Laurent Mazet 
  
Harold Rosenberg 
  
On minimal spheres of area 4π and rigidity

Keywords: area of minimal sphere, rigidity of 3-manifolds, hyperbolic cusp

Let M be a complete Riemannian 3-manifold with sectional curvatures between 0 and 1. A minimal 2-sphere immersed in M has area at least 4π. If an embedded minimal sphere has area 4π, then M is isometric to the unit 3-sphere or to a quotient of the product of the unit 2-sphere with R, with the product metric. We also obtain a rigidity theorem for the existence of hyperbolic cusps. Let M be a complete Riemannian 3-manifold with sectional curvatures bounded above by -1. Suppose there is a 2-torus T embedded in M with mean curvature one. Then the mean convex component of M bounded by T is a hyperbolic cusp;,i.e., it is isometric to T × R with the constant curvature -1 metric: e -2t dσ 2 0 + dt 2 with dσ 2 0 a flat metric on T .

Introduction

Consider a smooth (C ∞ ) complete metric on the 2-sphere S whose curvature is between 0 and 1. It is well known that a simple closed geodesic in S has length at least 2π (see [START_REF] Pogorelov | A theorem regarding geodesics on closed convex surfaces[END_REF] or Klingenberg's theorem in higher dimension [START_REF] Klingenberg | Contributions to Riemannian geometry in the large[END_REF][START_REF] Cheeger | Comparison theorems in Riemannian geometry[END_REF]). It is less well known that when such an S has a simple closed geodesic of length exactly 2π, then S is isometric to the unit 2-sphere S 2 1 . This result is proved in [START_REF] Andersson | Comparison and rigidity theorems in semi-Riemannian geometry[END_REF], and the authors attribute the theorem to E. Calabi.

With this in mind, we consider what happens in a complete 3-manifold M with sectional curvatures between 0 and 1 (henceforth we suppose this curvature condition on M , unless stated otherwise).

Let Σ be an embedded minimal 2-sphere in M . Then the Gauss-Bonnet theorem and the Gauss equation tells us that the area of S is at least 4π: indeed we have

4π = Σ KΣ = det(A) + K T Σ ≤ Σ 1 = A(Σ) (1) 
with det(A) the determinant of the shape operator which is non positive. We prove in Theorem 1, that when the area of Σ equals 4π, then M is isometric to the unit 3-sphere S 3 1 or to a quotient of the product of the unit 2-sphere with R, S 2 1 × R, with the product metric. We remark that Theorem 1 does not hold for embedded minimal tori. Given ε greater than zero, there are Berger spheres with curvatures between 0 and 1, which contain embedded minimal tori of area less than ε. But a minimal sphere always has area at least 4π.

It would be interesting to know what happens in higher dimensions. In the unit n-sphere S n 1 , a compact minimal hyper-surface Σ always has volume at least the volume of the equatorial n -1 sphere S n-1

1

. Is there a rigidity theorem when one allows metrics on S n (= M ), of sectional curvatures between 0 and 1? Two questions arise. First, does an embedded minimal hyper-sphere Σ in M have volume at least the volume of S n-1

1

. If this is so, and if Σ is an embedded minimal hyper-sphere with volume exactly the volume of

S n-1 1 , is M isometric to S n 1 or to S n-1 1
× R? In the same spirit as Theorem 1, we prove a rigidity theorem for hyperbolic cusps. We recall that a 3 dimensional hyperbolic cusp is a manifold of the form T × R with T a 2-torus and the hyperbolic metric e -2t dσ 2 0 + dt 2 with dσ 2 0 a flat metric on T . In Theorem 2, we prove that if M is a complete Riemannian manifold with sectional curvatures bounded above by -1 and T is a constant mean curvature 1 torus embedded in M then the mean convex side of T in M is isometric to a hyperbolic cusp.

Minimal spheres of area 4π and rigidity of 3manifolds

In this section, we prove a rigidity result for a Riemannian 3-manifold M whose sectional curvatures are between 0 and 1. As explained in the introduction, any minimal sphere in such a manifold has area at least 4π. We denote by S n 1 the sphere of dimension n with constant sectional curvature 1. We then have the following result.

Theorem 1. Let M be a complete Riemannian 3-manifold whose sectional curvatures satisfy 0 ≤ K ≤ 1. Assume that there exists an embedded minimal sphere Σ in M with area 4π. Then the manifold M is isometric either to the sphere S 3 1 or to a quotient of S 2 1 × R.

Proof. Let Φ be the map Σ × R → M, (p, t) → exp p (tN (q)) where N is a unit normal vector field along Σ. In the following, we focus on Σ × R + ; by symmetry of the configuration, the study is similar for Σ × R -. Σ is compact, so there is an ε such that Φ is an immersion and even an embedding on Σ × [0, ε). Let us define

ε 0 = sup{ε > 0| Φ is an immersion on Σ × [0, ε)};
ε 0 can be equal to +∞. Using Φ, we pull back the Riemannian metric of M to Σ × [0, ε 0 ). This metric can be written ds 2 = dσ 2 t + dt 2 where dσ 2 t is a smooth family of metrics on Σ. With this metric, Φ becomes a local isometry from Σ × [0, ε 0 ) to M and (Σ × [0, ε 0 ), ds 2 ) has sectional curvatures between 0 and 1. Moreover, Σ 0 is minimal and has area 4π. Actually, we will prove the following facts.

Claim. The metric dσ 2 0 has constant sectional curvature 1 so (Σ, dσ 2 0 ) is isometric to S 2 1 . Moreover, we have two cases

1. ε 0 = π/2 and dσ 2 t = sin 2 tdσ 2 0 or 2. ε 0 = +∞ and dσ 2 t = dσ 2 0
Let us denote by Σ t = Σ × {t} the equidistant surfaces. We denote by H(p, t) the mean curvature of Σ t at the point (p, t) with respect to the unit normal vector ∂ t . We also define λ(p, t) ≥ 0 such that H + λ and H -λ are the principal curvature of Σ t at (p, t). We notice that λ = 0 if Σ t is umbilical at (p, t).

The surfaces Σ t are spheres so, using the Gauss equation, the Gauss-Bonnet formula implies:

4π = Σt KΣt = Σt (H + λ)(H -λ) + K t = Σt H 2 -λ 2 + K t
where KΣt is the intrinsic curvature of Σ t and K t is the sectional curvature of the ambient manifold of the tangent space to Σ t . Since K t ≤ 1, we obtain the following inequality

Σt λ 2 = Σt H 2 + K t -4π ≤ Σt H 2 + A(Σ t ) -4π (2) 
where A(Σ t ) is the area of Σ t . In the following, we denote by F (t) the right hand side of this inequality.

Claim 1. F is vanishing on [0, ε 0 ).
Since Σ 0 is minimal and has area 4π, we have F (0) = 0. We notice that this implies that λ(p, 0) = 0 so Σ 0 is umbilical and

K T Σ 0 = 1. Thus (Σ 0 , dσ 0 ) is isometric to S 2
1 . We have the usual formula:

∂ ∂t A(Σ t ) = - Σt 2H and ∂H ∂t = 1 2 (Ric(∂ t ) + |A t | 2 ) (3)
where A t is the shape operator of Σ t and Ric is the Ricci tensor of Σ×[0, ε 0 ). Since the sectional curvatures of M × [0, ε 0 ) are non-negative, Ric is nonnegative. So the second formula above implies that H is increasing and thus H ≥ 0 everywhere. Let us now compute and estimate the derivative of F :

F ′ (t) = Σt (2H ∂H ∂t -2H 3 ) - Σt 2H = Σt H(Ric(∂ t ) + |A t | 2 -2H 2 -2) = Σt H (Ric(∂ t ) -2) + ((H + λ) 2 + (H -λ) 2 -2H 2 ) = Σt H((Ric(∂ t ) -2) + 2λ 2 ) ≤ 2 Σt Hλ 2
where the last inequality comes from Ric(∂ t ) -2 ≤ 0 because of the hypothesis on the sectional curvatures. If we choose ε < ε 0 , there is a constant C ≥ 0 such that H ≤ C on Σ × [0, ε]. So for t ∈ [0, ε], using the inequality (2), we get F ′ (t) ≤ 2CF (t). Then F (t) ≤ F (0)e 2Ct = 0 on [0, ε]. So F ≤ 0 on [0, ε 0 ) and, because of (2), F = 0 on [0, ε 0 ); this finishes the proof of Claim 1.

The first consequence of Claim 1 is that all the equidistant surfaces Σ t are umbilical (see inequality (2)); so λ ≡ 0. In the computation of the derivative of F , this implies that

Σt H(Ric(∂ t ) -2) = 0 Since H(Ric(∂ t ) -2) ≤ 0 everywhere, we obtain H(Ric(∂ t ) -2) = 0 everywhere. ( 4 
)
Moreover the umbilicity and (3) implies that ∂H ∂t = 1 2 Ric(∂ t ) + H 2 . We now prove the following claim Claim 2. Let (p, t) ∈ Σ × [0, ε 0 ) (t > 0) be such that H(p, t) > 0 then H(q, t) > 0 for any q ∈ Σ In other words, when the mean curvature is positive at a point of an equidistant, it is positive at any point of this equidistant. We recall that H is increasing in the t variable so when it becomes positive it stays positive.

So assume that H(p, t) > 0 and consider Ω = {q ∈ Σ| H(q, t) > 0} which is a nonempty open subset of Σ. Let q ∈ Ω. Since H(q, t) > 0, Ric(∂ t )(q, t) = 2 by (4). Thus Ric(∂ t )(r, t) = 2 for any r ∈ Ω. So if r ∈ Ω, Ric(∂ t )(r, s) > 0 for s < t, close to t and, by [START_REF] Klingenberg | Contributions to Riemannian geometry in the large[END_REF], this implies that H(r, t) > 0 and r ∈ Ω. So Ω is closed and Ω = Σ. This finishes the proof of Claim 2.

Let us assume that there is an ε 1 > 0 such that H(p, t) = 0 for (p, t) ∈ Σ × [0, ε 1 ] and H(p, t) > 0 for any (p, t) ∈ Σ × (ε 1 , ε 0 ). Because of the evolution equation of H, this implies that Ric(∂ t ) = 0 on Σ × [0, ε 1 ]. On Σ × (ε 1 , ε 0 ), we have Ric(∂ t ) = 2 because of (4). So by continuity of Ric(∂ t ), we get a contradiction and then we have two possibilities

1. H = 0 on Σ × [0, ε 0 ) and Ric(∂ t ) = 0 on Σ × [0, ε 0 ). 2. H > 0 on Σ × (0, ε 0 ) and Ric(∂ t ) = 2 on Σ × [0, ε 0 ).
In the first case, this implies that the sectional curvature of any 2-plane orthogonal to Σ t is zero. Thus dσ 2 t = dσ 2 0 . Since the map Φ ceases to be an immersion only if dσ 2 t becomes singular this implies that ε 0 = +∞. Thus Σ × R + with the induced metric is isometric to S 2 1 × R + and Φ is a local isometry from S 2 1 × R + to M . In the second case, the sectional curvature of any 2-plane orthogonal to Σ t is equal to 1. Thus dσ 2 t = sin 2 tdσ 0 and ε 0 = π/2. This also implies that Φ(p, π/2) is a point. So Σ × [0, π/2] with the metric ds 2 is isometric to a hemisphere of S 3 1 and the map Φ is a local isometry from that hemisphere to M .

Doing the same study for Σ×R -, we get in the first case a local isometry Φ : S 2 1 × R → M and in the second case a local isometry Φ :

S 3 1 → M . Since S 2
1 × R and S 3 1 are simply connected, Φ is then the universal cover of M and M is then isometric to a quotient of S 2 1 × R or S 3 1 . Since Φ is injective on Σ this implies that in the second case, Φ is actually injective and then a global isometry.

Remark 1. In the proof, since Φ is injective on Σ, the possible quotients of S 2 1 × R are either S 2 1 × R or its quotient by the subgroup generated by an isometry of the form

S 2 1 × R → S 2 1 × R; (p, t) → (α(p), t + t 0 ) with α an isometry of S 2
1 and t 0 = 0.

Remark 2. Something can be said about constant mean curvature H 0 spheres in a Riemannian 3-manifold with sectional curvatures between 0 and 1. Indeed, the computation (1) implies that the area of Σ is larger than 4π 1+H 2 0 , which is the area of a geodesic sphere in S 3 1 of mean curvature H 0 . Moreover, if Σ has area 4π 1+H 2 , the above proof can be adapted to prove that the mean convex side of Σ is isometric to a spherical cap of S 3 1 with constant mean curvature H 0 (see Theorem 2 below, for a similar result in the hyperbolic case). Remark 3. Let M be a Riemannian n-manifold whose sectional curvatures are between 0 and 1 and let Σ be a minimal 2-sphere in M . A computation similar to (1) proves also that the area of Σ is larger than 4π. It also implies that, if Σ has area 4π, Σ is totally geodesic and isometric to S 2 1 .

Existence of hyperbolic cusps

Let (T 2 , g) be a flat 2 torus, the manifold T 2 × R + with the complete Riemannian metric e -2t g + dt 2 is a hyperbolic 3-dimensional cusp. T 2 × R is actually isometric to the quotient of a horoball of H 3 by a Z 2 subgroup of isometries of H 2 leaving the horoball invariant. Any T 2 × {t} has constant mean curvature 1. The following theorem says that, in certain 3-manifolds, a constant mean curvature 1 torus is necessarily the boundary of a hyperbolic cusp.

Theorem 2. Let M be a complete Riemannian 3-manifold with its sectional curvatures satisfying K ≤ -1. Assume that there exists a constant mean curvature 1 torus T embedded in M . Then T separates M and its mean convex side is isometric to a hyperbolic cusp.

As a consequence, the existence of this torus implies that M can not be compact. The proof uses the same ideas as in Theorem 1

Proof. Let us consider the map Φ : T × R + → M, (p, t) → exp p (tN (p)) where N is the unit normal vector field normal to T such that N is the mean curvature vector of T . Let us define

ε 0 = sup{ε > 0| Φ is an immersion on T × [0, ε)}.
Using Φ, we pull back the Riemannian metric of M to T × [0, ε 0 ); it can be written ds 2 = dt 2 + dσ 2 t . We define T t = T × {t} the equidistant surfaces to T 0 . We also denote by H(p, t) the mean curvature of the equidistant surfaces at (p, t) with respect to ∂ t . We finally define λ(p, t) such that H + λ and H -λ are the principal curvatures of T t at (p, t).

The surfaces T t are tori so, by the Gauss equation and the Gauss-Bonnet formula, we have

0 = Tt KTt = Tt H 2 -λ 2 + K t
where K t is the sectional curvature of the ambient manifold of the tangent space to T t . Since K t ≤ -1, we obtain the inequality

Tt λ 2 = Tt H 2 + K t ≤ Tt H 2 -A(T t )
Let F (t) denote the right hand term of the above inequality. By hypothesis, H(p, 0) = 1 so F (0) = 0 and F (t) ≥ 0 for any t ≥ 0. Let us compute the derivative of

F F ′ (t) = Tt (2H ∂H ∂t -2H 3 ) + Tt 2H = Tt H(Ric(∂ t ) + |A t | 2 -2H 2 + 2) = Tt H((Ric(∂ t ) + 2) + 2λ 2 ) Since H(p, 0) = 1, we can consider ε ∈ (0, ε 0 ) such that 0 < H ≤ C on T × [0, ε]. Since Ric(∂ t ) + 2 ≤ 0 we get: F ′ (t) ≤ Tt 2Hλ 2 ≤ 2CF (t)
Thus F (t) ≤ F (0)e 2Ct for t ∈ [0, ε]; this implies F (t) = 0 on that segment. We then obtain λ = 0 on T × [0, ε] (the equidistant surfaces are umbilical) and Ric(∂ t ) = -2 since H > 0. Thus H satisfies the differential equation

∂H ∂t = -2 + 2H 2 . This gives that H = 1 on T × [0, ε] since H = 1 on
T 0 . Thus we can let ε tend to ε 0 to obtain that F (t) = 0 on [0, ε 0 ) and Ric(∂ t ) = -2 and H = 1 on T × [0, ε 0 ). Since 0 = Tt H 2 + K t and K t ≤ -1, it follows that K t = -1 for all t in the interval. We then have proved that the sectional curvature of T × [0, ε 0 ) with the metric ds 2 is equal to -1 for any 2-plane. Moreover, we get that dσ 2 0 is flat and that dσ 2 t = e -2t dσ 2 0 . This implies that Φ is actually an immersion on T × R + (ε 0 = +∞) and T × R + is isometric to a hyperbolic cusp. Φ is then a local isometry from this hyperbolic cusp to M .

To finish the proof, let us prove that Φ is in fact injective. If this is not the case, let ε 1 > 0 be the smallest ε such that Φ is not injective on T ×[0, ε]. This implies that there exist p and q in T such that • either Φ(p, 0) = Φ(q, ε 1 )

• or Φ(p, ε 1 ) = Φ(q, ε 1 ) (with p = q in this case).

Let U and V be respective neighborhoods of (p, 0) (or (p, ε 1 )) in T 0 (or T ε 1 ) and (q, ε 1 ) in T ε 1 such that Φ is injective on them. Since ε 1 is the smallest one, Φ(U ) and Φ(V ) are two constant mean curvature 1 surfaces in M that are tangent at Φ(q, ε 1 ). Moreover, in the first case, Φ(U ) is included in the mean convex side of Φ(V ) so by the maximum principle Φ(U ) = Φ(V ). Thus Φ(T 0 ) would be equal to Φ(T ε 1 ) which is impossible since these two surfaces do not have the same area. In the second case, Φ(U ) is included in the mean convex side of Φ(V ) and then Φ is not injective on T s for s near t s < t, which is a contradiction.