOMETRIC DISTRIBUTION

BY

DANIELA TARNICERIU ${ }^{1 *}$, VALERIU MUNTEANU ${ }^{1}$ and GHEORGHE ZAHARIA ${ }^{2}$

1"Gheorghe Asachi" Technical University of Iasi", Department of Telecommunications, Carol I, 11, 700506, Iasi, Romania, ${ }^{2}$ Institute for Electronics and Telecommunications of Rennes - INSA, 20 Buttes de Coësmes, CS 14315, 35043 Rennes, France.

Received: 2012
Accepted for publication:

Abstract

In this paper we consider the class of anti-uniform Huffman (AUH) codes for sources with infinite alphabet generated by geometric distribution. Huffman encoding of these sources results in AUH codes. As a result of this encoding, we obtain sources with memory. The entropy and average cost of these sources with memory are derived. We perform an analogy between sources with memory and discrete memoryless channels, showing that the entropy of the source with memory is similar to the mean error of the discrete memoryless channel. The information quantity $I(X, S)$ specifies for AUH codes whether they are with memory or not, as it differs from zero or is equal to zero, respectively.

Keywords: Huffman coding; average codeword length; entropy.

1. Introduction

Consider a discrete source with infinite size alphabet $\xi:\left(\begin{array}{llll}s_{1} & s_{2} & \cdots & s_{k} \cdots\end{array}\right)$ and associated ordered probability distribution $P:\left(\begin{array}{lllll}p_{1} & p_{2} & \cdots & p_{k} & \cdots\end{array}\right)$, where $p_{1} \geq p_{2} \geq \ldots \geq p_{k} \geq \ldots$. It is well known that the Huffman encoding algorithm [1] provides an optimal prefix-free code for this source. A binary Huffman code is usually represented using a binary tree,

[^0]whose leaves correspond to the source messages. The two edges emanating from each intermediate tree node (father) are labeled either 0 or 1 . For related literature on Huffman coding and Huffman trees, we refer the reader to [2, 3, 4, 5, 6].

In contrast with the uniform Huffman code where $\left|l_{k}-l_{j}\right| \leq 1\left(l_{k}\right.$ denotes the length of the codeword associated with the message s_{k}), a code is called anti -uniform Huffman (AUH) [7, 8], if $l_{k}=k+1$, for $k=0,1,2, \ldots$. For this the following condition has to be fulfilled [7, 8]

$$
\begin{equation*}
p_{i+2}+p_{i+3}+\ldots=\sum_{k=i+2}^{\infty} p_{k} \leq p_{i}, i \geq 1 \tag{1}
\end{equation*}
$$

The class of AUH sources is known for their property of achieving minimum redundancy in different situations. It has been shown in [9] that AUH codes potentially achieve the minimum redundancy of a Huffman code of a source for which the probability of one of the symbols is known. The AUH codes are efficient codes with minimal average cost in highly unbalanced cost regime among all prefix - free codes [10]. These properties determine a wide range of applications and motivate us to study these sources from information theoretic perspective. Such sources can be generated by a several probability distributions. It has been shown that geometric distribution is among the class of infinite alphabet anti - uniform sources [7, 8, 11, 12].

In this paper we consider the AUH structure and derive the average codeword length, the average information per binary symbol of the source with memory or code entropy $H_{m}(X)$, as result of Huffman encoding of the discrete AUH source with geometric distribution, as well as the average cost of the code.

The rest of the paper is organized as follows. In Section 2 we consider an infinite source with geometric distribution and compute its entropy. For this source we perform a Huffman encoding and derive the average codeword length. We also show that employing Huffman coding, a source with memory results, for which we compute the entropy or the average information per binary encoded symbol. The average cost of the code is also derived. Section 3 presents the analogy between sources with memory and discrete memoryless channels. The information quantity corresponding to mutual information for discrete channels, $I(X, S)$, specifies for AUH codes whether they are with memory or not, as it differs from zero or is equal to zero, respectively. We conclude the paper in Section 4.

2. The entropy and the average cost of AUH codes for sources with infinite alphabet

Let there be a discrete source with infinite alphabet, characterized by geometric distribution:

$$
\xi:\left(\begin{array}{cccccc}
s_{0}^{(t)} & s_{1}^{(t)} & s_{2}^{(t)} & \cdots & s_{k}^{(t)} & \cdots \tag{2}\\
p_{0}^{(t)}=q & p_{1}^{(t)}=p q & p_{2}^{(t)}=p^{2} q & \cdots & p_{k}^{(t)}=p^{k} q & \cdots
\end{array}\right)
$$

where $q=1-p$.
In [12] it is shown that geometric distribution with parameter $0<p \leq(\sqrt{5}-1) / 2$ satisfies condition (1) and leads to an AUH code.

The source is complete, because $[15,16]$

$$
\begin{equation*}
\sum_{k=0}^{\infty} p^{k} q=1 \tag{3}
\end{equation*}
$$

After a binary Huffman encoding of this source, the graph in Fig. 1 results, that is, an infinite anti - uniform code.

Fig. 1. The graph of Huffman encoding for the source ξ with distribution in (2)
$s_{k}^{(t)}$ represents a leaf or a terminal node in the graph, corresponding to the message $s_{k}^{(t)}$ of the source and $s_{k}^{(i)}$ represents the intermediate node " k ".
The probabilities of terminal nodes are equal to probabilities of the source
messages, $p_{k}^{(t)}$. Unlike a leaf, an intermediate node is not corresponding to a source message and, therefore no probability mass is associated. However, with slight abuse we can call the weight of the intermediate node also probability.
Considering (3), the probabilities of intermediate nodes $p_{k}^{(i)}$ are obtained recursively, as the sum of the two siblings. In this way, we get:

$$
\begin{equation*}
p_{k}^{(i)}=1-\sum_{j=0}^{k} p_{j}^{(t)} ; k=0,1,2, \ldots \tag{4}
\end{equation*}
$$

Considering (2) and (4), the probabilities of intermediate nodes are obtained by:

$$
\begin{equation*}
p_{k}^{(i)}=p^{k+1} ; k=0,1,2, \ldots \tag{5}
\end{equation*}
$$

The structure of codewords resulted from Huffman binary encoding is:

$s_{0} \rightarrow c_{0} \rightarrow 1$
$s_{1} \rightarrow c_{1} \rightarrow 01$
$s_{2} \rightarrow c_{2} \rightarrow 001$
$\begin{equation*} s_{k} \rightarrow c_{k} \rightarrow \underbrace{00 \ldots 01}_{k} \tag{6} \end{equation*}$

The length l_{k} of the codeword associated with the message $s_{k}^{(t)}$ is the number of edges on the path between the root and the node $s_{k}^{(t)}$ in the Huffman tree.

$$
\begin{equation*}
l_{k}=k+1, \quad k=0,1,2, \ldots \tag{7}
\end{equation*}
$$

The average codeword length [13] is determined with

$$
\begin{equation*}
\bar{l}=\sum_{k=0}^{\infty} p_{k}^{(t)} l_{k} \tag{8}
\end{equation*}
$$

The average codeword length is obtained considering (2) and (7) in (8)

$$
\begin{equation*}
\bar{l}=\sum_{k=0}^{\infty}(k+1) q p^{k}=\frac{1}{1-p} \tag{9}
\end{equation*}
$$

The entropy of the source with the distribution given in (2) is

$$
\begin{equation*}
H(\xi)=-\sum_{k=0}^{\infty} p_{k}^{(t)} \log p_{k}^{(t)} \tag{10}
\end{equation*}
$$

where the logarithm function \log is in base 2 .
Considering (2) and (10) the entropy of the source is:

$$
\begin{equation*}
H(\xi)=-\log (1-p)-\frac{p}{1-p} \log p \tag{11}
\end{equation*}
$$

In obtaining relations (9) and (11) we have taken into account that $\sum_{k=0}^{\infty} p^{k} q=1$ and $\sum_{k=0}^{\infty} k p^{k} q=\frac{p}{1-p}$.

We note that the probabilities to deliver the symbols $x_{1}=1$ or $x_{0}=0$ depend on the node from which they are generated. In other words, as a result of Huffman encoding of the source, a source $X=\left\{x_{0}=0, x_{1}=1\right\}$ with memory is obtained. Its states correspond to terminal or intermediate nodes (excluding the root) in the graph in Fig. 1. When a terminal node is reached, the binary encoding Huffman procedure is resumed from the graph root. Since the source with the distribution in (2) is complete, the probability of the root is equal to 1 . The graph attached to the source with memory X can be obtained from the Huffman encoding graph of the source ξ_{∞}, as follows:
a) We link the terminal nodes in the graph of the source ξ_{∞} with the root;
b) The branches between successive nodes have the probabilities equal to the ratio between the probability of the node in which the branch ends and the probability of the node from which it starts;
c) Each terminal or intermediate node will represent a state $S_{k}^{(t)}$ or $S_{k}^{(i)}, k=0,1,2, \ldots$ (as it is represented in Fig. 2).

Fig. 2 The graph of the source with memory
Let $S=\left\{S_{0}^{(t)}, S_{1}^{(t)}, \ldots, S_{k-1}^{(t)}, S_{k}^{(t)}, \ldots, S_{0}^{(i)}, S_{1}^{(i)}, \ldots, S_{k-1}^{(i)}, S_{k}^{(i)}, \ldots\right\}$ be the state set of the source with memory.

The probabilities of delivering the symbols $x_{0}=0$ or $x_{1}=1$ from the state $S_{k-1}^{(i)}, k=1,2, \ldots$ corresponding to an intermediate node $s_{k-1}^{(i)}, k=1,2, \ldots$, are equal to the probabilities of transition from the state $S_{k-1}^{(i)}, k=1,2, \ldots$ to the states
$S_{k}^{(t)}, k=1,2, \ldots$ and $S_{k}^{(i)}, k=1,2, \ldots$, respectively, i.e.

$$
\begin{equation*}
p\left(x_{1} / S_{k-1}^{(i)}\right)=q=1-p, k=1,2, \ldots \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
p\left(x_{0} / S_{k-1}^{(i)}\right)=p, k=1,2, \ldots \tag{13}
\end{equation*}
$$

respectively.
The probabilities of delivering the symbols $x_{1}=1$ or $x_{0}=0$ from the state $S_{k}^{(t)}, k=0,1,2, \ldots$ corresponding to a terminal node $s_{k}^{(t)}, k=0,1,2, \ldots$, are equal to the probabilities of transition from the state $S_{k}^{(t)}, k=0,1,2, \ldots$ in the states $S_{0}^{(t)}$ and $S_{0}^{(i)}$, respectively, i.e.:

$$
\begin{equation*}
p\left(x_{1} / S_{k}^{(t)}\right)=1-p, k=0,1,2, \ldots \tag{14}
\end{equation*}
$$

and

$$
\begin{equation*}
p\left(x_{0} / S_{k}^{(t)}\right)=p, k=0,1,2, \ldots \tag{15}
\end{equation*}
$$

respectively.
The transition matrix between states is:

$$
\begin{align*}
& \begin{array}{lllllllll}
S_{0}^{(t)} & S_{1}^{(t)} & S_{2}^{(t)} \cdots & S_{k}^{(t)} & \cdots & S_{0}^{(i)} & S_{1}^{(i)} & \cdots & S_{k}^{(i)}
\end{array} \\
& \mathrm{T}=\left[\begin{array}{ccccccccccc}
p_{0}^{(t)} & 0 & 0 & \cdots & 0 & \cdots & 1-p_{0}^{(t)} & 0 & \cdots & 0 & \cdots \\
p_{0}^{(t)} & 0 & 0 & \cdots & 0 & \cdots & 1-p_{0}^{(t)} & 0 & \cdots & 0 & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \cdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
p_{0}^{(t)} & 0 & 0 & \cdots & 0 & \cdots & 1-p_{0}^{(t)} & 0 & \cdots & 0 & \cdots \\
\vdots & \vdots & \vdots & \cdots & \vdots & \cdots & \vdots & \vdots & \cdots & \vdots & \cdots \\
0 & \frac{p_{1}^{(t)}}{p_{0}^{(i)}} & 0 & \cdots & 0 & \cdots & 0 & \frac{p_{1}^{(i)}}{p_{0}^{(i)}} & \cdots & 0 & \vdots \\
\vdots & \vdots & \vdots & \cdots & \vdots & \cdots & \vdots & & \cdots & \vdots & \cdots \\
0 & 0 & 0 & \cdots & \frac{p_{k}^{(t)}}{p_{k-1}^{(i)}} & \cdots & 0 & 0 & \cdots & \frac{p_{k}^{(i)}}{p_{k-1}^{(i)}} & \cdots \\
\vdots & \vdots & \vdots & \cdots & \vdots & \cdots & \vdots & \vdots & \cdots & \vdots & \vdots
\end{array}\right] \begin{array}{l}
S_{0}^{(t)} \\
S_{1}^{(t)} \\
\vdots \\
S_{k}^{(t)} \\
\vdots \\
S_{0}^{(i)} \\
\vdots
\end{array} \tag{16}
\end{align*}
$$

Considering (12), (13), (14) and (15), the transition matrix (16) becomes:

$$
\begin{align*}
& S_{0}^{(t)} S_{1}^{(t)} S_{2}^{(t)} \cdots \quad S_{k}^{(t)} \quad \cdots \quad S_{0}^{(i)} S_{1}^{(i)} \cdots \quad S_{k}^{(i)} \cdots \\
& \mathrm{T}=\left[\begin{array}{ccccccccccc|}
p & 0 & 0 & \cdots & 0 & \cdots & 1-p & 0 & \cdots & 0 & \cdots \\
p & 0 & 0 & \cdots & 0 & \cdots & 1-p & 0 & \cdots & 0 & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \cdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
p & 0 & 0 & \cdots & 0 & \cdots & 1-p & 0 & \cdots & 0 & \cdots \\
\vdots & \vdots & \vdots & \cdots & \vdots & \cdots & \vdots & \vdots & \cdots & \vdots & \cdots \\
& 1-p & & \cdots & & \cdots & & p & \cdots & & \vdots \\
\vdots & \vdots & \vdots & \cdots & \vdots & \cdots & \vdots & & \cdots & \vdots & \cdots \\
0 & 0 & 0 & \cdots & 1-p & \cdots & 0 & 0 & \cdots & p & \cdots \\
\vdots & \vdots & \vdots & \cdots & \vdots & \cdots & \vdots & \vdots & \cdots & \vdots & \vdots
\end{array}\right] \begin{array}{l}
S_{1}^{(t)} \\
\vdots \\
S_{k}^{(t)} \\
\vdots \\
S_{0}^{(i)} \\
\vdots
\end{array} \tag{17}
\end{align*}
$$

Let $\pi_{k}^{(t)}$ and $\pi_{k}^{(i)}, k=0,1,2, \ldots$, denote the state probabilities of the source with memory. They can be determined by means of [13, 14]:

$$
\begin{gather*}
{\left[\pi_{0}^{(t)} \pi_{1}^{(t)} \ldots \pi_{k}^{(t)} \ldots \pi_{0}^{(i)} \pi_{1}^{(i)} \ldots \pi_{k}^{(i)} \ldots\right]=\left[\pi_{0}^{(t)} \pi_{1}^{(t)} \ldots \pi_{k}^{(t)} \ldots \pi_{0}^{(i)} \pi_{1}^{(i)} \ldots \pi_{k}^{(i)} \ldots\right] \mathrm{T}} \tag{18}\\
\sum_{k=0}^{\infty}\left(\pi_{k}^{(t)}+\pi_{k}^{(i)}\right)=1 \tag{19}
\end{gather*}
$$

Considering (8) and (17), from (18) and (19) we get the state probabilities as:

$$
\begin{gather*}
\pi_{k}^{(t)}=\frac{1}{\bar{l}} p_{k}^{(t)}, k=0,1,2, \ldots \tag{20}\\
\pi_{k}^{(i)}=\frac{1}{\bar{l}} p_{k}^{(i)}=\frac{1}{\bar{l}}\left(1-\sum_{j=0}^{k} p_{j}^{(t)}\right) \tag{21}
\end{gather*}
$$

Considering (2) and (4) in (20) and (21), we get the state probabilities as:

$$
\begin{align*}
& \pi_{k}^{(t)}=(1-p)^{2} p^{k}, k=0,1,2, \ldots \tag{22}\\
& \pi_{k}^{(i)}=(1-p) p^{k+1}, k=0,1,2, \ldots \tag{23}
\end{align*}
$$

Generally, the entropy of the source with memory is computed by [14]

$$
\begin{equation*}
H_{m}(X)=-\sum_{k=0}^{\infty} \sum_{j=0}^{1} \pi_{k}^{(t)} p\left(x_{j} \mid S_{k}^{(t)}\right) \log p\left(x_{j} \mid S_{k}^{(t)}\right)-\sum_{k=0}^{\infty} \sum_{j=0}^{1} \pi_{k}^{(i)} p\left(x_{j} \mid S_{k}^{(i)}\right) \log p\left(x_{j} \mid S_{k}^{(i)}\right) \tag{24}
\end{equation*}
$$

Substituting (12)-(15), (22) and (23) in (24), we get the entropy of the source with memory.

$$
\begin{equation*}
H_{m}(X)=-(1-p)\left(\log (1-p)+\frac{p}{1-p} \log p\right) \tag{25}
\end{equation*}
$$

From (7), (11) and (25) we see that $H_{m}(X)$, the average information per symbol,
is the ratio between the source entropy and the average codeword length.

$$
\begin{equation*}
H_{m}(X)=\frac{H(\xi)}{\bar{l}} \tag{26}
\end{equation*}
$$

Let c_{0} and c_{1} be the costs associated to the bits 0 and 1 , respectively. The average cost of a code is defined by [10]

$$
\begin{equation*}
\bar{C}=\sum_{k=0}^{\infty} p_{k}^{(t)}\left(n_{0}(k) c_{0}+n_{1}(k) c_{1}\right), \tag{27}
\end{equation*}
$$

where we denote by $n_{0}(k)$ and $n_{1}(k)$ the number of 0 's and 1 's in the codeword corresponding to the source symbol $s_{k}^{(t)}$.
Considering (6), the average cost is

$$
\begin{equation*}
\bar{C}=\sum_{k=0}^{\infty} p_{k}^{(t)}\left(k c_{0}+c_{1}\right) \tag{28}
\end{equation*}
$$

We obtain the average cost of the AUH code for the source with geometric distribution substituting (2) in (28).

$$
\begin{equation*}
\bar{C}=c_{0} \frac{p}{1-p}+c_{1} \tag{29}
\end{equation*}
$$

3. Analogy between sources with memory and discrete, memoryless channels

If we consider that the state set S of the source with memory represents the field at a discrete memoryless channel input and the symbols generated by the source with memory represents the field at the channel output, from (24) we note that the entropy of the source with memory represents the mean error of the channel with input S and output X, that is, $H(X \mid S)$.

Making use of this analogy we can calculate for sources with memory the information quantities specific to discrete memoryless channels [17].
$H(X, S)=-\sum_{j=0}^{1} \sum_{k=0}^{\infty} p\left(x_{j}, S_{k}^{(t)}\right) \log p\left(x_{j}, S_{k}^{(t)}\right)-\sum_{j=0}^{1} \sum_{k=0}^{\infty} p\left(x_{j}, S_{k}^{(i)}\right) \log p\left(x_{j}, S_{k}^{(i)}\right)$
The joint probabilities are obtained as

$$
\begin{align*}
& p\left(x_{j}, S_{k}^{(t)}\right)=\pi_{k}^{(t)} p\left(x_{j} \mid S_{k}^{(t)}\right) \tag{31}\\
& p\left(x_{j}, S_{k}^{(i)}\right)=\pi_{k}^{(i)} p\left(x_{j} \mid S_{k}^{(i)}\right) \tag{32}
\end{align*}
$$

Substituting (12)-(15), (22) and (23) in (31) and (32), we get the joint probabilities:

$$
\begin{array}{r}
p\left(x_{1}, S_{k}^{(t)}\right)=(1-p)^{3} p^{k}, k=0,1,2, \ldots \\
p\left(x_{1}, S_{k}^{(i)}\right)=(1-p)^{2} p^{k}, k=1,2, \ldots \tag{34}
\end{array}
$$

$$
\begin{gather*}
p\left(x_{0}, S_{k}^{(t)}\right)=(1-p)^{2} p^{1+k}, k=0,1,2, \ldots \tag{35}\\
p\left(x_{0}, S_{k}^{(i)}\right)=(1-p) p^{1+k}, k=1,2, \ldots \tag{36}
\end{gather*}
$$

Substituting (33) - (36) in (30), we have:

$$
\begin{gather*}
H(S, X)=(2 p-3)\left(\log (1-p)+\frac{p}{1-p} \log p\right) \tag{37}\\
H(S \mid X)=-\sum_{j=0}^{1} \sum_{k=0}^{\infty} p\left(x_{j}, S_{k}^{(t)}\right) \log p\left(S_{k}^{(t)} \mid x_{j}\right)-\sum_{j=0}^{1} \sum_{k=0}^{\infty} p\left(x_{j}, S_{k}^{(i)}\right) \log p\left(S_{k}^{(i)} \mid x_{j}\right) \tag{38}
\end{gather*}
$$

In (38) $p\left(S_{k}^{(t)} \mid x_{j}\right)$ and $p\left(S_{k}^{(i)} \mid x_{j}\right)$ are obtained using the following relations.
We compute the symbol probabilities as

$$
\begin{equation*}
p\left(x_{j}\right)=\sum_{k=0}^{\infty} p\left(x_{j}, S_{k}^{(t)}\right)+\sum_{k=0}^{\infty} p\left(x_{j}, S_{k}^{(i)}\right), j=0,1 \tag{39}
\end{equation*}
$$

Substituting (33)-(36) in (39), we get the probabilities

$$
\begin{gather*}
p\left(x_{0}\right)=p \tag{40}\\
p\left(x_{1}\right)=1-p \tag{41}\\
p\left(S_{k}^{(t)} \mid x_{j}\right)=\frac{p\left(x_{j}, S_{k}^{(t)}\right)}{p\left(x_{j}\right)} \tag{42}\\
p\left(S_{k}^{(i)} \mid x_{j}\right)=\frac{p\left(x_{j}, S_{k}^{(i)}\right)}{p\left(x_{j}\right)} \tag{43}
\end{gather*}
$$

Substituting (33)-(36), (40) and (41) in (42) and (43), we get the probabilities:

$$
\begin{gather*}
p\left(S_{k}^{(t)} \mid x_{1}\right)=(1-p)^{2} p^{k}, k=0,1,2, \ldots \tag{44}\\
p\left(S_{k}^{(i)} \mid x_{1}\right)=(1-p) p^{k}, k=1,2, \ldots \tag{45}\\
p\left(S_{k}^{(t)} \mid x_{0}\right)=(1-p)^{2} p^{k}, k=0,1,2, \ldots \tag{46}\\
p\left(S_{k}^{(i)} \mid x_{0}\right)=(1-p) p^{k}, k=1,2, \ldots \tag{47}
\end{gather*}
$$

Substituting (33) - (36) and (44) - (47) in (38), we have:

$$
\begin{gather*}
H(S \mid X)=-(2-p)\left(\log (1-p)+\frac{p}{1-p} \log p\right) \tag{49}\\
H(S)=-\sum_{k=0}^{\infty} \pi_{k}^{(t)} \log \pi_{k}^{(t)}-\sum_{k=0}^{\infty} \pi_{k}^{(i)} \log \pi_{k}^{(i)} \tag{50}
\end{gather*}
$$

Substituting (22) and (23) into (50), we have

$$
\begin{equation*}
H(S)=-(2-p)\left(\log (1-p)+\frac{p}{1-p} \log p\right) \tag{51}
\end{equation*}
$$

$$
\begin{equation*}
H(X)=-\sum_{j=0}^{1} p\left(x_{j}\right) \log p\left(x_{j}\right) \tag{52}
\end{equation*}
$$

Substituting (41) and (42) into (52), we have

$$
\begin{equation*}
H(X)=-(1-p) \log (1-p)-p \log p \tag{53}
\end{equation*}
$$

$$
\begin{equation*}
I(X, S)=\sum_{j=0}^{1} \sum_{k=0}^{\infty} p\left(x_{j}, S_{k}^{(t)}\right) \frac{\log p\left(x_{j}, S_{k}^{(t)}\right)}{p\left(x_{j}\right) \pi_{k}^{(t)}}+\sum_{j=0}^{1} \sum_{k=0}^{\infty} p\left(x_{j}, S_{k}^{(i)}\right) \frac{\log p\left(x_{j}, S_{k}^{(i)}\right)}{p\left(x_{j}\right) \pi_{k}^{(i)}} \tag{54}
\end{equation*}
$$

Substituting (22), (23), (33)-(36), (41) and (42) in (54), we have

$$
\begin{equation*}
I(S, X)=0 \tag{5}
\end{equation*}
$$

We note that this quantity is equal to zero. This indicates that the source resulted by binary encoding of the source with geometric distribution is without memory.

4. Conclusions

In this paper we have considered an infinite discrete memoryless AUH source with geometric distribution. Performing a binary Huffman encoding of this source, we get a source with memory, because the probabilities of delivering the symbols $x_{0}=0$ and $x_{1}=1$ in the encoding process depend on the nodes in the graph from where they are generated. The graph of the source with memory is obtained from the encoding graph by linking the terminal nodes with the graph root. The states of the source with memory correspond to the terminal or intermediate nodes in the encoding graph. We determined the state probabilities of the source with memory, as well as the transition probabilities between states. The average information and cost per binary symbol in encoding process is computed. As the entropy of the source that is to be encoded measures the average information per codeword, and the code entropy measures the average information per symbol, their ratio represents the average length of codewords.

Performing the analogy between discrete sources with memory and discrete memoryless channels, we compute the information quantities. The information quantity $\mathrm{I}(\mathrm{X}, \mathrm{S})$ indicates whether the source resulted by binary Huffman encoding is with memory or not. The information quantity $H_{m}(X \mid S)$ represents the entropy of the source with memory resulted by binary Huffman encoding.

REFERENCES

Capocelli, R. M., De Santis, A., A note on D-ary Huffman codes. IEEE Trans. Inf. Theory, 37, 174-179 (1991).
Corduneanu, S., O. Chapters of mathematical analysis. MatrixRom, Bucharest,2009.

Cover, T. M. and Thomas J. A. Elements of Information Theory. John Wiley and Sons, Inc. New York 1991.
Esmaeili, M., Kakhbod, A., On antiuniform and partially antiuniform sources. Proc. IEEE ICC, pp. 1611 - 1615. (2006)
Esmaeili, M., Kakhbod, A., On information theory parameters of infinite anti-uniform sources". IET Commun., 1, 1039 - 1041 (2007).
Gallager, R., Variations by a theme of Huffman. IEEE Trans. Inf. Theory, 24, 668-674 (1978)

Gallager, R., Van Voorhis, D. Optimal source coding for geometrically distributed integer alphabets. IEEE Trans. Inf. Theory, 21, 2, 228 - 230 (1975).
Gray, R. M., Source Coding Theory. Kluwer, Boston, 1990.
Huffman, R., A method for the construction of minimum - redundancy codes. Proc. IRE, 40, 1098 - 1101 (1952).
Humblet, P., Optimal source coding for a class of integer alphabets. IEEE Trans. Inf. Theory, 24, 1, $110-112$ (1978)
Johnsen, O. On the redundancy of binary Huffman codes. vol.26, pp.220-222 (1980)
Khorsavifard, M., Esmaeili, M., Saidi, H., Gulliver, T.A., A tree based algorithm for generating all possible binary compact codes with N codewords. IEICE Trans. Fundam. Electron. Commun. Computer Sci., 10, 2510 - 2516 (2003).
Larsen, R., J., and Marx, M., L. An Introduction to Mathematical Statistics and its Applications. Upper Saddle River, NJ: Prentice Hall, 2001.
Linder, T., Tarokh, V., Zeger, K., Existence of optimal prefix codes for infinite source alphabets. IEEE Trans. Inf. Theory, 43, 2026-2028 (1997)
Mohajer, S., Pakzad, P., Kakhbod, A., Tight bounds on the redundancy of Huffman codes. Proc. IEEE ITW, pp. 131 - 135. (2006)
Mohajer, S., and Kakhbod, A., Anti - uniform Huffman codes. IET Commun. 5, 1213 1219 (2011).
Munteanu, V., Tarniceriu D., Elements of Information Theory. Cermi, Iasi 2007.

SURSE ANTI - UNIFORME INFINITE CU DISTRIBUȚIE GEOMETRICĂ

(Rezumat)

În acestă lucrare s-a analizat clasa codurilor Huffman antiuniforme pentru surse caracterizate de o distribuție geometrică, cu alfabet infinit.Codarea Huffman a acestor surse conduce la coduri AUH. Ca urmare a acestei codări se obțin surse cu memorie. Pentru aceste surse s-a calculat entropia şi costul mediu. S-a efectuat o analogie între sursele discrete cu memorie şi canalele discrte fără memorie, arătându-se că entropia sursei cu memorie este similară cu eroarea medie din cazul canalului discret fără memorie. Mărimea informațională $\mathrm{I}(\mathrm{X}, \mathrm{S})$ indică pentru codurile AUH , dacă acestea sunt sau nu cu memorie, după cum această mărime este diferită de zero sau nu.

[^0]: * Corresponding author: e-mail: tarniced@etti.tuiasi.ro phone: +40-232-213737 ext. 235

