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Block clustering (or co-clustering) aims at simultaneously partitioning the rows and columns of a data table to reveal homogeneous block structures. This structure can stem from the latent block model which provides a probabilistic modeling of data tables whose block pattern is defined from the row and column classes. For continuous data, each table entry is typically assumed to follow a Gaussian distribution. For a given data table, several candidate models are usually examined: they may differ in the numbers of clusters or in the number of free parameters. Model selection then becomes a critical issue, for which the tools that have been derived for model-based one-way clustering need to be adapted. In one-way clustering, most selection criteria are based on asymptotical considerations that are difficult to render in block clustering due to dual nature of rows and columns. We circumvent this problem by developing a non-asymptotic criterion based on the Integrated Classification Likelihood. This criterion can be computed in closed form once a proper prior distribution has been defined on the parameters. The experimental results show steady performances for medium to large data tables with well-separated and moderately-separated clusters.

Introduction

These last years have seen an increased interest in research and use of co-clustering of data tables, in domains of machine learning, statistics, data mining [START_REF] Berkhin | A survey of clustering data mining techniques[END_REF] or genomics [START_REF] Jagalur | Analyzing in situ gene expression in the mouse brain with image registration, feature extraction and block clustering[END_REF]. We consider block clustering, whose objective is to organize a data table in homogeneous blocks (clusters). Latent block models [START_REF] Govaert | Clustering with block mixture models[END_REF] enable to define a series of solutions to the block clustering problem, which may differ in their numbers of clusters or in the number of free parameters. Then, model selection [START_REF] Fraley | How many clusters? Which clustering method? Answers via model-based cluster analysis[END_REF], becomes a "critical point" to obtain a meaningful classification. a mixture of block components pertaining to the latent row and column classes: p(X) = (z,w)∈Z×W p(z, w) p(X|z, w) .

The latent block model is then derived from the two following assumptions:

Assumption 1.
Conditionally on the row and column labels, all table entries are independent, and all the entries belonging to the same block are identically distributed:

p(X|z, w, α) = i,j p(x ij |α z i ,w j ) ,
where α is a shorthand notation for all α z i ,w j parameters that characterize the distribution of x ij given (z i , w j ). For Gaussian data, α k is the mean µ k and the variance σ 2 k of block (k, ). Assumption 2. All latent variables are independent. The row labels are independent from the column labels: p(z, w) = p(z) p(w) .

The row labels are independent and identically distributed, and correspondingly, the column labels are independent and identically distributed: where π = (π 1 , . . . π g ) is the prior probability of row labels and ρ = (ρ 1 , . . . , ρ m ) is the prior probability of column labels.

Under these assumptions, the probability distribution of the model is:

p(X|θ) = (z,w)∈Z×W p(z|π) p(w|ρ) p(X|z, w, α) , = (z,w)∈Z×W i,j π z i ρ w j p(x ij |α z i ,w j ) ,
where θ = (π, ρ, α, n, d) is a shorthand notation for all parameters.

Model Types

A family of models can be defined by considering several numbers of classes in rows and columns. We additionally consider the options where the class priors (π, ρ) are free or equal and where the variance parameters σ 2 are free or equal for all clusters . Thus, four models are defined for fixed numbers of clusters by combining these two options.
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Complete Data

The latent block model considers that the distribution of the observed data table X depends on the unobserved latent class variables (z, w). The complete data refers thus to the triplet (X, z, w), and the complete data log-likelihood for the latent block model that assumes that (X, z, w) is observed is then:

L c (X, z, w|θ) = i,k z ik log π k + j, w j log ρ + i,j,k, z ik w j log p(x ij |α k, ) ,
where, slightly abusing notations, the double subscript class indicators z ik and w j are such that

z ik = 1 if z i = k and z ik = 0 otherwise.
The complete data likelihood plays a central role in a variational expectation-maximization (VEM) algorithm [START_REF] Nadif | Algorithms for Model-based Block Gaussian Clustering[END_REF] which is used to the estimate model parameters. As the regular EM algorithm, VEM maximizes the log-likelihood iteratively by maximizing the conditional expectation of the complete data log-likelihood given a current estimate of θ and the observed X. This maximization relies on the computation of p(z, w|X, θ) at the E-step. Without further assumptions, this computation is intractable for the latent block model, requiring n g × d m operations. This problem is circumvented thanks to a variational approximation assuming the conditional independence of z and w: p(z, w|X) = p(z|X)p(w|X). Both terms of the factorized distribution are easily dealt with, requiring respectively n × g and d × m operations. The M-step then proceeds as for the regular EM algorithm. At convergence, this algorithm returns an approximate log-likelihood L, its maximizer θ, and the estimation of the corresponding most probable row and column labeling (ẑ, ŵ). An approximate classification likelihood L c (X, ẑ, ŵ| θ) can also be computed.

ICL for the Gaussian Latent Block Model

The objective of model selection is to choose the "best model". In the Bayesian framework, the best model may be defined as the most probable one given the observed data and a prior distribution over models. When this prior is flat on the finite set of models under consideration, the best model maximizes the integrated likelihood:

p(X|M ) = T p(X|θ, M ) p(θ|M )dθ ,
where T is the parameter space and p(θ|M ) is the prior distribution over parameter θ for model M . This integrated likelihood is commonly approximated by the Bayesian information criterion (BIC). Nevertheless, this approximation is not valid for block clustering due to the inter-dependence between rows and columns and the violation of the necessary regularity conditions [START_REF] Biernacki | Assessing a mixture model for clustering with the integrated completed likelihood[END_REF].

The integrated classification likelihood (ICL) [START_REF] Biernacki | Assessing a mixture model for clustering with the integrated completed likelihood[END_REF] is constructed on the complete data to overcome the problems pertaining to regularity; it then relies on the ability of clustering models to provide evidence with regards to the unobserved data:

p(X, z, w|M ) = T p(X, z, w|θ, M ) p(θ|M )dθ ;
for the latent block model described in Section 3, it also solves the issues raised by the dependencies among table entries.

For convenience, the ICL criterion evaluates the logarithm of the integrated classification likelihood:

ICL(M ) = log p(X, z, w|M ) = log p(X|z, w, M ) + log p(z|M ) + log p(w|M ) , (1) 
where the decomposition follows from Assumption 2, supposing the independence of priors p(θ) = p(α) p(π) p(ρ).

Then, ICL(M ) can be expanded in several forms according to the model type, as listed in Section 3. For the first term, assuming that the variances differ, we choose a Gaussian prior distribution of parameters (µ 0 , σ 2 k /κ 0 ) for the conditional mean of a block µ k |σ 2 k and a scaled inverse χ 2 prior distribution of parameters (ν 0 , σ 2 0 ) is then appropriate for the variance parameter σ 2 k . The first term of (1) then becomes (see appendix):

log p(X|z, w, M ) = - nd 2 log π + gmν 0 2 log(ν 0 σ 2 0 ) -gm log Γ( ν 0 2 ) + gm 2 log κ 0 + k, log Γ( ν 0 + n k d 2 ) - 1 2 log(κ 0 + n k d ) - ν 0 + n k d 2 log ν 0 σ 2 0 + (n k d -1)s 2 k + κ 0 n k d κ 0 + n k d (x k -µ 0 ) 2 , (2) 
where xk = 1 2 , n k and d are respectively the mean, the unbiased sample variance, the number of rows and the number of columns of the block (k, ).

n k d i,j z ik w j x ij , s 2 k = 1 n k d -1 i,j z ik w j (x ij -xk )
When the variances are assumed to be equal, a Gaussian prior distribution of parameters (µ 0 , σ 2 /κ 0 ) may be postulated for µ|σ 2 and a scaled inverse χ 2 prior distribution of parameters (ν 0 , σ 2 0 ) for the variance parameter σ 2 . The first term of (1) is then:

log p(X|z, w, M ) = - nd 2 log π + ν 0 2 log(ν 0 σ 2 0 ) -log Γ( ν 0 2 ) + gm 2 log κ 0 + log Γ( ν 0 + nd 2 ) - 1 2 k, log(κ 0 + n k d ) - ν 0 + nd 2 log ν 0 σ 2 0 + (nd -gm)s 2 w + k, κ 0 n k d κ 0 + n k d (x k -µ 0 ) 2 , ( 3 
)
where

s 2 w = 1 nd-gm k (n k d -1)s 2
k is the unbiased within-cluster sample variance. When the proportions (π, ρ) are assumed to differ, a symmetric Dirichlet prior distribution of parameters (δ 0 , ..., δ 0 ) is postulated, and the last two terms of (1) respectively become:

log p(z|M ) = log Γ(gδ 0 ) + k log Γ(n k + δ 0 ) -g log Γ(δ 0 ) -log Γ(n + gδ 0 ) , (4) 
log p(w|M

) = log Γ(mδ 0 ) + log Γ(d + δ 0 ) -m log Γ(δ 0 ) -log Γ(d + mδ 0 ) . (5) 
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Parameters ICL(M ) expansion Variances Proportions log p(X|ẑ, ŵ, M ) log p(ẑ|M ) log p( ŵ|M )

σ 2 π, ρ (3) 
(6) (7) σ 2 k π k , ρ (2) 
(4) (5) σ 2 π k , ρ (3) 
(4) (5) σ 2 k π, ρ (2) (6) (7) 
Table 1: Variants of the ICL(M ) expansion, for a single or multiple variance parameters, and for free or fixed proportion parameters.

When the parameters (π, ρ) are fixed (and equal), p(z|M ) and p(w|M ) are multinomial variables (of parameter 1/g and 1/m respectively), and the last two terms of (1) respectively become:

log p(z|M ) = n log g , (6) 
log p(w|M

) = d log m . (7) 
As the latent variables z and w are unobserved, we replace them by their most probable inferred values, ẑ and ŵ, as estimated by the VEM algorithm [START_REF] Nadif | Algorithms for Model-based Block Gaussian Clustering[END_REF]. Thus, we obtain four variations of ICL(M ), whose lengthy expressions are summarized in Table 1.

Numerical Experiments

In this section, the performances of ICL are studied on simulated data, which were generated from the latent block model defined in Section 3, so as to have a known ground truth to assess model selection. We use block models with 3 row and 3 column clusters from two model types, either with free or fixed proportions, and both with multiple variances parameters. These two intermediate model types allow for under and over-estimation of the number of free parameters. To avoid unbalanced errors between clusters, the row and column means are equidistant. We consider three degrees of cluster overlap (5%, 12% and 20% of classification error according to conditional Bayes risk) and four data sizes (50 × 50, 200 × 200, 500 × 500 and 1000 × 1000) (see [START_REF] Lomet | Design of Artificial Data Tables for Co-Clustering Analysis[END_REF] for thorough details). For each setup, twenty data sets are simulated, and for each data set, 64 candidate latent block models are estimated by the VEM algorithm: the numbers of row and column clusters are varied from 1 to 4, and for each such number, the four model types are considered. Note that these 64 models define the set of possible models over which a flat prior will be assumed to compute the ICL criterion.

Our ICL criterion requires specifying the five hyperparameters (δ 0 , µ 0 , κ 0 , ν 0 , σ 2 0 ). For the Dirichlet distribution on the proportions parameters, we chose to use a non-informative prior (δ 0 = 1 2 ). For the prior on block means, µ 0 is set to the overall mean of the data table entries. The hyperparameter κ 0 is set to nd/gm: its increase with the number of entries in each cluster encodes a prior assumption on the difficulty of the problem, and the chosen rate reflects our observations on the decrease error rates as table size increases. For the prior on the block variances, the hyperparameters ν 0 and σ 2 0 are defined such as the mode (

ν 0 σ 2 0 ν 0 +2
) is equal to the overall variance. The hyperparameter ν 0 is set to 10 -1 in order to allow for large deviations from this modal value. Therefore, σ 2 0 is equal to 20s 2 where s 2 is the unbiased sample variance. This type of empirical Bayes method is commonly used to set the value of some of the hyperparameters, such as the ones related to the mean distribution [START_REF] Wyse | Block clustering with collapsed latent block models[END_REF]. They may even be employed in more elaborate construction of priors, such as in hierarchical models [START_REF] Richardson | On Bayesian analysis of mixtures with an unknown number of components (with discussion)[END_REF] . That being said, the mathematical properties of this approach are little known and have been little investigated in general and in co-clustering in particular. In this paper, we fix the values of the hyperparameters as stated above and study their sensitivity to evaluate their effects on model selection.

The ICL criterion is compared to the extension of Akaike Information Criterion 3 proposed by [START_REF] Van Dijk | A Bayesian approach to two-mode clustering[END_REF]:

AIC 3 (M ) = -2 L(X| θ, M ) + 3 × (η α + n(g -1) + d(m -1) + g + m -2) ,
where L is the variational approximation of the likelihood, θ is the set of parameters estimated by VEM and η α denotes the number of free parameters in α. This criterion is adapted to the four variants of the latent block model by adjusting η α and dropping the last three terms when proportions are fixed.

The competing criteria aim to retrieve the correct model, which was used for generating the data table. This model is defined by two arguments: its number of row and column clusters and the model type (with single or multiple variance parameters and free or fixed proportions). We tested the ability to select the correct number of clusters knowing model type, the model type knowing the correct number of clusters and to retrieve both model arguments.

Tables 2 and3 report the number of successes among the 20 repetitions for each setup (respectively for free and fixed proportions). For each criterion three types of selection are studied: the correct number of clusters knowing the type of model, the correct type of model knowing the number of clusters and the correct number of clusters and type of model. Overall, ICL performs better than AIC 3 , though AIC 3 is usually slightly better at recovering the model type for known number of clusters. The main weakness of AIC 3 is its inability to retrieve the correct number of clusters even in the most favorable cases (with well-separated clusters and large data tables). This behavior contrasts with the performances of ICL that improve when table size increases and when the degree of overlap decreases, eventually selecting systematically both model types and number of clusters in the most favorable cases tested here. When these criteria fail to select the correct model, AIC 3 and ICL underestimate the number of clusters, while they pick a more complex model type (with free proportions for example).

An empirical study of the sensitivity of the hyperparameters highlights that wrong choices may badly influence the results of the model selection realized by the ICL criterion, but that @ COMPSTAT 2012 a wide range of values perform about equally well in this regard. Figure 1 shows the influence of each hyperparameter on the number of correct selections (clusters and models). Each graph represents this number versus one hyperparameter (in log-scale), while the other ones are fixed as stated above. For the hyperparameter µ 0 , different values were tested and revealed that the mean of the whole data table is a well-advised choice. The other hyperparameters behave well, with wide plateaus of nearly optimal values. Note that this univariate analysis only provide a partial picture of sensitivity, as we observed a strong coupling between some of them, like σ 2 0 and ν 0 which govern the distribution of the prior on the variance parameter(s) of the model.

Conclusion

The Latent Block Model is a probabilistic model that enables to organize a data table in homogeneous blocks. A critical point of the overall fitting procedure is to select a correct model, in order to obtain a meaningful co-clustering. We proposed a model selection strategy based on the adaptation of the exact integrated classification likelihood criterion to the Gaussian latent block model. This non-asymptotic criterion allows to avoid asymptotical problems due to dual nature of rows and columns in block clustering. Moreover, ICL does not require costly additional calculations. Indeed, once the clusters have been estimated, this criterion can be computed in closed form once a proper prior distribution has been defined on the parameters.

The experiments on simulated data targeted two types of model selection, either related to the number of row and column clusters, or to the model type, or both. Model type is defined from parameter restraints, such as considering equal variances or proportions for all clusters. Our results show that AIC 3 is unable to select the correct number of clusters and that it is less successful than ICL regarding model type. The latter perform well when the overlap between clusters is small to moderate, and its performances improve with the size of the data table. The study of the sensitivity of hyperparameters highlights that adjusting the values of some of them allows to improve the performances of ICL.

Beyond the Gaussian latent block model, this approach can be used for other model types such as the latent block model for binary or contingency data, by modifying appropriately the prior of the conditional distribution on the data. For the terms related to the proportions, when the proportions are free, we assume a symmetric Dirichlet prior distribution of parameters (δ 0 , ..., δ 0 ) for the row and column parameters (π, ρ), so that: Details can be found in [START_REF] Biernacki | Assessing a mixture model for clustering with the integrated completed likelihood[END_REF].

(σ 2 ) -1 2 exp - κ 0 + n k d 2σ 2 µ k - κ 0 µ 0 + n k d xk κ 0 + n k d 2 - (κ 0 n k d )(x k -µ 0 ) 2 2σ 2 (κ 0 + n k d ) = k, (σ 2 ) -1 2 exp - κ 0 + n k d 2σ 2 µ k - κ 0 µ 0 + n k d xk κ 0 + n k d
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  p(z|π) = i p(z i |π) , p(w|ρ) = j p(w j |ρ) ,

Figure 1 : 2 ×(σ 2 ) -nd 2 exp - 1 2σ 2 i 2 ,= (σ 2 ) -( ν 0 +nd 2 +1) exp - 1 2σ 2 (ν 0 σ 2 0

 12222222 Figure 1: Number of correct selections (clusters and model) according to variations in hyperparameter values. Here, the data table size is 500 × 500, the latent block model has different proportions and variances and the clusters are moderately-separated (Bayes' error at 12% for 3 × 3 clusters).

2 ×(σ 2 ) -( ν 0 +nd 2 +1) exp - ν 0 σ 2 0 2 .

 22222 + (nd -gm)s 2 w + k, κ 0 n k d κ 0 +n k d (x k -µ 0 ) 2 2σThis probability can be factorized:p(µ, σ 2 |X) = p(µ|σ 2 , X)p(σ 2 |X)Thus, the posterior distribution is defined (assuming the posterior independence of µ k ):p(α|X, z, w, M ) = k, N µ k ; κ 0 µ 0 + n k d xk κ 0 + n k d , σ 2 κ 0 + n k d × Inv-χ 2 σ 2 ; ν 0 + nd, ν 0 σ 2 0 + (nd -gm)s 2 w + k, n k d κ 0 n k d +κ 0 (x k -µ 0 ) 2 ν 0 + nd .

1 k

 1 0 )...Γ(δ 0 ) π k =1 dπ , = Γ(gδ 0 ) Γ(δ 0 ) g Γ(δ 0 + n 1 )...Γ(δ 0 + n g ) Γ(n + gδ 0 ) .

Table 2 :

 2 Number of correct selections over 20 trials for different table sizes and cluster overlaps.The simulated model has multiple variances and free proportions.

		Table Size		50 × 50		200 × 200	500 × 500	1000 × 1000
		Bayes' risk	5% 12% 20% 5% 12% 20% 5% 12% 20% 5% 12% 20%
	3 AIC	Cluster Model Type Cluster and Type	0 8 0	0 8 0	0 15 0	0 19 20 20 0 0 0 0 0	0 20 20 20 0 0 0 0 0	0 20 20 20 0 0 0 0 0
	ICL	Cluster Model Type	9 5	0 5	0 15	18 2 17 20 20 0	20 17 20 20 20 0	20 20 20 20 20 0
		Cluster and Type	2	0	0	16 2	0	20 17	0	20 20	0

Table 3 :

 3 Number of correct selections over 20 trials for different table sizes and cluster overlaps. The simulated model has multiple variances and fixed proportions.

		Table Size	50 × 50		200 × 200	500 × 500	1000 × 1000
		Bayes' risk	5% 12% 20% 5% 12% 20% 5% 12% 20% 5% 12% 20%
	3 AIC	Cluster Model Type Cluster and Type	0 19 13 16 0 0 0 0 0	0 16 13 13 0 0 0 0 0	0 20 20 17 0 0 0 0 0	0 20 20 19 0 0 0 0 0
	ICL	Cluster Model Type	13 1 20 17 16 0	16 13 16 13	2 4	20 20 14 20 20 15	20 20 19 20 20 16
		Cluster and Type 12 0	0	16 9	1	20 20	0	20 20	1
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Appendix: Derivation of ICL

The first term of the expansion (1) is rewritten using the following decomposition:

where p(α|M ) and p(α|X, z, w, M ) are respectively the prior and posterior distributions of α.

For the latent block model with different variances, given the row and column labels, the entries x ij of each block are independent and identically distributed. We thus apply the standard @ COMPSTAT 2012

Model Selection in Block Clustering by the Integrated Classification Likelihood results for Gaussian samples [START_REF] Gelman | Bayesian data analysis[END_REF], where the distributions are defined by:

Using the definitions of these distributions, the first term of the expansion (1), log p(X|z, w, M ) = log p(X|z, w, α, M ) + log p(α|M ) -log p(α|X, z, w, M ) , is identified, after some calculations, as [START_REF] Biernacki | Assessing a mixture model for clustering with the integrated completed likelihood[END_REF].

For the latent block model with equal variances, the standard results need to be adapted to account for the shared parameter σ 2 . The prior distributions are now defined as follows: p(X|z, w, α, M ) = i,j,k, N (x ij ; µ k , σ 2 ) z ik w j , p(α|M ) = k, N (µ k ; µ 0 , σ 2 κ 0 ) × Inv-χ 2 (σ 2 ; ν 0 , σ 2 0 ) .